
Frontiers in Bird Science

OPEN ACCESS

EDITED BY
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Birds, bats and beyond:
evaluating generalization
in bioacoustics models
Bart van Merriënboer*, Jenny Hamer, Vincent Dumoulin,
Eleni Triantafillou and Tom Denton

Google DeepMind, London, United Kingdom
In the context of passive acoustic monitoring (PAM) better models are needed to

reliably gain insights from large amounts of raw, unlabeled data. Bioacoustics

foundation models, which are general-purpose, adaptable models that can be

used for a wide range of downstream tasks, are an effective way to meet this

need. Measuring the capabilities of such models is essential for their

development, but the design of robust evaluation procedures is a complex

process. In this review we discuss a variety of fields that are relevant for the

evaluation of bioacoustics models, such as sound event detection, machine

learningmetrics, and transfer learning (including topics such as few-shot learning

and domain generalization). We contextualize these topics using the

particularities of bioacoustics data, which is characterized by large amounts of

noise, strong class imbalance, and distribution shifts (differences in the data

between training and deployment stages). Our hope is that these insights will

help to inform the design of evaluation protocols that can more accurately

predict the ability of bioacoustics models to be deployed reliably in a wide variety

of settings.
KEYWORDS
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1 Introduction

Bioacoustics is an increasingly important and useful tool in conservation (Laiolo, 2010;

Dobbs, 2023) with applications in monitoring threatened and endangered species,

biodiversity, habitat health, noise pollution, impacts of climate change, and more

(Teixeira et al., 2019; Penar et al., 2020). A powerful tool in bioacoustics is passive

acoustic monitoring (PAM), which enables large amounts (potentially petabytes worth) of

ambient “soundscape” data to be collected cheaply (Gibb et al., 2019). While the collection

of this data is inexpensive, transforming it into a format from which insights can be

obtained can be costly. Annotating, counting, or otherwise interpreting the data requires

expert knowledge and is expensive due to the large scale and the inherent complexity of the
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data (for instance, due to low signal-to-noise ratio, sparse

vocalizations and overlapping vocalizations). While there have

been recent advances in computational and automated

bioacoustics with the increased adoption of machine learning

(ML) techniques (Mcloughlin et al., 2019; Stowell, 2022), there

remains a need for more scalable and effective approaches for

detecting and classifying various signals within this data (Sugai

et al., 2018).
1.1 Foundation models for PAM

Historically, many bioacoustics efforts have focused on building

models for specific tasks, e.g., detecting specific species, call types, or

individuals in a particular environment, contributing to a collection

of specialized and fragmented approaches across the field. This

approach is time-consuming, hard to scale, and makes the transfer

of knowledge and techniques to different but related tasks and

contexts brittle and challenging.

We expect that future work in machine learning for

bioacoustics will focus on the development of generalizable

models which are easily adaptable to new contexts and problems.

This is best illustrated by Ghani et al. (2023), which looks at training

linear classifiers on top of embeddings from pretrained global bird

species classifiers such as BirdNET (Kahl et al., 2021b) and Google’s

Perch model (Hamer et al., 2023). They develop classifiers for bird

call-types and dialects, but also species classification models for

entire distinct taxonomies such as bats, frogs and marine mammals.

They obtain high quality results with as few as four examples per

class, demonstrating that these models are highly adaptable.

However, more thorough and robust evaluation methods are

needed to quantify their utility in the context of other species,

PAM, class imbalance and domain shifts, given the complex nature

of bioacoustics data.

We also see increasing emphasis on flexible pre-trained models

in the broader machine learning context. In other areas, these

models are typically trained with copious amounts of unlabeled

data, which avoids the cost of data labeling and promises to aid

generalization. These large-scale, general-purpose, and adaptable

models are loosely referred to as foundation models (Bommasani

et al., 2021). Foundation models that can be readily adapted to a

wide variety of downstream tasks are starting to be adopted by other

fields such as computer vision (Radford et al., 2021), natural

language processing (Brown et al., 2020), and more recently,

audio (Saeed et al., 2021; Borsos et al., 2023).

In the context of bioacoustics, foundation models could be

trained to learn a rich, generalizable representation that may then

be adapted to a variety of different tasks—such as detection,

classification or source separation applied at the species,

individual, or call type level, and even extend to taxa not included

at training time. These models could then be modified to perform

well in a variety of recording conditions and geographies while

being robust to issues such as class imbalance and noisy data.

Unlocking the potential of foundation models for bioacoustics

relies on our ability to measure model generalization and

adaptability. We find that the literature on this constellation of
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problems spans multiple branches of research, including

bioacoustics, ecology, statistics, and machine learning. The aim of

this paper is to bring together insights on many core concerns for

those attempting to construct and measure the quality of

bioacoustics foundation models.
1.2 Bioacoustics data and challenges

1.2.1 Available bioacoustics data
A varied collection of existing data is available for bioacoustics

model training and evaluation. A common distinction is made

between focal recordings, which feature a foreground subject, and

passive recordings or soundscapes, where subjects may be present in

the background and which contain a mix of potentially overlapping

species vocalizations. We provide an overview of the different types

of datasets and highlight their utility in model development.

1.2.1.1 Large-scale data

Natural sound archives (Ranft, 2004) such as the Macaulay

Library of Natural Sounds, the British Library National Sound

Archive, and Xeno-Canto (Vellinga and Planqué, 2015)

collectively contain hundreds of thousands of recordings adding

up to tens of thousands of hours of audio with approximate global

coverage. They cover a variety of taxa, but are generally dominated

by bird vocalizations. This scale is comparable in size to human

speech datasets (Pratap et al., 2020) but smaller than commonly

used computer vision datasets (Zhai et al., 2022). The individual

recordings generally have lengths ranging from a few seconds to

several minutes, are often focal recordings that prominently feature

a single animal species vocalizing, and have weak (recording-level)

labels. Due to the size, diversity, and geographical coverage of this

data (see Figure 1), it is particularly suited for model training.

1.2.1.2 Targeted data

There are also smaller, more specialized datasets that share

similar format to the large-scale data for specific taxa or species,

such as marine mammals (Sayigh et al., 2016), yellowhammer

dialects (Diblıḱová et al., 2019), and bats (Franco et al., 2020).

These targeted datasets often contain short focal recordings with

clear, high fidelity vocalizations of a single species. This data can be

helpful when evaluating specific tasks or settings.

