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Zn2+ transport across neuronal membranes relies on two classes of transition
metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins
function to decrease and increase cytosolic Zn2+ levels, respectively. Dysfunction
of ZnT and ZIP transporters can alter intracellular Zn2+ levels resulting in
deleterious effects. In neurons, imbalances in Zn2+ levels have been implicated
as risk factors in conditions such as Alzheimer’s disease and neurodegeneration,
highlighting the pivotal role of Zn2+ homeostasis in neuropathologies. In addition,
Zn2+ modulates the function of plasma membrane proteins, including ion
channels and receptors. Changes in Zn2+ levels, on both sides of the plasma
membrane, profoundly impact signaling pathways governing cell development,
differentiation, and survival. This review is focused on recent developments of
neuronal Zn2+ homeostasis, including the impact of Zn2+ dyshomeostasis in
neurological disorders, therapeutic approaches, and the increasingly
recognized role of Zn2+ as a neurotransmitter in the brain.

KEYWORDS

zinc homeostasis, neurodegenerative diseases, zinc transporters, zinc homeostasis in
brain, disease

1 Introduction

Zinc (Zn2+) is one of the most abundant micronutrients in the human body and is
essential for life (Maret, 2009). The human body contains between two and 3 g of Zn2+.
Nearly sixty percent of total Zn2+ is found in skeletal muscle, thirty percent in bone, five
percent in liver/skin, and the remaining Zn2+ is stored in other tissues.

Dietary intake is one of the most important factors that can affect the plasma Zn2+ pool
(Taylor et al., 1991; Barnett et al., 2013). Zn2+ is first absorbed by the small intestine.
Organisms dynamically regulate the uptake of Zn2+ in the gastrointestinal tract (Takagishi
et al., 2017). Considering that Zn2+ is water-soluble, Zn2+ homeostasis is regulated by
endogenous Zn2+ secretion rather than by dietary Zn2+ absorption (Krebs, 2013). When
organisms are Zn2+- deficient, the body’s ability to absorb Zn2+ increases up to ninety
percent. On the other hand, Zn2+ is secreted from the gastrointestinal tract or is disposed of
through sloughing epithelial cells in the mucosa if Zn2+ levels are high (Taylor et al., 1991;
Frederickson et al., 2000; Krebs, 2013). If excess Zn2+ is taken, for example, with
supplements, abdominal cramps and vomiting may occur. These symptoms usually
resolve within a few hours. Once absorbed by the gastrointestinal tract, Zn2+ is carried
through blood by serum albumin which is the most abundant blood plasma protein.
Around one percent of organismal Zn2+ is found in the blood plasma (Takagishi
et al., 2017).
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Once dispersed throughout the body, Zn2+ has a variety of
essential roles, from brain development to apoptosis across
different tissues (Figure 1). Zn2+ is essential for the structure,
stability, and activity of hundreds of human proteins (Maret,
2009). In addition, Zn2+ plays an essential role in cellular
signaling pathways as well as transcription factors (Hara et al.,
2017). In mammalian cells, Zn2+ are either bound to proteins or
“free.” In the vast majority of mammalian cell types, “free” Zn2+ is
likely not truly free, but is bound by unknown (non-protein) ligands.
The free Zn2+ concentration in mammalian cells, while in the
picomolar range, likely represents a physiologically significant
source of Zn2+, particularly regarding its role in signaling.

Neuronal cells are distinct from other cell types as they contain
both “free” Zn2+ as well as Zn2+ which is truly free, i.e., not liganded
to biomolecules. This free Zn2+ is localized in presynaptic vesicles,
such as in the presynaptic vesicles of glutamatergic nerve terminals.
These presynaptic vesicles fuse with the plasma membrane upon
neuronal activation thereby releasing Zn2+ into the synaptic cleft.
Release of Zn2+ into the synaptic cleft then regulates numerous
physiological and pathophysiological functions of the brain, some of
which will be described within this review.

2 Zn2+ homeostatic proteins in the brain

When compared to other organs, there is a high
concentration of Zn2+ in the brain (~150 μM) (Wang et al.,
2020). Zn2+ is an essential micronutrient in the central
nervous system (CNS) (Takeda, 2001). Differing levels of Zn2+

impacts learning, memory, information processing, synaptic
plasticity, and regulation of neuronal development (Murakami
and Hirano, 2008).

