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Comparing detection accuracy
of mountain chickadee (Poecile
gambeli) song by two deep-
learning algorithms
Sofia M. Haley1*, Shyam Madhusudhana2 and Carrie L. Branch3

1Department of Biology, University of Nevada, Reno, NV, United States, 2Center for Marine Science
and Technology, Curtin University, Telfair, Moka, Mauritius, 3Department of Psychology, University of
Western Ontario, London, ON, Canada
The use of autonomous recording units (ARUs) has become an increasingly

popular and powerful method of data collection for biological monitoring in

recent years. However, the large-scale recordings collected using these devices

are often nearly impossible for human analysts to parse through, as they require

copious amounts of time and resources. Automated recognition techniques

have allowed for quick and efficient analysis of these recordings, and machine

learning (ML) approaches, such as deep learning, have greatly improved

recognition robustness and accuracy. We evaluated the performance of two

deep-learning algorithms: 1. our own custom convolutional neural network

(CNN) detector (specialist approach) and 2. BirdNET, a publicly available

detector capable of identifying over 6,000 bird species (generalist approach).

We used audio recordings of mountain chickadees (Poecile gambeli) collected

from ARUs and directional microphones in the field as our test stimulus set, with

our custom detector trained to identify mountain chickadee songs. Using

confidence thresholds of 0.6 for both detectors, we found that our custom

CNN detector yielded higher detection compared to BirdNET. Given both ML

approaches are significantly faster than a human detector and the custom CNN

detector is highly accurate, we hope that our findings encourage bioacoustics

practitioners to develop custom solutions for targeted species identification,

especially given the availability of open-source toolboxes such as Koogu.
KEYWORDS

automated detector, mountain chickadee, machine-learning, passive acoustics,
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Introduction

Autonomous recording units (ARUs) are becoming an

increasingly popular method for capturing the vocalizations of

many species in the context of biological monitoring. This

method is known as passive acoustic monitoring (PAM) and has

resulted in the possibility for rapid culmination of large acoustic

datasets due to its high accessibility and long-term applicability

(Sugai et al., 2019; Ross et al., 2023). PAM further facilitates the

monitoring of target species at times when humans cannot be

physically present to manually record vocalizations (Ross et al.,

2023). ARUs can be flexibly programmed to fit the needs of

researchers, with a variety of settings that can be adjusted

according to the study’s requirements (Sugai et al., 2019). Due to

the large amount of data accumulated using ARUs, researchers are

moving away from humans as detectors and the need for machine

learning (ML) algorithms is growing. Focal recordings taken with

hand-held microphones are also a common method of recording

vocalizations for biological research and monitoring. These

recordings, though typically shorter and more manageable, can

also be lengthy and require a great deal of time to parse through.

Convolution neural networks (CNN) dominate automated

assessment of acoustic datasets, increasing the efficiency of

biological monitoring. A variety of ML algorithms, including deep

learning, have been developed and show great potential to deal with

large datasets (Stowell, 2022; Xie et al., 2023).

A few studies have additionally compared the performance of a

variety of machine learning detectors on a known dataset of

vocalizations identified by a human observer. For instance, a

study by Manzano-Rubio et al. (2022) highlighted the benefit of

using readily-available and highly accessible detectors by evaluating

the performances of two machine-learning detectors: BirdNET and

Kaleidoscope. A study by Knight et al. (2017) compared the

performance of 5 different detectors: their own CNN detector,

SongScope, MonitoR, RavenPro, and Kaleidoscope. Knight et al.

(2017) found that all detectors had a high rate of precision

depending on an optimal threshold/confidence factor set for each

detector. The detectors varied in their precision/recall abilities, with

the custom-made CNN performing higher than the

generalizable detectors.

To compare the performance of different machine-learning

detectors, there must be a “known” test set that includes the

“true” detections in the recordings. This has been seen as a

limitation when using ML detectors, as “known” datasets are

difficult to obtain given they require that observations (humans or

ML) be 100% reliable. This can especially be difficult when using

humans to determine the true dataset, as there may be significant

variation among observers (Sirovic, 2016; Leroy et al., 2018).

However, human detections by an expert are commonly used as

the “true” or “known” dataset to which machine-learning

performance is compared (Knight et al., 2017).