1.2.1.3 Annotated PAM data

The focal recordings found in natural sound archives and

specialized datasets are often qualitatively different from the

soundscape data collected by PAM projects. This makes these

datasets unsuitable for evaluation of models that are to be

deployed in PAM projects, as they would provide a poor

reflection of the model’s performance in real-world conditions.

There are smaller datasets which contain longer recordings that

have been more carefully annotated with strong (time-bounded)

labels. For example, the BirdCLEF 2021 competition for bird call

identification in soundscapes (Kahl et al., 2021a) contains 100

recordings of 10 minutes where all vocalizations have been
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annotated with bounding boxes in both time and frequency by

experts1. Similar datasets exist for mosquitoes (Kiskin et al., 2021)

and elephants (Bjorck et al., 2019), to name a couple. Many of these

smaller datasets consist of expert annotations on actual PAM data,

making them especially valuable for understanding the real-world

utility of bioacoustics models in PAM projects and thus excellent

candidates for model evaluation. Collectively, however, they have

limited coverage and are too small for large-scale, general-purpose

model training compared to the larger natural sound archives.

Note that longer recordings, i.e., those that span minutes or

even hours, contain long-term temporal structure (Conde et al.,

2021). This can be useful in a variety of contexts, for example, if two

species are likely to be found in the same location, the vocalization

of one species might inform the likelihood of another species

vocalizing elsewhere in the recording. Similarly, if an animal

vocalizes repeatedly it can help disambiguate ambiguous

vocalizations when there are other, clearer vocalizations occurring

close in time.

1.2.2 Transitioning to real-world deployment
To ensure that machine learning models are appropriate for the

application ecosystem for which they are designed, it is important to

minimize the evaluation gap (Hutchinson et al., 2022)—the gap

between model performance during evaluation and actual utility

during deployment—which involves using tasks, settings, and

performance metrics reflective of the final deployment.

Determining how to utilize currently available data as described

in 1.2.1 for model training and evaluation requires a thoughtful

approach. We highlight a variety of challenges and considerations

that arise during model development, many of which impact

the choice of methodology, metrics, and dimensions of

model generalization.
1 The evaluation of a model’s ability to correctly predict the frequency of a

vocalization is left out of the scope of this review.

Frontiers in Bird Science 03
1.2.2.1 Data coverage

There can be significant sampling bias in bioacoustics datasets

based on geography, species abundance and loudness of

vocalizations, to name a few factors. (Figure 1). In many cases, a

target vocalization in a deployment may not be present at all in the

training data, requiring models with capacity for out-of-distribution

generalization, such as few-shot or transfer learning. In these

instances, using heldout data from the training set to create a test

set (i.e., evaluating on a new recording for species present in the

training data) will not provide information about the model’s (in)

ability to detect species not present in the training data.
1.2.2.2 Dataset shifts

Depending on the datasets used during training and test time,

data and/or label distributions can differ significantly—this

difference is known as dataset shift (Quinonero-Candela et al.,

2008; Moreno-Torres et al., 2012). Differences between training

and deployment conditions introduce various forms of distribution

shift which present model generalization challenges. For instance, a

trained bird vocalization detector may be deployed in a new

geographical area with different environmental conditions, species

population levels, and vocalization types. Furthermore, almost all

bird vocalization datasets have significant label imbalance: bird

species abundances in Xeno-Canto recordings are not necessarily

representative of the true estimated population in nature (Figure 2),

and different region-specific bird vocalization datasets deviate

significantly from Xeno-Canto in bird species population (Table 1).

Recording length can vary between two datasets, and sometimes

within a given dataset (Figure 2, right); variability in temporal

structure and context, particularly between training and evaluation

data, can contribute to weak generalization.

1.2.2.3 Deployment condition

Differences in deployment condition of a dataset are important

to consider. Depending on where and how the dataset was collected,

there may be a various sources and concentrations of
FIGURE 1

(Left) The frequency of species in Xeno-Canto recordings is correlated with the estimated abundance of the species (Callaghan et al., 2021) but only
weakly so. In general, rare species are relatively over-represented (bottom left). Other potential biases are due to a species vocalizing loudly, like the
tawny owl (Strix aluco), or being more common in urban environments in the Western world, like the great tit (Parus major). The San Andres vireo
(Vireo caribaeus) is a threatened species endemic to a single Colombian island, but is an outlier because it was recorded extensively by two
contributors. On the other hand, several seabirds like the grey-backed tern (Onychoprion lunatus) are very common, but barely represented in
Xeno-Canto. (Right) Geographical distribution of Xeno-Canto recordings. Each blue dot represents a single Xeno-Canto recording; bluer regions
correspond to geographical areas with higher representation in Xeno-Canto. The Xeno-Canto data has clear geographic biases, for example,
towards areas with large human populations (e.g., surrounding Perth in Western Australia) and high-income countries (e.g., Western Europe). The
data for these plots was collected by querying the public Xeno-Canto API.
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environmental noise. The microphone used to collect bioacoustic

data can impact sound quality, frequency response, polar pattern,

etc., while digitization choices, such as compression and sampling

rate, can impact its resolution. Focal recordings are typically

directional and focused on a given foreground subject, whereas

passive recordings might have been recorded with an

omnidirectional microphone and contain a multitude of

vocalizations and environmental noises. Differences in setting can

substantially impact the signal-to-noise ratio in a given recording

and the difficulty of detecting a vocalization. Similarly, soundscape

datasets commonly include overlapping vocalizations from different

species or different individuals, which are often more challenging

for a model to learn to disentangle and detect.

1.2.2.4 Annotation and labeling

Annotation quality and fidelity varies greatly depending on the

source of the data. The majority of data on Xeno-Canto, a global

citizen-science platform for sharing wildlife sounds, features

recordings of birds that have been annotated by bird and nature

enthusiasts with a wide range of expertise. While many recordings

feature reliable labels for focal species, background labels may or

may not exist and can be considered weak in that they may be

missing even if a species is vocalizing. This can occur with focal

recordings but particularly with soundscape recordings where
Frontiers in Bird Science 04
events with lower signal-to-noise ratio might be missed or

ignored by annotators.