Zn2+ is transported through the bloodstream, often bound to
carrier proteins like albumin and transferrin to the blood brain
barrier (BBB). Once here, plasma membrane transporters facilitate
the passage of Zn2+ across the blood-brain barrier. Zn2+ transport
across neuronal membranes, including the BBB, is governed by two
families within the solute carrier (SLC) superfamily of proteins.
SLCs are one of two major membrane transport proteins
superfamilies. SLCs include over 400 member proteins organized
into 66 families (Colas et al., 2016). These proteins function to
transport a diverse set of substrates including ions and
micronutrients across biological membranes. When compared to
the second major superfamily of membrane transport proteins

FIGURE 1
Schematic illustration of the importance of maintaining Zn2+ homeostasis in physiological conditions and Zn2+’s role in biological systems.
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[ATP-binding cassette (ABC) proteins], the physiological role of
SLCs in human health and disease is not well understood. However,
in recent years it has become increasingly recognized that SLCs have
important roles in physiological processes. Dysfunction of SLCs can
result in both rare and common diseases, thereby opening new
opportunities for therapeutic targets (Lin et al., 2015).

Once inside neuronal cells Zn2+ is delivered to, or taken from,
these transport proteins by a variety of chaperones. These
chaperones transfer Zn2+ to other proteins including
metalloenzymes and metalloproteins. Despite a long-standing
search, the identify of these chaperones has long been elusive.
However, and as will be described here, recent studies have
identified the first intracellular Zn2+ chaperone. This provides an
exciting opportunity to understand how this essential transition
metal moves through cells.

2.1 ZnT family in the brain

In humans, SLC30 genes encode ten ZnT transporters (ZnT1-
ZnT10) which function to decrease cytosolic Zn2+ levels either by
transport out of the cell or into intracellular organelles (Hara et al.,
2022). ZnTs are part of the larger Cation Diffusion Facilitator (CDF)
protein family that contributes to transport of a variety of divalent
ions, including Zn2+, Mn2+, and Fe2+ (Montanini et al., 2007). The
expression of ZnTs is tightly and dynamically regulated, based on
changes in cellular levels of Zn2+.

ZnT proteins are expressed dynamically and differentially in
different neuronal cell types (see Table 1). ZnT’s in the brain have a
critical role in Zn2+ homeostatic physiological and
pathophysiological prospects. Dysfunction of these proteins have
been correlated to numerous diseases. ZnT1 (SLC30A1) is the

TABLE 1 List of ZnT proteins, including number of amino acids, major locations of expression in the brain as well as sub-cellular location.

Protein Amino
acids

Cellular protein localization Subcellular location

ZnT1 507 AA Dendritic spines Xu et al. (2019) Plasma membrane Nishito and Kambe (2019), Stocks et al. (2021)

Astroglia, microglia, and oligodendrocytes Nolte et al.
(2004)

Basolateral cell membrane Nishito and Kambe (2019)

Cerebral cortex and cerebellum Sekler et al. (2002) Cytoplasmic vesicle membrane Stocks et al. (2021)

Spinal cord Kaneko et al. (2015)

ZnT2 372 AA Not known Not applicable

ZnT3 388 AA Hippocampus, cerebral cortex, and spinal ganglion
Shen et al. (2007)

Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane Hildebrand et al.
(2015)

Astroglial cells, and amygdala Lee et al. (2011) Late endosome membrane Falcon-Perez and Dell Angelica (2007)

Lysosome membrane Falcon-Perez and Dell Angelica (2007)

ZnT4 429 AA Spinal cord Kaneko et al. (2015) Late endosome membrane Falcon-Perez and Dell Angelica (2007)

Cerebellum Wang et al. (2005) Lysosome membrane Falcon-Perez and Dell Angelica (2007)

Cerebral cortex Hasna et al. (2019)

ZnT5 765 AA Spinal cord Kaneko et al. (2015) Golgi apparatus, Golgi stack membrane Kambe et al. (2002), Hoch et al. (2012)

Cytoplasmic vesicle, secretory vesicle membrane Kambe et al. (2002)

Cytoplasmic vesicle, COPII-coated vesicle membrane Suzuki et al. (2005b)

ZnT6 461 AA Spinal cord Kaneko et al. (2015) Golgi apparatus, trans-Golgi network Ohana et al. (2009)

Cerebellum Wang et al. (2005)

ZnT7 376 AA Spinal cord Chi et al. (2008), Kaneko et al. (2015) Golgi apparatus membrane, cytoplasmic vesicle, sarcoplasmic reticulum,
mitochondrion Suzuki et al. (2005a)

ZnT8 369 AA Low to no expression in the brain Cytoplasmic vesicle, secretory vesicle membrane, Cell membrane Chimienti et al.
(2004), Chimienti et al. (2006)

ZnT9 568 AA Cerebral cortex Hasna et al. (2019) Mitochondrion membrane Kowalczyk et al. (2021), Rensvold et al. (2022)

Nucleus Sim and Chow (1999)

Endoplasmic reticulum Perez et al. (2017)

ZnT10 485 AA Spinal cord Kaneko et al. (2015) Cell membrane Bosomworth et al. (2012), Leyva-Illades et al. (2014), Zhao et al.
(2016)