One solution to the limitation of acquiring a “true” dataset is to

estimate the probability of detection of an observer by comparing

the performance of multiple observers. One of these methods is the

Huggins closed population approach (Huggins, 1989, 1991), which

has been successfully used to compare human and ML detectors
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identifying blue whale “D calls” in Miller et al. (2023). The Huggins

closed population approach, initially developed for capture/

recapture biological studies, estimates the probability of detection

in a “recapture” event from a known dataset (the initial “capture”

event) (Huggins, 1989; 1991). The human is considered the

“capture” event while the other detectors are considered

“recapture” events to be compared against the human detections.

This approach allows for evaluation of human performance as the

machine-learning detectors may identify vocalizations that the

human missed. A human “expert” must then adjudicate the

detections that the machine-learning detector found, but that the

human missed, to identify if these detections are true-positives or

false-positives (Miller et al., 2023). Here, we used the Huggins

closed population model to evaluate the performance of two ML

detectors to a human detector using audio recordings containing

vocalizations from a common North American passerine, the

mountain chickadee (Poecile gambeli).

Mountain chickadees are nonmigratory songbirds inhabiting

the montane regions of western North America (McCallum et al.,

1999). Like many temperate oscine passerines, the song of

mountain chickadees is typically sung by males during the

breeding season and serves a dual function; to defend his territory

from conspecific males and to attract females for mating (Krebs

et al., 1978; Searcy, 1984; Otter et al., 1997; Christie et al., 2004).

Mountain chickadees are a closed-learning species, meaning that

they learn their song at their natal site during a sensitive period of

development and do not produce new songs once they have

crystalized their repertoire (Gammon, 2007). The song of

mountain chickadees typically consists of four tonal or whistled

notes with a drop in frequency between the second and third note

(frequency ratio) (Wiebe and Lein, 1999; Branch and Pravosudov,

2015, 2020) (Figure 1). Despite the comparatively simplistic

structure of chickadee song, previous work in this system has

documented significant differences in song structure among males

inhabiting high versus low elevations (Branch and Pravosudov,

2015, 2020), including variation in duration, frequency bandwidth,

and time-frequency structures.

In the current study, we used audio recordings collected over

several years from ARUs and handheld directional microphones

targeting mountain chickadee (Poecile gambeli) song to evaluate the

performance of two ML detectors. Most recent studies on the

performance of deep-learning detectors have assessed

performance on PAM recordings, as this is often the easiest

method of collecting large amounts of data for biological

monitoring. However, focal recordings using directional

microphones are another popular method used in biological

monitoring and research. Thus, it is valuable to compare the

performance of the CNN on directional focal recordings and

PAM soundscape recordings to fully assess the applicability of the

CNN in the most common recording settings employed by

biologists. A study by Kahl et al. (2021) found that BirdNET

performed worse with soundscape recordings compared to focal

recordings. Recordings from ARUs typically have lower resolutions

and signal-to-noise ratios due to their non-directionality and

distance from the vocalizer compared to focal recordings taken by

humans. We seek to examine the findings of Kahl et al. (2021) in
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our own study system and add to the limited literature comparing

the performance of CNNs on focal recordings compared to

recordings from ARUs.

We compared the performance of two ML detectors’

performance to an expert human detector (CLB), using 1. a

custom convolutional neural network (CNN) model trained using

Koogu (Madhusudhana, 2023) and 2. BirdNET, an off-the-shelf

generalized solution that recognizes the vocalizations of over 6000

bird species (Kahl et al., 2021). While both types of recorder stimuli

will have other vocalizations present, we aimed to specifically assess

the presence of mountain chickadee song and not the other

vocalizations that chickadees produce (e.g. chick-a-dee or gargle

calls). We predict that since the custom CNNwas trained using a set

of audio selections from ARUs targeting known mountain

chickadee nests, that the custom CNN will outperform the

generalized BirdNET detector, even when specifying mountain

chickadee as the target species.
Methods

Data collection

To train and test the two song detection approaches (custom

CNN and BirdNET) for male mountain chickadee songs, we used

acoustic recordings from several breeding seasons (2017, 2019,

2020) at our long-term field site in northern California, Sagehen

Experimental Forest, USA (Sagehen Creek Field Station, University

of California Berkeley, approximately 14.5 km north of Truckee,

CA). Breeding behavior and male song have been monitored and

recorded annually from this population since 2013 (Branch and

Pravosudov, 2015, 2020; Kozlovsky et al., 2018; Branch et al., 2019).