When dataset attributes such as these differ between training

and evaluation data during model development, there can be

substantial and potentially confounding negative impacts to the

model’s performance when deployed.
1.3 Robustness and practical utility

When designing evaluation protocols for bioacoustics models, it

is important to take into account the characteristics of bioacoustics

data and challenges that these introduce (Section 1.2). For example,

if a model consistently fails to predict rare and endangered species it

might have limited utility in practice. However, a naive evaluation

protocol that measures average performance across all vocalizations

using highly class-imbalanced data might not identify

this shortcoming.

Furthermore, testing a model’s ability to handle dataset shifts is

important in practice because models are often used to evaluate how

species presence relates to environmental covariates. For example, a

large PAM deployment will cover many sites, and we want to

understand how occupancy and abundance varies across time,

elevation, human interventions, and so on. If the model’s

performance degrades significantly as a function of these

covariates (e.g., it is less likely to detect species at certain sites or

times of day) it becomes increasingly likely to draw spurious

conclusions from the data. Well-designed evaluation procedures

should be able to identify such issues.
1.4 Survey overview

To support minimizing the evaluation gap for foundation

models, we require a paradigm shift away from traditional

evaluation methods, which usually involve reporting the

performance of the model on a uniformly random held-out test

set. Instead, a stronger emphasis must be put on robustness, e.g.,

generalization to new domains, label shift, and adaptation,

including few-shot or zero-shot capabilities (Bommasani et al.,

2021). These considerations are particularly important for
TABLE 1 Pearson correlation coefficient (r) between the label frequency
distribution of a variety of avian soundscape datasets and Xeno-Canto,
along with the 95% confidence interval.

Dataset r CI (95%)

Caples −0.16 [−0.44, 0.15]

Colombia & Costa Rica (Vega-Hidalgo
et al., 2023)

0.10 [−0.11, 0.30]

Hawai’i (Navine et al., 2022) 0.01 [−0.37, 0.39]

High Sierra Nevada, USA (Clapp et al., 2023) 0.00 [−0.43, 0.43]

Peru (Hopping et al., 2022) 0.09 [−0.08, 0.26]

New York State, USA (Chronister et al., 2022) −0.01 [−0.29, 0.28]

Sierra Nevada, USA (Kahl et al., 2022b) −0.08 [−0.34, 0.18]
Note that none of the label distributions show significant correlation with Xeno-Canto’s
label distribution.
FIGURE 2

Both the foreground species frequency distribution and the recording length in Xeno-Canto recordings are unbalanced. The recording length
distribution is approximately log-normal, with an outlier at 10 s. Data was retrieved from the public Xeno-Canto API.
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bioacoustics, given that the field naturally deals with large dataset

shifts while having comparatively little labeled data available

for training.

There is no one-size-fits-all evaluation protocol for foundation

models, but we will review several relevant fields to inform the

design of evaluation protocols for bioacoustics foundation models.

Firstly, we will consider the task of sound event detection and the

different evaluation paradigms (Section 2). Then we will review a

variety of metrics such as ROC AUC and average precision (Section

3). Finally, we will look at ways to evaluate a model’s ability to

generalize by reviewing how evaluation is done in fields like domain

generalization, domain adaptation, transfer learning, and few-shot

learning (Section 4). We will discuss how these different methods

have been applied in bioacoustics in the past (Section 5).
2 Sound event detection

A wide variety of machine learning tasks can be relevant in

bioacoustics, notably: binary, single- and multi-label classification,

detection, counting and source separation. Motivated by the use

case of PAM, we will describe the task of sound event detection

(SED; Mesaros et al., 2016, Mesaros et al., 2021) in more detail here.

SED is the task of detecting and classifying acoustic events within a

longer recording (e.g., of several minutes or hours). Common

questions in PAM deployments include whether a specific species

is present, which set of species is present in the data, or how often a

certain species vocalizes. All of these questions can be answered by

the results of a SED task.

A sound event is defined as a triplet of start time, end time, and

label. Given an annotated dataset of sound events, there are two

common ways of using these annotations in a SED evaluation
Frontiers in Bird Science 05
setup (Figure 3; Mesaros et al., 2021): segment-based and

event-based.
2.1 Segment-based evaluation
The first approach is segment-based evaluation, which involves

comparing the ground truth labels and model outputs on a fixed

temporal grid: The audio will be divided into frames (windows),

which can optionally overlap with neighboring frames. These

frames will be assigned labels from the ground truth annotations

based on some criterion. Often a simple criterion is used: If the

frame has any overlap with a ground truth annotation, it inherits

the class label. Figure 3 exemplifies this strategy: the events for two

classes are discretized onto a fixed temporal grid, and each frame in

the grid is assigned the labels of the events with which it overlaps in

time (Figure 3, top).

In the context of evaluation, the resulting task (Figure 3,

bottom) is often evaluated in one of the following ways:
• A series of binary classification tasks: for each class, each

frame is predicted as having signal or no signal for

that class;

• A series of multi-label classification tasks: each frame is

predicted as having signal for one, many, or none of the

classes (the latter reflecting the detection aspect of SED); or

• When ranking the frames by their likelihood of containing

an event of a given class, a series of retrieval tasks (Schütze

et al., 2008) where each class is a query and each frame is

a document.
These perspectives can inform which evaluation metrics to use

(e.g., binary classification metrics such as F1-scores or retrieval
FIGURE 3

A comparison of event-based (top) and segment-based (bottom) evaluation of sound event detection models, in this case tackling a species-level
vocalization detection task. Both operate over a given span of recording containing vocalizations of species X and species Y.
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metrics such as average precision). But note that SED as a task

differs from binary/multi-label classification and retrieval in that in

SED the model is allowed to see the entire recording (i.e., all frames)

before making its predictions and therefore it does not treat each

frame independently.

In practice, however, it is often computationally prohibitive for

a model to process the full recording (which can be several minutes

or hours long). So in many cases models use a more limited context

to make predictions for each frame, and in some cases models do in

fact choose to make predictions for each frame independently.

Other things to note are:
Fron
• The resolution of the temporal grid is important. If the goal

is to evaluate a model’s ability to retrieve segments of the

recording to present to a user, then a resolution of several

seconds is reasonable. If the goal of the model is to, e.g.,

count the number of vocalizations or to filter the detected

signal out of the recording, then a higher resolution might

be more appropriate. It is also important to consider the

nature of the events to be detected (e.g., bird vocalizations

are generally limited to a few seconds whereas whale songs

contain phrases that are several minutes long).