Basal ganglia Kambe et al. (2014) Golgi apparatus membrane Nishito et al. (2016)

Recycling endosome membrane, early endosome membrane Patrushev et al. (2012)
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predominant surface expressed Zn2+-exporter in synaptic neurons
and glia (Palmiter and Findley, 1995). ZnT1 has been shown to
export Zn2+ to the extracellular space in the amygdala, hippocampus
and parahippocampal gyrus, superior and middle temporal gyrus,
inferior parietal lobule, and cerebellum. It is been shown that there is
an increase in surface expression of ZnT1 in amygdala,
hippocampus/parahippocampal and inferior parietal lobule of
Alzheimer Disease (AD) patients (Lovell et al., 2005). In contrast,
ZnT1 surface expression is repressed in superior and middle
temporal gyrus. Therefore, there is a strong correlation between
ZnT1 expression and senile plaques and neurofibrillary tangle levels
in amygdala of AD conditions (Lovell et al., 2005). Interestingly,
ZnT1 may play a protective role in glia when Zn2+ levels are high as
pre-treatment with Zn2+ induced a four-fold increase in the
expression of ZnT1 in astroglia (Nolte et al., 2004). In addition,
increasing body mass index (BMI) is correlated with a significant
reduction in ZnT1 expression in the brain suggesting a link between
ZnT1 and obesity (Olesen et al., 2016).

In contrast to ZnT1, the remaining ZnTs found in the brain are
expressed within the membranes of intracellular organelles. ZnT3 is
predominantly expressed in the brain and has an outsized role in
neurons as ZnT3 transports Zn2+ into synaptic vesicles for
subsequent release into the synaptic cleft alongside
neurotransmitters upon neuronal activation (Ohana et al., 2009;
Sensi et al., 2009). Changes in the expression of ZnT3 have been
linked to gender-specific susceptibility to AD (Lee et al., 2012). In
addition, ZnT3 knockout mice show age-dependent deficits in
learning and memory that are evident at 6 months, but not
3 months (Adlard et al., 2010). ZnT4 is expressed in the endo-
lysosomal compartment of neurons. While dysfunction of ZnT4 is
best known for resulting in Zn2+ deficiency in maternal milk, this
protein has also been shown to be expressed in the prefrontal cortex
and hippocampus of rats subjected to olfactory bulbectomy, a model
of depression (McCormick et al., 2016; Rafalo et al., 2017). ZnT5 is
localized to the Golgi apparatus and mediates Zn2+ transport that is
essential for proper folding of Zn2+ binding proteins within this
compartment (Suzuki et al., 2005a). ZnT5 is expressed in motor
neurons (Pfaender et al., 2016). Zn2+ deficiency in motor neurons
has been shown to lead to an increase in ZnT5 expression,
presumably working towards transporting Zn2+ from the early
secretory pathway to the cytosol of these neurons thereby
counteracting Zn2+ deficiency conditions (Pfaender et al., 2016).
ZnT6 is expressed in themembrane of the Golgi (Huang et al., 2002).

ZnT10 functions to decrease cytosolic Mn2+ levels. Hence,
mutations in the ZnT10 gene and/or loss of ZnT10 expression
can result in accumulation of Mn2+ in cells (Levy et al., 2019). In
a novel mechanism, it has been shown that ZnT10 takes advantage
of the Ca2+ gradient to move Mn2+ out of cells. ZnT10 is expressed in
the brain and application of external Zn2+ downregulates the
expression of this transporter (Bosomworth et al., 2012).

2.2 ZIP family in the brain

The first Zn2+ import transport protein, Zrt1 for Zn2+- regulated
transporters, was identified in Saccharomyces cerevisiae in 1996
(Zhao and Eide, 1996). Shortly thereafter, two genes which
encode Fe2+ transport proteins, Irt1 and Irt2, for Fe2+- regulated

transporters, were identified in Arabidopsis thaliana (Eide et al.,
1996). Following a rapid expansion of sequenced genomes, it was
shown that there are hundreds of proteins which are homologous to
the Zrt and Irt proteins throughout all kingdoms of life. Together,
these proteins comprise the SLC39 group of proteins or ZIPs, for
Zrt-, Irt-like Proteins. The ZIP family of proteins have been shown
or are hypothesized to increase the cytosolic concentration of
transition metals, most often Zn2+, but ZIPs can also transport
cations including Fe2+, Cu2+, Ni2+, Cd2+, and Mn2+. These transition
metals are transported into the cytosol across the plasma membrane
or from intracellular organelles. Within humans, ZIPs have four
subfamilies (ZIPI, ZIPII, gufA and LIV-1) and 14 members (ZIP1-
ZIP14). LIV-1 is the most common subfamily with a predicted
metalloprotease motif (domain V) and HSVFEGLAVGIQ
conserved sequence in the fourth transmembrane domain. The
conserved sequence is proposed as the main part of Zn2+