Birds were recorded at their nests from May to July of each year

using one of two approaches: 1. Swift terrestrial ARUs developed by

the Cornell Lab of Ornithology’s K. Lisa Yang Center for

Conservation Bioacoustics. The Swift recording device is a single
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unit housing a microphone and recorder. Acoustic recordings were

collected at a sampling rate of 48,000 Hz and a 16-bit resolution. Or

2. A Marantz PMD661 Compact Flash Card digital recorder and

Sennheiser ME – 66 unidirectional microphone with a sampling

rate of 44,000 Hz and 16-bit resolution. For directional recordings,

males were located auditorily and approached with microphone and

recorder in hand. Each male was recorded on one day.

Chickadees are cavity-nesting birds that readily nest in human

made nest boxes. At our field site, there are over 350 nest boxes

across our two elevation sites, which results in approximately 100

nests per year. Swift ARUs were placed ca. 2–5 meters from active

chickadee nest boxes during the nest-building and egg-laying stages

of breeding. ARUs recorded from 0500 to 2000 h PST for three days

at each nest box. Audio recordings from ARUs and handheld

recorders were stored as. wav files on secure digital (SD) cards

and uploaded daily for permanent storage.
Training the custom CNN

The dataset used to train the custom CNN model was created

using audio from ARUs only. The training set consisted of 33

40-min recordings (consisting of at least 31 individual males based

on nest box location) across varying times of day, from May to

June 2019. From those 22 hours of ARU collected audio

recordings, 246 annotated songs were pulled as positive

examples of mountain chickadee song. Additional annotations

representing segments of recordings that did not contain any

mountain chickadee songs yielded an additional 279 annotations.

CLB and an additional human observer created the training

annotations by creating selections in Raven Pro 1.6 (Cornell Lab

of Ornithology); mountain chickadee songs were annotated as

“pos” and short sections, approximately 2 s (comparable length to

mountain chickadee song and “pos” annotated selections), of the

recording with no mountain chickadee song present were

annotated as “neg”.
FIGURE 1

Schematic of typical mountain chickadee song consisting of 4 notes. The sound spectrogram (transform length of 512 points, time resolution of
11.6 ms, and frequency resolution of 86.1 Hz) represents a visualization of an acoustic signal with time (s) on the x-axis, frequency (kHz) on the
y-axis, and amplitude represented by presence of black shading. Annotations have been added to the figure to highlight variation measured in each
song. Created in Raven Pro 1.6.
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Testing and comparing detectors

Test stimuli
To test and compare the performance of the two detectors

(custom CNN model and BirdNET), we used additional,

nonoverlapping recordings from the same field site. For testing,

we incorporated recordings from two recording devices that are

traditionally used in wildlife bioacoustics, the Swift terrestrial ARUs

and targeted recordings from a handheld directional microphone

and digital recorder. We evaluated the performance of the detectors

on recordings from ARUs compared to those from directional

microphones, because they are the most common recording

methods for bioacoustics data collection and can differ in audio

quality. ARUs allow for constant monitoring over a long timeframe,

but lack the directionality of focal recordings as they are not

manned by a mobile human. Thus, to fully evaluate the

capabilities of the two detectors, we chose to include recordings

of both types. We used the same set of stimuli to test both detectors,

which included 12 directional audio recordings (7 from 2017 and 5

from 2020) from 12 individual male mountain chickadees

(identified by unique color band combinations). The directional

audio recordings ranged from 0:54 seconds to 09:04 minutes.

Testing stimuli also included six 40-min recordings from Swift

ARUs placed by the nest boxes of six different individuals from the

2020 breeding season. For all detector performances (custom CNN

model and BirdNET), we only assessed classifications of mountain

chickadee songs, not calls. Each file potentially contained additional

vocalizations from chickadees or other species at the field site.