• The naive heuristic for assigning labels to segments can lead

to edge cases in which a segment is assigned a label of an

event that only overlaps with the segment for a very short

period of time. This can be problematic, particularly for

models which do not utilize the temporal information

across frames.
2 Note that the metric proposed in Bilen et al. (2020) seemingly has strange

behaviour in extreme cases: A model could get perfect recall and a false alarm

rate of 1
T by making a single prediction which spans the full recording. This

could be addressed by using a false alarm rate which calculates the duration

(rather than number) of false positives per recording.
2.2 Event-based evaluation

The second approach is called event-based evaluation and

compares the annotated event instance directly to the predicted

events from the model (Figure 3, bottom left). Unlike segment-

based evaluation, event-based evaluation does not require deciding

on a fixed temporal grid and assigning labels to frames; instead it

requires a criterion for deciding whether a predicted event matches

a ground truth annotation. This criterion must ideally be robust to

varying durations in ground truth annotations and uncertainty in

their onset and offset time.

A common way of matching predicted events to the ground

truth is by comparing the start and end time of the event while

allowing for a small difference, which is referred to as the collar

(Figure 4, left; Mesaros et al., 2021). An alternative approach is to

use intersection over union (IoU) with a specific threshold

(Figure 4, right). Note that IoU is a relative measure, i.e., a larger

difference between starting and ending times is allowed for ground

truth annotations with longer durations. This is why the first

prediction matches the ground truth annotation in Figure 4’s

right example whereas the second prediction does not.

Figure 4’s predictions each naturally align with exactly one

ground truth annotation, but this is not always the case: there could

be multiple overlapping ground truth annotations (e.g., if the

dataset is densely annotated), or the model could make multiple
tiers in Bird Science 06
overlapping predictions. Under either collar-based or IoU-based

matching criteria this could result in many-to-one or one-to-many

pairings between predictions and ground-truth annotations

(Figure 5, top). Counting all matches when multiple predictions

are matched to a single ground truth annotation is problematic,

since it could allow a model to artificially inflate its number of true

positives by duplicating predictions. Counting all matches when a

single prediction is matched to multiple ground truth annotations

could be problematic or not depending on the intended application

(e.g., it is problematic when counting individuals but not when

detecting presence). A systematic way of handling these corner

cases is to enforce a one-to-one mapping between predictions and

ground truth annotations and handling leftover predictions and

ground truth annotations in a way that is appropriate for the

evaluated application. The one-to-one mapping can be obtained

by solving a linear (unbalanced) assignment problem (i.e., bipartite

graph matching) using the difference between start and end times or

the IoU values as scores (Figure 5, bottom; Stewart et al., 2016).

In other cases it is unclear whether an event should be labeled as

a single long event or two shorter consecutive events in the ground

truth. If the model predicts a single event when annotators split the

event into two consecutive events or vice versa, the collar-based or

IoU-based matching criteria could reject the prediction(s)

(Figure 6). These concerns are uncommon in traditional fields

such as keyword spotting, but are more realistic in bioacoustics.

To be robust to these annotation choices, a single prediction can be

made to match multiple ground truth annotations and vice versa

(Bilen et al., 2020; Ebbers et al., 2022)2. Similarly to regular

matching, either an absolute measure can be used (e.g., a ground

truth annotation is considered matched if it fully intersects with

predictions that had a collar added) or a relative one (e.g., a certain

fraction of the ground truth annotation intersects with predictions).

When there are multiple classes to detect it is possible that the

model correctly detects an event but confuses one class for another

(cross-triggers; Bilen et al., 2020). Distinguishing between detection

failures and cross-triggers may provide valuable insights into model

performance, but is relatively under-explored.
3 Metrics

In segment-based evaluation the predictions can readily be

classified as true and false positives and negatives, and the full

range of binary classification metrics are at our disposal.

For event-based evaluation, the situation is more nuanced, and

depends on the matching of model-predicted events to ground-

truth annotations. When an event predicted by the model is

matched to a ground-truth event, we consider it a true positive

(TP). Unmatched predictions are considered false positives (FP),
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and any remaining unmatched ground-truth annotated events are

considered false negatives (FN). Note that none of these three

circumstances corresponds to true negatives (TN). Hence, only

metrics that do not rely on true negatives (Cao et al., 2020, Table 2)

can readily be computed. Examples of such metrics are precision

( TP
TP+FP ), recall (

TP
TP+FN ) , and the F1-score (the harmonic mean of

precision and recall). The false positive rate ( FP
FP+TN ) is an example
Frontiers in Bird Science 07
of a metric that cannot be easily calculated for event-

based evaluation.
3.1 Threshold-free metrics

Metrics such as precision and recall are a function of the

model’s operating point (decision threshold). This means that our

understanding of the model’s performance is dependent on the

choice of threshold. Choosing an arbitrary threshold risks

underestimating overall model quality and can hinder model

comparison. But choosing an appropriate threshold for each

model can be a complex process. The optimal choice of threshold

likely depends on the downstream application (e.g., often high recall

is preferred for detection of rare species, but high precision is

preferable when monitoring a wide range of species) and can even

be different for different species or deployments. We can avoid the
FIGURE 5

Edge cases to consider are when a predicted event matches multiple ground truth annotations and vice versa.
FIGURE 6

Edge cases to consider are when there is ambiguity in the number of consecutive events.
TABLE 2 An informal summary of metric characteristics.

Threshold-
free

Unbiased Robust
to outliers

ROC AUC ✓ ✓ ✓

Average precision ✓ ✗ ✗

Precision/Recall/F1 ✗ ✗ ✓
FIGURE 4

Collar-based and IoU-based event matching criteria.
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need for tuning thresholds when evaluating models by using

threshold-free metrics.

One common way to remove dependence on a particular

choice of threshold is to define a metric by integrating over all

possible values of the threshold: This gives rise to area-under-the-

curve (AUC) statistics. For AUC metrics, a pair of metrics, x(t),

y(t) , are plotted as a function of the threshold, t, defining a

parametric curve, f (t)  =  (x(t), y(t)) . When the true and false

positive rate (sensitivity and fall-out) are plotted this is known as

the receiver operating characteristic (ROC) curve. Another

common curve is the precision-recall (PR) curve. Sometimes the

ROC curve is drawn on a logistic scale, in which case it is known as

the detection error tradeoff (DET) graph (Martin et al., 1997).

Other curves such as the MCC-F1 curve can also be of interest

(Cao et al., 2020), which combines MCC and F1, two threshold-

free metrics. The Matthews correlation coefficient (MCC) is also

known as the phi coefficient in statistics, and is equal to the

Pearson correlation coefficient estimated for two binary variables.

For the PR and ROC curves the areas under the curves are

known as the average precision and ROC AUC scores respectively

(alternatively, AUPR and AUROC). ROC AUC is commonly used

in sound event detection. Average precision is often recommended

in information retrieval because it emphasizes the model’s positive

predictions only (Saito and Rehmsmeier, 2015; Sofaer et al., 2019).

This behavior of average precision is shown in Figure 7. The

Concentrated ROC (CROC) curve is a monotonic scaling of the

ROC curves which emphasizes the early-retrieval performance of

the classifier and is used in similar situations as average precision

(Swamidass et al., 2010).
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ROC AUC has an alternative probabilistic interpretation: When

randomly selecting a positive and negative example ranked by the

model, it is equal to the probability of the positive example being

ranked above the negative (Hanley and McNeil, 1982). This

interpretation is very helpful in practice: we can use it to estimate

ROC AUC from partial data, and directly reason about model

quality. Formally, for a finite dataset D which can be partitioned

into positive and negatives examples, the ROC AUC of a model f

can be defined as:

ROC AUC(f ) = ox+∈D+ox−∈D− ½f (x+) > f (x−)�
D+j j D−j j

where x+ ∈ D+ denotes a sample from the partition of positive

examples and x− ∈ D− denotes a sample from the partition of

negative examples. This is also equivalent to a scaling of the U

statistic from the Mann-Whitney U test (Mason and

Graham, 2002).

Another interpretation of ROC AUC relies on considering a

ranked list of all predictions: One minus ROC AUC is the average

number of negatives ranked above each positive, normalized by the

total number of negatives. In this sense, ROC AUC can be thought

of as a kind of mean rank metric.

1 − ROC AUC(f ) =
1
D+j j ox+∈D+

fx ∈ D− : f (x) ≥ f (x+)j j
D−j j  

This also shows that ROC AUC a scaling of the information

retrieval metric bpref (in the case of complete information; Buckley

and Voorhees, 2004). Average precision on the other hand can be

thought of as a generalization of mean reciprocal rank.
FIGURE 7

Each row in the figure above is a model prediction (e.g., the presence of a particular bird species in an audio recording) ranked by the model’s
confidence score. The first column contains the model’s score and the second column denotes whether the model is in fact correct (e.g., is the bird
species actually present according to the ground truth annotation). (Left) This example shows how average precision is only sensitive to the ranking
of ground truth positives. There is only a single example in which the bird is actually present. This example is ranked in second place by the model
and hence the average precision of this model is 0.5, regardless of the number of ground truth negatives in the dataset. However, if this model was

scored using ROC AUC then its score would depend on the number of ground truth negatives. To be precise, the ROC AUC of this model is N−2
N−1

where N is the total number of examples. (Right) This example compares two models using the same dataset of 6 examples. Which model is better
depends on the metric used. Average precision emphasizes early-retrieval performance and prefers the left model, which has an average precision

score of 2
3 compared to 7

12 for the right model. However, as measured by ROC AUC the right model is better with an ROC AUC score of 3
4 while the

left model has a score of only 1
2 (no better than random).
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AP(f ) =
1

D+j j o
x+∈D+

fx ∈ D+ : f (x) ≥ f (x+)j j
x ∈ D : f (x) ≥ f (x+)f j j

For event-based evaluation is not possible to calculate the false

positive rate which is required to calculate the ROC AUC score,

since this requires having ground truth negatives. For this reason,

sound event detection often uses the false alarm rate instead

(measured as the number of false positives per unit of time;

Fiscus et al., 2007). Since this value is no longer bounded by 1,

the AUC is calculated by integrating up to a maximum false alarm

rate which is considered acceptable for a model. Calculating ROC

AUC scores using the false alarm rate can be done in a

computationally efficient manner (Ebbers et al., 2022).
3.2 Bias and outlier sensitivity

Metrics such as precision, recall, specificity, and fall-out rate are

all biased (Powers, 2020), i.e., the scores of an uninformed classifier

will depend on the underlying distribution. This also applies to a

derived metric like average precision. Since this means that scores

are incomparable across classes with a different number of positive

examples, it is inappropriate to average these values across different

classes (Figure 8). Alternative (thresholded) unbiased measures to

use are informedness, markedness, and the Matthews correlation

coefficient (MCC) (Chicco and Jurman, 2020; Chicco et al., 2021).

Note that ROC AUC is also an unbiased metric: an uninformed

classifier will always have an ROC AUC of 0.5.

That said, even the distribution of unbiased metrics will get

skewed as a function of the dataset imbalance (Zhu, 2020), which

means that averaging should still be done with care when the data

imbalance is widely different across the aggregates.

Another metric property to consider is its sensitivity to outliers.

For example, in the case of a single positive example, the average

precision score can change from 1.0 to 0.5 if the model ranks the
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positive example second instead of first. On the other hand, ROC

AUC does not have such sensitivity.
3.3 Sample-wise metrics

In segment-based evaluation it is also possible to calculate

metrics such as ROC AUC and average precision sample-wise

(i.e., rank and score the class labels for each example). When

calculating average precision sample-wise this is known as label-

ranking average precision (LRAP; Dhivya and Mohandas, 2012). If

each sample is then weighted by the number of labels this becomes

label-weighted label-ranking average precision (LWLRAP; Howard

et al., 2019). It is important to note that these metrics might not be a

good reflection of the model’s performance, since a good classifier is

not necessarily a good detection model (Table 3).
3.4 Multi-class metrics and aggregation

When there are multiple classes, there are a variety of ways in

which a final performance score can be calculated. For example,

scores (like ROC AUC or average precision) can be calculated

separately for each class and then averaged (macro-averaging), or

all ground truth annotations can be treated as a single positive class

(micro-averaging). Another option is to calculate scores per class

and then weight each class by the number of its ground truth

annotations (weighted averaging).