However, since only one type of vocalization was annotated

(mountain chickadee song), the custom CNN was trained to only

recognize mountain chickadee songs, and only selections for

mountain chickadee songs were analyzed from the BirdNET

output (BirdNET will select all vocal types of the focal species,

Kahl et al., 2021).

Custom CNN detector
For data pre-processing, model construction, training and

subsequent inferencing using the trained model we used Koogu

(v0.7.2; Madhusudhana, 2023), an open-source framework for

machine learning in bioacoustics. The underlying computing

platform comprised TensorFlow (v2.13; Abadi et al., 2016)

running on Python 3.10 (Python Foundation), on a HP Z-book

laptop having an Intel i9-11950H and an NVIDIA RTX

A4000 GPU.

Audio recordings were resampled to a sampling frequency of 16

kHz and band-pass filtered to suppress energies outside of the range

2968–5188 Hz. Then, the recordings were split into 1.8 s long

segments with an overlap of 1.3 s between consecutive segments,

and the waveform amplitudes were normalized to occur in the

range [−1.0, 1.0]. Spectrograms of each segment were computed

using a 32 ms Hann window with 50% overlap between frames,

resulting in time and frequency resolutions of 16 ms and 31.25 Hz,

respectively. The spectrograms were clipped along the frequency
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axis to only retain portions between 2968 Hz and 5188 Hz, resulting

in model inputs having dimensions of 72 × 111 (height × width).

The clip length and bandwidth (for filtering and clipping) values

were chosen based on a statistical assessment of the training set

annotations’ durations (1.27 s ± 0.17) and frequency bounds (lower:

3295.43 Hz ± 138.27; upper: 4601.21 Hz ± 172.45), respectively. The

chosen values ensured that the songs were well-contained (plus a

little cushioning on all sides) within what formed independent

inputs to the model. Corresponding to some of the longer-duration

annotations, the chosen segment length and overlap settings

resulted in more than one spectrogram per annotation. Overall,

the input preparation step generated 287 spectrograms containing

the target songs (or parts thereof) and 427 spectrograms without the

target songs.

We chose a quasi-DenseNet (Madhusudhana et al., 2021)

architecture considering its computational efficiency and ability to

train well with few samples. The model consisted of a 12-filter 3×3

pre-convolution layer followed by four quasi-dense blocks having 2,

2, 4 and 2 layers per block with a growth rate of 8. The final quasi-

dense block was connected to a 32-node fully connected layer which

was followed by a 2-node fully connected layer with sigmoid

activation. To improve model generalization, dropout (Srivastava

et al., 2014), with a rate of 0.05, were used. The model was trained

over 80 epochs using the Adam optimizer (Kinga and Adam, 2015)

with a mini-batch size of 128. Training considered 90% of the

training samples while the remaining 10% were used for evaluating

the model through the training process. Training losses were

weighted appropriately to address class imbalance in the training

inputs. The learning rate was set to an initial value of 0.01 and was

successively reduced by a factor of 10 at epochs 30, 50 and 70.

BirdNET
BirdNET (https://github.com/kahst/BirdNET-Analyzer) is an

existing audio analyzer that uses machine learning to process and

classify avian vocalizations of over 6,000 different species worldwide

(Kahl et al., 2021). In addition, the BirdNET detector and species list

can be accessed using a personal computer, so that large .wav audio

files can be processed. BirdNET detections are reported as .txt

selection tables, openable in Raven Pro 1.6. The BirdNET-Analyzer

has been trained to detect and identify the full range of mountain

chickadee vocalizations.

Testing with custom CNN detector
Folders of .wav files with annotations, stored as selection tables,

for each detector (custom CNN, BirdNET) were created in RavenPro

1.6. Audio files in the test dataset were subjected to the same pre-

processing and preparation scheme as the training set. Positive class

test inputs were determined using the same rules as the positive class

training inputs. Having no explicitly annotated noise sections, those

inputs that did not have any temporal overlap with any mountain

chickadee song annotations were considered as negative class test

samples. Contrary to the training phase, model inputs during testing

were generated with a segment overlap of 1.6 s. To avoid reporting
frontiersin.org
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multiple detections for an underlying song, contiguous segments with

segment-level scores above a detection threshold (0.6) were combined

using the inferencing protocol defined in Madhusudhana et al.

(2024). Combined detections were written out in Raven Pro.txt

selection table format for subsequent analyses.