Note that in the context of class imbalance, the macro-averaging

of unbiased scores like ROC AUC across classes can still result in a

score that is no longer insensitive to class imbalance. This is because

the ROC AUC score for each class is calculated using a one-vs-rest

approach (i.e., any other class is considered a negative) and hence

the class imbalance in the “rest” group is no longer taken into

account. There exists a multi-class generalization of ROC AUC
FIGURE 8

In these figures, the x-axis interpolates linearly between a ‘perfect’ model (with scores evenly spaced between -1.0 and 1.0, and all positive examples
given the highest scores) and a noise model (with random unit Gaussian scores). The y-axis gives the interpolated model’s quality according to
average precision (left) and ROC AUC (right). We vary the fraction of positives between 10% and 90%, and run with 50 different noise models at each
label ratio. Note that average precision is clearly a biased score. As an example of why this is problematic, consider a model which has gotten
marginally better at predicting the rare class (e.g., from noise level 0.3 to 0.2) while simultaneously completely forgetting the common class (from
noise level 0 to 1). In this case, the mean average precision would increase, while the ROC AUC score would decrease.
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(Hand and Till, 2001) which avoids this problem by using a one-vs-

one approach, calculating and averaging the ROC AUC scores for

all possible pairs of classes. Note that this approach is not readily

applicable to multi-class sound event detection because there is a

single negative (non-event) class which cannot be treated equally to

all other classes.

When macro-averaging scores across classes or datasets it is

possible to use a variety of means such as the arithmetic, geometric,

and harmonic mean. The geometric and harmonic mean reward

models for having lower variance in their results (Voorhees, 2003;

Robertson, 2006) (i.e., if one model is subject to a larger mean-

preserving spread, its final score will be lower). In Bilen et al. (2020)

they fit a normal distribution to the class scores and take a low

quantile, which has a similar effect. The geometric mean also allows

for the calculation of the relative improvement between models

(Fuhr, 2018). More complicated methods such as taking the

arithmetic mean of the logits of average precision scores have also

been proposed (Cormack and Lynam, 2006; Robertson, 2006).
4 Evaluation of out-of-
distribution generalization

We argue that robustness to distribution shifts and out-of-

distribution generalization are crucial desiderata for foundation

models, since their goal is to be general and applicable to a wide

array of downstream tasks, each with different characteristics and

distributional properties. To this end, we dedicate this section to

reviewing literature of related areas that focus on generalization

beyond the training distribution, in various forms: domain

generalization and adaptation, transfer learning and few-

shot learning.

Generally, measuring (and improving upon) the ability of

models to generalize from a “source domain” on which they are

trained to a different “target domain”, is an important and well-
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studied issue in machine learning. Different fields focus on studying

different instantiations of this generalization problem, by making

different assumptions about the relationship between the source

and target domains, and the amount and strength of supervision

available from the target domain for adaptation.
4.1 Fields studying different facets
of generalization

Domain generalization (Zhou et al., 2022) studies the ability of

the model to generalize to a target domain “directly” (without using

any target data for adaptation). While the target domain has a

different distribution from the source, the label set is assumed to be

the same. Despite the development of several training algorithms for

the specific goal of improving domain generalization performance

(Zhou et al., 2022), the literature suggests that training with regular

empirical risk minimization and good hyperparameter selection is a

strong baseline (Gulrajani and Lopez-Paz, 2020).

Domain adaptation (Wang and Deng, 2018) assumes a similar

protocol as domain generalization, with the further assumption of

the availability of some unlabeled target examples that can be used

for adaptation. Several ideas have been explored, including

approaches to encourage domain invariance (Tzeng et al., 2014;

Sun and Saenko, 2016; Sankaranarayanan et al., 2018), self-training,

by generating pseudolabels for the unlabeled data (Xie et al., 2020),

as well as self-supervised learning combined with fine-tuning (Shen

et al., 2021).

Transfer learning (Zhuang et al., 2020) is a more general

framework that relaxes the assumption that the source and target

domains share the same label space or correspond to the same

“task” (e.g., one may transfer a model trained for classification to

solve a detection task). Consequently, transfer learning protocols

typically assume that labeled examples from the target domain are

given for adaptation, though the amount of such examples is

typically assumed to be less than what is required to train a new

model “from scratch” on the target domain.

A common approach to transfer learning in deep learning is to

train a linear model on the embeddings produced by one of the

intermediate layers of the model (commonly the penultimate layer)

(Sharif Razavian et al., 2014). This is sometimes referred to as

“linear probing” or using the model as a “fixed feature extractor”.

Alternatively, the last layer of the model can be replaced with a new

layer after which the entire model is trained (fine-tuned) on the

target task (Girshick et al., 2014). Many other advanced methods

have been explored in attempts to reduce the computational

overhead of fine-tuning (Evci et al., 2022). The ability of a model

to transfer to new tasks is often indicative of the overall model

quality (Kornblith et al., 2019).

Few-shot learning is a special case of transfer learning where

only a few examples are available from the target domain (much

fewer than would have been needed to train a target model “from

scratch”). While few-shot learning is an instantiation of the more

general transfer learning problem, the community has traditionally

developed specialized methodology and evaluation practices.
TABLE 3 A hypothetical set of outputs from a single-label classifier for 5
samples (i, frames) and 3 classes (j) along with the average precision
score for each class (AP).

i j

1 2 3

1 0.49 0.08 0.43

2 0.31 0.35 0.34

3 0.55 0.03 0.42

4 0.27 0.34 0.39

5 0.45 0.37 0.18

AP 1 1
2

1
3

The bolded outputs are the ground truth positives. Note that this classifier has perfect
accuracy and LRAP scores (for each example the bolded value is the largest). However, since
this model is more confident in its classifications of class j = 1, it performs poorly when used as
a detection model (i.e., to rank the relevant frames per class, only for class j = 1 are the bolded
values ranked the highest). The macro-averaged mean average precision is 11

18 ≈ 0:611.
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Improving few-shot learning performance has been approached

in many ways, involving data augmentation, modelling

improvements, or custom training algorithms (Wang et al.,

2020b). Some of these techniques require, for example, fine-

tuning the source model during evaluation using the few available

examples. Other methods do not require any fine-tuning. For

example, a simple but strong baseline (Chen et al., 2021) is to

build a nearest-centroid classifier in closed form, by estimating one

“prototype” (centroid) for each class as the average embedding of

the few examples belonging to that class.

Recently, modern large language models have shown impressive

few-shot performance during evaluation while not having been

explicitly trained for this setting (Brown et al., 2020). This suggests

that, under certain circumstances (e.g., in terms of the size of the

source dataset, and the relationship between the source and target

domains), models may possess the ability to few-shot learn without

requiring specialized training recipes.
4.2 Evaluation of generalization

The different fields outlined above have in common the

necessity of a “held-out” (set of) dataset(s), domain(s), or task(s)

for evaluation, which is a fundamental departure from the standard

methodology in machine learning where evaluation takes places on

held-out examples of the same dataset, domain, and/or task used

for training.

A prominent recent trend in evaluation practices that has been

observed across the above fields is the development of more

diverse evaluation benchmarks, comprised of several datasets:

WILDS for distribution shifts and domain generalization and

adaptation (Koh et al., 2021; Sagawa et al., 2021), VTAB for

transfer learning (Zhai et al., 2019), and Meta-Dataset

(Triantafillou et al., 2019) for few-shot classification, to name a

few. This trend has emerged due to the important realization that,

to reliably evaluate the ability of a model to transfer from a source

to a target domain, we need to account for the variance due to the

particular choice of the source and target pair (e.g., by considering

several such scenarios). Similarly, we argue that evaluating the

generalization properties of bioacoustics foundation models

necessitates a wide range of “target domains” and “downstream

tasks”. When multiple target datasets or domains are available,

either the average or worst-case (Koh et al., 2021) performance

across domains is commonly used, with the latter putting a heavier

emphasis on robustness3.

Building further on the same argument of variance reduction,

few-shot learning in particular requires a specialized evaluation

protocol to account for the fact that only a few examples are

available in each “target task”, leading to a potential high variance

in terms of performance, depending on the specific few examples

that were selected. To that end, few-shot learning evaluation adopts

an “episodic” evaluation protocol: the model encounters a set of
3 The geometric and harmonic mean would be other options that lie in

between these two choices.
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“episodes” at test time, each representing a few-shot learning task,

with a different “support set” each time (containing the few

available labelled examples), as well as a “query set” (containing

held-out examples that the model is asked to predict labels for). The

few-shot learning performance that is typically reported is the

average performance (e.g., accuracy) on the query set, averaged

over a large number of such episodes. We believe that such

evaluation practices should serve as inspiration for building

evaluation protocols for generalization in bioacoustics too where

practitioners are naturally confronted with a plethora of few-shot

learning tasks.

While the research community has been very active in studying

generalization in the aforementioned fields, most works focus on

the vision and language domains. For example, Boudiaf et al. (2023)

recently showed that source-free domain adaptation (a challenging

variant of domain adaptation) methods developed for vision

classifiers perform poorly on a challenging set of distribution

shifts in bioacoustics. We thus argue that making progress in

building bioacoustics foundation models necessitates the study of

different facets of generalization in this domain, which may present

different challenges compared to studying generalization in

other contexts.

Returning to our running example, few-shot learning for sound

event detection (Wang et al., 2020a) can deviate slightly from

regular few-shot learning setups. Usually, a few-shot learning

problem is defined as having n shots (the number of support

examples per class) and k ways (the number of classes). However,

in sound event detection only the positives (i.e., the events) are

explicitly given. The negatives (non-events) can at most be inferred

as being the time periods in between the given events. In a few-shot

learning setting this means that the problem must either be

approached as a one-way few-shot task (Kruspe, 2019) or by

using a method to sample negatives.

Generally, characterizing the commonalities and differences of

generalization problems in bioacoustics compared to other

domains, and utilizing those findings to build appropriate

evaluation frameworks, is an important line of work towards the

goal of creating bioacoustics foundation models.
5 Existing efforts in
bioacoustics evaluation

There have been a variety of benchmarks and competitions in

bioacoustics (Briggs et al., 2013; Karpisťsěnko et al., 2013; Glotin

et al., 2013b). In this section, we will look at the most prominent

examples, through the lens of the challenges highlighted throughout

this paper (Table 4).

An early example, the ICML 2013 Bird Challenge (Glotin et al.,

2013a) asked competitors to predict the presence of 35 bird species

in a set of recordings which were 150 s long. This challenge already

identified domain generalization as an issue (using focal recordings

for training but soundscape recordings for testing). The BirdCLEF

competition has been running annually since 2014 (Goëau et al.,

2014) with gradually increasing dataset sizes. BirdCLEF 2016

(Goëau et al., 2016) was the first edition with an explicit focus on
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the domain generalization problem from focal to soundscape

recordings. The DCASE challenge also introduced a bioacoustic

task in 2021 (Morfi et al., 2021) which specifically used a few-shot

setting, which has been running annually since. More recently the

BIRB bioacoustics information retrieval benchmark (Hamer et al.,

2023) and BEANS benchmark of animal sounds (Hagiwara et al.,

2023) were introduced, while Ghani et al. (2023) introduced a set of

few-shot classification tasks to measure the transfer learning

properties of bioacoustics and audio models.
5.1 Sound event detection

Both the DCASE and BirdCLEF challenges evaluate on a sound

event detection task. The DCASE challenge uses event-based

evaluation whereas the latest BirdCLEF uses segment-based

evaluation with a grid of 5 seconds.

The DCASE challenge matches predicted events to ground-truth

events by first rejecting all predictions that do not have an IoU of at

least 30% with a ground truth event. Then a bipartite matching

problem (where the weights are the IoU scores) is solved to find a

one-to-onemapping between ground truth and predicted events. The

use of IoU in detection is common when matching object detections

in vision, since objects in natural images often appear at different

scales (closer or further away from the camera), necessitating a scale-

invariant metric like IoU. The onset and offset time of an audio event

is unlikely to scale with the duration of the event, which is why collars

are arguably more appropriate in sound event detection.

DCASE’s usage of a one-to-one mapping between predicted and

ground truth events might also not be appropriate for all

bioacoustics datasets. For example, for some avian soundscape

datasets the annotators were instructed to merge bounding boxes

which would be less than 0.5 or 5 seconds apart (Hopping et al.,

2022; Navine et al., 2022). Other dataset curators simply instructed

annotators that “a series of calls repeated in close succession” would

be considered a single annotation (Chronister et al., 2022).

Handling such ambiguities would require a framework as

proposed by Bilen et al. (2020) (Section 2.2).