Testing with BirdNET
BirdNET-Analyzer version 2.4 was run on a 2020 MacBook Pro

with aM1 chip and 8 GBmemory and accessed via https://github.com/

kahst/BirdNET-Analyzer#setup-macos. All .wav test files were

included in a single folder on the desktop and commands were

run in the terminal. The following commands were used to run

detections, –min_conf was set to 0.6 and –slist was used to specify

species_list.txt as “Poecile gambeli_Mountain Chickadee.” All other

options were left as defaults, see https://github.com/kahst/

BirdNET-Analyzer?tab=readme-ov-file#technical-details.
Performance assessment

Preliminary assessment
To determine the confidence thresholds used for the custom

CNN detections, we assessed inputs for which the detector

produced accurate detections of mountain chickadee song. We

used this data to assess the precision and recall performance at

different thresholds (0.6 and 0.9) produced by the custom CNN

detector (see Supplementary Material). Precision is the proportion

of detections that are true positives (mountain chickadee song, in

this study) and recall is the proportion of detections detected (or

recalled) from the total number of vocalizations (mountain

chickadee songs) present (Knight et al., 2017). Precision and

recall are of the most widely used metrics for assessing detector

performance (e.g., Raghavan et al., 1989; Knight et al., 2017; Miller

et al., 2023), Based on these preliminary assessments, a detector

threshold of 0.6 was chosen as it yielded an optimal precision versus

recall trade-off. This was matched for BirdNET, as we found 0.6 to

also be a suitable threshold in this detector and wanted to match

performance as closely as possible.

Double-observer assessment
The Huggins closed population approach estimates the

probability of detection in a “recapture” event compared to a

known initial “capture” event (Huggins, 1989). Therefore, we

analyzed the probability that the detectors (recaptures) detected

all the songs in the dataset determined by the human observer

(initial capture event) using this approach. Capture history was

created by making a column for each detection made by each

detector (custom CNN, BirdNET, human). An additional column

was created identifying the reconciliation for each additional

detection made by the machine-learning detectors but not the

human (false positive or true positive), adjudicated by the “expert

judge” (SMH). Test inputs which the custom CNN detector

identified as above the set threshold were considered to contain
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mountain chickadee songs. The expert (SMH) judged the annotated

detections paired with the spectrograms in Raven Pro 1.6 as either

“true positives” or “false positives”. True positives were identified as

all detections where SMH and automated detector agreed, and false

positives were identified as all detections where SMH did not agree

with the automated detector. “False negatives” were identified as

songs that any of the detectors missed. These reconciliations were

annotated in selection tables in Raven Pro 1.6, and the data was

transferred to an excel file containing all detections (see

Supplementary Material).

We inspected the effect of signal-to-noise ratio (SNR) as a

potential covariate in detection rates. This was done by inspecting

the spectrograms for each detection. Vocalizations were classified

into three SNR categories, depending on the ratio of relative

strength of the song signal and background noise, calculated in

decibels (dB). Songs with a SNR of >10 dB, thus containing a

medium-strength signal with little to no background noise or a

strong signal with low- to medium- strength background noise were

classified as “high” SNR songs. Songs with a SNR of 3-10 dB and

thus containing medium-strength signals with medium background

noise or strong signals with heavy background noise were classified

as having “medium” SNRs. Songs with an SNR below 3 dB and thus

containing a weak signal or a medium signal but heavy background

noise, were classified as having “low” SNRs. We also classified

signals with an interfering vocalization by another individual or

species as having a low SNR due to its high interference with the

performance of the detectors. For examples of each SNR level, see

Supplementary Material.

The capture history (each true positive detection) for each

detector was incorporated to create Huggins closed population

model estimates of probability of detection, where “human” was

considered the first capture occasion, and custom CNN and

BirdNET were considered the second and third capture occasions,

or re-captures. Models were created using software package MARK

(White and Burnham, 1999) via RMark (Laake, 2013) in R version

4.3.3 (R Core Team, 2023).

Five Huggins models for estimating the probability of

detections were considered for custom CNN and BirdNET. The

models with the lowest AICc values (Akaike’s Information

Criterion; Burnham and Anderson, 2002) were selected as the

most supported models. The first model assumed that the

detectability varied between the detectors. The second model

included SNR as a covariate, and detectability was modeled

separately for each combination of detectors and SNR levels. The

third model assumed the detectability of the human analyst and

each automated detector to be the same. The fourth model included

recording type (Swift ARU or directional recording) as a covariate,

and detectability was modeled separately for each combination of

detectors and recording types. Finally, the fifth model included both

recording type and SNR as covariates, and detectability was

modeled separately for each combination of detectors, SNR levels,

and recording types. R code for producing the Huggins double-

observer models can be accessed in Supplementary Materials.
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Results

We investigated the relative detection performances of the two

automated detectors: custom CNN (threshold 0.6) and BirdNET

(threshold 0.6). We also assessed the performance of a human

analyst to consider any detections that the machine-learning

detectors made but that the human missed. The human analyst

identified 509 total songs out of the 520 known songs across all the

test audio recordings, resulting in a detection rate of 97.9%. The

custom CNN reported 489 detections and BirdNET reported 313

detections. According to the results of the Huggins closed

population model, where detectability varied between the

detectors, the custom CNN identified 93.6% of the total number

of songs (487/520), with two false-positive detections. BirdNET

detected 60% of the songs (313/520). Thus, the custom CNN

detector detected more songs compared to the BirdNET detector.

The best Huggins model for the probability of detection (i.e. had

the lowest AICc value) was the model that included SNR and

Recording type as covariates (see Table 1), indicating that SNR and

recording type together affected the relative performance of the

detectors. See Table 2 for a summary of each comparison.

According to the Huggins model where each detector and SNR

levels were considered separately, the custom CNN detector

detected the least number of songs in the low SNR category, with

an 88.7% rate of detectability compared to 97.2% and 97.6% for

medium and high SNR, respectively (see Table 3). BirdNET also

performed worst in the low SNR category, with 38.7% detectability

of low SNR songs, 70% detectability of medium SNR songs, and

91.7% detectability of high SNR songs. See Figure 2.

Lastly, we found that the custom CNN performed worse with

the Swift ARU recordings (87.8% detectability) compared to the

directional microphone recordings (97.7% detectability) (see

Table 4). Similarly, BirdNET performed worse with the Swift

ARU recordings (40.8% detectability) compared to the directional

microphone recordings (73.6% detectability). See Figure 3.
Discussion

Previous studies have found that custom deep-learning

algorithms are able to detect focal vocalizations at a very high

rate of precision (e.g., Knight et al., 2017; Miller et al., 2023). Our

own custom CNN detector performed at a very high-level with
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93.6% recall, indicating its proficiency in identifying the mountain

chickadee songs from our study population. When using the model

that included recording type as a covariate, we found that the

custom CNN performed comparatively worse with the Swift ARU

recordings compared to the directional recordings, however, still

relatively high; 87.8% detectability. This was also a much stronger

performance than that of the BirdNET detector which dropped to

40.8% detectability in the same category. However, our initial goal

was to create a detector that can parse through lengthy recordings,

as they can take hours to process depending on length and number

of target vocalizations present. The difference in performance of

both BirdNET and our custom CNN for the ARU compared to

directional recordings needs to be further explored, as ARU

recordings demand the use of machine-learning detectors.

Additional studies should focus on comparing the performance of

ML detectors using focal versus PAM recordings to establish

optimal settings that result in maximized performance for

PAM recordings.

Overall, we found that a low signal to noise ratio had a strong

negative impact on both ML detectors’ abilities to identify the target

vocalizations. This was expected, as the ML detectors rely on SNR to

identify vocalizations of interest. Songs with interfering noise and

weak signals leading to a low SNR score should indeed be more

difficult to detect. Our findings corroborate the findings of Pérez-

Granados (2023a), who found that BirdNET’s detection performance

generally decreased with distance. Our findings thus further highlight

the limitations of using detectors with long-range recordings and

researchers should be wary when relying on detectors to identify

vocalizations from low SNR/long distance recordings.

Confidence scores can be employed as filters to impact the

number of detections by detectors (Pérez-Granados, 2023b). Scores

closer to 1 increase the chances that the detected vocalization will

belong to the focal species, while scores closer to 0 increases the

chance that the detector will detect all vocalizations, but with

reduced accuracy (Pérez-Granados, 2023b). Studies by Katz et al.