Both BIRB and BEANS benchmarks use strongly labeled data

for their test set. However, these recordings are segmented into

frames which the model must classify separately, reducing the

problem to a multi-label classification problem rather than a
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sound event detection problem. Finally, Ghani et al. (2023)

considers classification tasks only.
5.2 Metrics

A variety of metrics have been used by bioacoustics benchmarks

and challenges.

The DCASE few-shot bioacoustic event detection task (Nolasco

et al., 2023a) uses a thresholded metric, the F1-score. The need for

thresholding (e.g., the DCASE baseline system uses a hand-tuned

threshold of 0.45) makes it difficult to disentangle the quality of the

model from the quality of the threshold. In the case of DCASE the

F1-scores are calculated per dataset and then averaged using the

harmonic mean to calculate a final score. The harmonic mean puts a

strong emphasis on the worst performing dataset.

Note that DCASE ignores events of different classes and

considers all events belonging to a single “positive” class. During

evaluation this is the same as micro-averaging, which means that

the F1-scores represent the class distribution of each dataset. Hence,

if the model performs badly on rare classes this is unlikely to show

in the scores. Samples-averaging and LWLRAP are metrics with the

same property. LWLRAP was used in bioacoustics, for example, in

Denton et al. (2022).

The BirdCLEF competitions have generally used macro-

averaged average precision under the name class mean average

precision (cmAP) (Goëau et al., 2018). Since average precision is a

biased metric these scores can be difficult to interpret, as they are

heavily dependent on the class imbalance in the test data.

BIRB in contrast opted to use the ROC AUCmetric (although in a

multi-class setting this is still a biasedmetric; Section 3.4). Furthermore,

it uses geometric averaging of the ROC AUC scores across classes to

emphasize worst-case performance (albeit not as strongly as DCASE’s

harmonic mean). Use of the geometric mean has seen common usage

in fields such as information retrieval (Beitzel et al., 2009).

Both BirdCLEF and BIRB use a macro-averaging strategy where

scores are calculated per class and then averaged. This is a good

approach when models are to be evaluated for an unknown class

distribution at test time. Macro-averaging can be thought of

similarly to uninformative priors in Bayesian statistics: in the

absence of information about the class distribution at test time,

weighting each class equally is reasonable (Figure 9).
TABLE 4 An informal comparison of different bioacoustics benchmarks.

Dataset Task Metric Averaging Test
set

Out-of-domain generalization

DCASE (Nolasco
et al., 2023b)

Sound event detection (event-based,
IoU-based bipartite matching)

F1 Harmonic
across datasets

∼9 h Few-shot learning (unseen taxa)

BirdCLEF (Klinck
et al., 2023)

Sound event detection (segment-based) AP Arithmetic
across species

∼32 h Domain generalization (avian focal to soundscape)

BIRB (Hamer
et al., 2023)

Multi-label classification ROC AUC Geometric
across species

∼458 h Domain generalization (avian focal to soundscape) and
few-shot learning (unseen species)

BEANS (Hagiwara
et al., 2023)

Multi-label classification AP/Acc. Arithmetic
across classes

∼185 h None
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5.3 Generalization

Measuring the ability of models to generalize out-of-

distribution is essential for bioacoustics. The BEANS benchmark

is the only benchmark that uses a traditional 6:2:2 split for training,

validation, and test data, and as such does not measure out-of-

distribution generalization.

Most other bioacoustics benchmarks do directly measure out-

of-distribution generalization in some way. The BirdCLEF

competitions have long used a domain generalization framework

where focal recordings from Xeno-Canto are used as training data

while evaluating on soundscape recordings (Kahl et al., 2022a).

DCASE explicitly uses a few-shot setup with separate datasets

for training and testing. While birds appear in both the training and

test, several other species are unique to the test set. As such, the

benchmark measures not only the ability of the model to learn from

few examples, but also the model’s ability to generalize to new

datasets and species.

Ghani et al. (2023) evaluate a variety of birdsong models in a

few-shot learning setting on a new set of datasets. They train a linear

classifier on the frozen embeddings. Like DCASE they evaluate the

performance on held-out datasets containing vocalizations from

unseen species and tasks, such as bird call types, marine mammals,

frogs, and bats.

BIRB, like BirdCLEF, uses focal recordings from Xeno-Canto as

training data while using soundscapes for testing, evaluating the

model partly in a domain generalization setup. However, it

additionally leaves out species from specific geographies (e.g.,

Hawai’i and Colombia) from the training data, allowing it to

explicitly evaluate generalization to new species in a few-shot

learning task.
6 Conclusion

Progress towards bioacoustics foundation models requires the

careful design of evaluation procedures that reflect the practical utility

of the models. As we have discussed in depth, this is challenging for

several reasons. Notably, the bioacoustics data that is available has

limitations in terms of coverage (e.g., geographic coverage, species
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abundance) and we do not have sufficient large-scale training data

reflecting all possible deployment conditions (types of annotations,

microphones), which unavoidably leads to distribution shifts between

training and evaluation data. Further, as discussed, certain

distributional characteristics of bioacoustics data (e.g., their long-

tailed nature) pose challenges with regards to evaluation metrics too:

we do not necessarily want to reward a model that does well on

average but consistently fails to make correct predictions on data

points in the “tail”. We argue, therefore, for the necessity of “general-

purpose” robust bioaoustics models that are able to cope well with a

variety of distribution shifts and generalize to deployment conditions

and novel species rapidly. Crucially, carefully crafting good

evaluation practices is a key ingredient in incentivizing and

supporting the development of bioacoustics models with the

desired characteristics.

As a first step towards that goal, we have reviewed existing

evaluation practices in bioacoustics, aiming to identify drawbacks

and opportunities for improvement. Specifically, we reviewed the

way that sound event detection tasks are evaluated in the literature,

which metrics can be used to quantify model quality, and how

model robustness and adaptability can be explicitly measured in the

frameworks of domain generalization, transfer learning, and few-

shot learning. Finally, we have discussed the multitude of design

decisions made by existing bioacoustics benchmarks and challenges.

Ultimately, there is no single way in which a model’s ability to

generalize and adapt can be measured, since this depends on the

type of tasks and data distributions the model will be deployed on.

Hence, designing benchmarks that reflect a model’s real-world

utility requires careful consideration of how the data, model and

evaluation protocol interact. We hope that the topics raised in this

review will help assist in the development of such benchmarks, and

by extension, the development of stronger bioacoustics models.
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