(2016) and Knight et al. (2017) found that performance varies

widely with score threshold and should be used as a tool to select an

optimal threshold depending on detector performance evaluation.

For our study, we employed confidence scores of 0.6 for both

BirdNET and our custom CNN, because a confidence score of 0.6

was determined to be the optimum precision/recall for our

detectors, with a high accuracy of detection (nearly 100%

accuracy). This means that the detectors only identified songs
TABLE 1 AICc and deviance for the five different Huggins double-observer models of probability of detection.

Model Parameters AICc DAICc Weight Deviance

p(~Detector * snr *
recording type)

24 1215.981 0.000 1 4002.767

p(~Detector * snr) 12 1272.875 56.894 4.422722e-13 4084.094

p(~Detector * recording type) 8 1339.109 123.128 0 5016.834

p(~Detector) 4 1451.343 235.362 0 4278.694

p(~1) 1 1773.731 557.75 0 5466.524
The model with the lowest AICc was the model that allowed for probability of detection to vary for each combination of detector, SNR, and recording type.
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with a confidence threshold of 0.6 and failed to identify songs below

that confidence threshold. Our set confidence score impacted the

failure of both detectors to detect songs with low SNR as these songs

did not reach the confidence criterion set. This is an important

trade-off to consider as our threshold resulted in highly accurate

song detections (precision), but reduced our chances of identifying

songs with low signal power (recall). As discussed in Bota et al.

(2023), the confidence score employed depends on the goals of the

researchers. If the goal is to detect all instances of song present, then

a lower confidence score might be the best choice (Bota et al., 2023).

However, if the goal is to detect songs accurately and eliminate

noise and false positives, then a higher confidence score may be the

best choice (Bota et al., 2023). We chose an intermediate confidence

score of 0.6 based on our analysis of the optimal precision/recall of
Frontiers in Bird Science 07
the custom CNN detector (see Supplementary Material). We would

like to highlight the importance of considering the impact of setting

confidence scores when fine-tuning detectors to fit the needs of the

relevant study.

We found that our custom deep-learning CNN outperforms the

generalist detector, BirdNET, for our dataset. This finding supports

the findings of Knight et al. (2017) who found that their custom

CNN outperformed more generalizable detectors such as RavenPro

and Kaleidoscope. This could be due to a number of reasons. One

major explanation for why the CNN performed better than

BirdNET is that the custom CNN was trained with recordings

from the same study system as our test set. Mountain chickadee

song varies across space (Branch and Pravosudov, 2015, 2020) and
TABLE 2 Estimates of probability of detection estimates with standard error (SE), and lower (LCL) and upper (UCL) 95% confidence limits for the
Huggins closed population mark-recature model for the custom CNN and BirdNET, signal to noise ratio, and recording type.

Detector SNR Recording Estimate SE LCL UCL

Custom CNN Low Shotgun 0.946 2.330670e-02 0.878 0.978

Low Swift 0.843 3.217380e-02 0.770 0.897

Medium Shotgun 0.993 7.168100e-03 0.951 0.999

Medium Swift 0.932 2.917830e-02 0.848 0.972

High Shotgun 0.986 1.342220e-02 0.910 0.998

High Swift 0.909 8.667900e-02 0.561 0.987

BirdNET Low Shotgun 0.425 5.099050e-02 0.330 0.527

Low Swift 0.359 4.240010e-02 0.281 0.446

Medium Shotgun 0.835 3.151890e-02 0.763 0.888

Medium Swift 0.446 5.778320e-02 0.337 0.560

High Shotgun 0.946 2.628620e-02 0.865 0.980

High Swift 0.727 1.342814e-01 0.414 0.910
These are the results of the model p(~Detector * snr * recording), which allowed for probability of detection to vary for each combination of detector, SNR, and recording type.
TABLE 3 Estimates of probability of detection estimates with standard
error (SE), and lower (LCL) and upper (UCL) 95% confidence limits for the
Huggins closed population mark-recapture model for the custom CNN,
BirdNET, and signal to noise ratio.

Detector SNR Estimate SE LCL UCL

Custom
CNN

Low 0.887 2.134960e-
02

0.838 0.922

Medium 0.972 1.133680e-
02

0.939 0.987

High 0.976 1.644140e-
02

0.911 0.994

BirdNET Low 0.387 3.268500e-
02

0.325 0.453

Medium 0.700 3.141330e-
02

0.635 0.757

High 0.918 2.981750e-
01

0.837 0.960
These are the results of the model p(~Detector * snr), which allowed for probability of
detection to vary for each combination of detector and SNR.
FIGURE 2

Detection probability of mountain chickadee songs as a function of
signal-to-noise ratio (SNR) from the adjudicated detections of the
custom CNN detector and BirdNET. Bars and whiskers represent the
mean and standard error calculated across recording type (ARU and
directional microphone) performances (package ggplot2, stat =
“summary” in R Core Team).
frontiersin.org

https://doi.org/10.3389/fbirs.2024.1425463
https://www.frontiersin.org/journals/bird-science
https://www.frontiersin.org


Haley et al. 10.3389/fbirs.2024.1425463
our custom CNN was trained to specifically detect the songs of our

population. Thus, the custom CNN was tailored to the specific

population, and song patterns therein, of this study. It is therefore

likely that our custom CNN may perform worse when applied to

other populations, since song varies geographically (Branch and

Pravosudov, 2015). We suggest that Koogu CNN models should be

trained specifically with the vocalizations of the target population to

maximize performance. This was not done with BirdNET, as we

aimed to test an “off the shelf” generalized machine learning

detector compared to a specifically-tailored detector. It is possible

that BirdNET would outperform our custom CNN in detecting the

songs of other populations. Finally, our custom CNN was not only

trained using our study populations’ songs, but was also trained to

exclude the background noise specific to our study area. A study by

Ventura et al. (2024) found that focusing on background modelling

resulted in improved performance of their custom CNN. Thus,

future studies should consider background noise as a potential

covariate for training their custom CNNs.

When developing custom solutions such as the one we have

developed in this study, a concern that bioacoustics practitioners
Frontiers in Bird Science 08
must often contend with is the level of expertise and effort required.

While the ready availability of open-source bioacoustics ML

toolboxes such as Koogu, OpenSoundscape (Lapp et al., 2023),

and Ketos (Kirsebom et al., 2021) help towards addressing some of

the concerns, the low-code nature of Koogu presents a gentle

learning curve for non-expert programmers. Given its abstraction

of data (audio and annotations) processing, model-building, and

training processes as parametric functional interfaces, Koogu

facilitates rapid development and testing, allowing users to

quickly experiment with different parameters. Consequently,

toolboxes like Koogu are already widely used for developing

bioacoustics solutions (e.g., Miller et al., 2023; Suresh et al., 2023;

Madhusudhana et al., 2024; Owens et al., 2024).

In conclusion, we supported our predictions and found

evidence that our custom deep-learning CNN model performs at

a high rate of detectability, outperforming an existing, generalist

model, BirdNET. This indicates that the Koogu deep-learning

algorithm can be trained to specialize in specific vocalizations of a

specific population, yielding higher detectability, in contrast to

BirdNET, which has been trained to detect the vocalizations of

over 6000 species (Kahl et al., 2021). We recognize that BirdNET

can be tailored to better fit certain species and populations if

needed, but that requires expertise and time that reduces the

value of using a readily available, generalist detector. We suggest

that once a researcher requires this specificity, it will be more

effective to train a CNN model with the population-specific

vocalizations for the study system. Although BirdNET is an

enormously powerful tool for identifying a wide range of avian

vocalizations, the use of custom CNN deep-learning algorithms

allows for specific identification of a species or population, which is

often of great interest to researchers studying individual variation in

animal vocalizations. Post-processing, including cutoffs for

amplitude ratios, can further the utility of custom CNNs, such

that individual animals can be detected with high accuracy and

efficiency. The deep-learning Python program, Koogu, can be

applied to other species to allow for the detection of vocalizations

relevant to specific research questions and focal study systems, such

as the work on blue whale D calls (Miller et al., 2023).

Advancements of this kind allow researchers to ask questions we

previously could not answer, enhancing the power of bioacoustics

monitoring and moving the field forward.
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