transport in LIV-1 subfamily members. The second most
common subfamily is ZIPII with a conserved sequence
(HSVXXGL) in their fourth TMD. Considering that Zn2+

transporters tightly regulate cellular Zn2+ accumulation,
alterations in function of these proteins can result in Zn2+

dyshomeostasis and subsequent deleterious outcomes. Between
TMDs four and five is a disordered cytoplasmic loop (Bafaro
et al., 2015; Bafaro et al., 2019). It is been shown that Zn2+

coordination to this domain regulates ZIP surface expression.
ZIP transporters are expressed differentially across neuronal

cells (Table 2). While ZIP1 transports Zn2+ into post synaptic
neurons, ZIP3 transports Zn2+ from the synaptic cleft into
dentate gyrus (DG) (Bogdanovic et al., 2022). Both ZIP1 and
ZIP3 are expressed in hippocampal neurons and deliver
approximately half of Zn2+ to these cells when Zn2+

concentration reaches the low micromolar range (Qian et al.,
2011a). Interestingly, deletion of ZIP1 and ZIP3 reduces
A1 pyramidal cell injury suggesting that reduced postsynaptic
Zn2+ entry is a neuroprotectant in these cells.

ZIP4 is the most well understood ZIP transporter. ZIP4 was
originally identified as it is expressed in the intestine, the main
location of Zn2+ uptake. Mutations to this protein can lead to
Acrodermatitis enteropathica, a Zn2+ deficiency disease. However,
ZIP4 is also expressed in excitatory synapses where it associates in a
complex with postsynaptic scaffold proteins (De Benedictis et al.,
2021). Here, it has been suggested that ZIP4 is involved in regulating
synaptic Zn2+ levels. ZIP6 has been observed both in rat neurons as
well as in the human neuroblastoma cell model SH-SY5Y
(Chowanadisai et al., 2008).

Neuronal Ceroid Lipofuscinoses (NCL) are fatal childhood
neurodegenerative lysosomal diseases. NCL is most often
associated with mutations within Ceroid Lipofuscinosis
Neuronal (CLN) genes. CLN genes encode thirteen proteins
that localize throughout the endomembrane system to regulate
a variety of cellular processes. Mutations in CLN genes cause a
devastating form of neurodegeneration commonly known as
Batten disease (Huber, 2023). It was recently shown that the
ER/Golgi-localized ZIP7 colocalizes with CLN6 (Grubman et al.,
2014). Under these conditions, the expression level of
ZIP7 decreases and it has been hypothesized that loss of
ZIP7 may result in subcellular deregulation of biometal
homeostasis in NCLs.
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TABLE 2 List of ZIP transporters, including number of amino acids, major locations of expression in the brain as well as sub-cellular location.

Protein Amino
acids

Major location of protein expression in
the brain

Subcellular location

ZIP1 324 AA Brain stem, cerebellum, forebrain, and hippocampus Qian
et al. (2011b)

Cell membrane Gaither and Eide (2001), Milon et al. (2001), Milon et al.
(2006)

Microglia Higashi et al. (2011) Endoplasmic reticulum membrane Milon et al. (2001)

ZIP2 309 AA Not known Not applicable

ZIP3 314 AA Brain stem, cerebellum, forebrain, and hippocampus Qian
et al. (2011b)

Cell membrane Kelleher and Lonnerdal (2005)

Apical cell membrane Kelleher et al. (2009)

ZIP4 647 AA Choroid plexus, microglia Belloni-Olivi et al. (2009) Cell membrane Kim et al. (2004), Mao et al. (2007), Ahern et al. (2019)

Recycling endosome membrane Kim et al. (2004)

Apical cell membrane Dufner-Beattie et al. (2003), Weaver et al. (2007)

ZIP5 540 AA Not known Not applicable

ZIP6 755 AA Choroid plexus Chowanadisai et al. (2008), Aquino (2014) Cell membrane Chowanadisai et al. (2008)

Neurons Chowanadisai et al. (2008) Cell projection, lamellipodium membrane Taylor et al. (2003)

Apical cell membrane Chowanadisai et al. (2005)

ZIP7 469 AA Cerebral cortex Tian et al. (2016) Endoplasmic reticulum membrane Taylor et al. (2004), Woodruff et al.
(2018), Fauster et al. (2019)

Golgi apparatus, cis-Golgi network membrane Huang et al. (2005)

ZIP8 460 AA Spinal cord Li et al. (2016) Cell membrane Begum et al. (2002); Lin et al. (2018)

Cerebral cortex Talukder et al. (2021) Lysosome membrane Begum et al. (2002), Aydemir et al. (2009)

Hippocampal neurons Ji and Kosman (2015) Apical cell membrane Steimle et al. (2019) Basolateral cell membrane Steimle
et al. (2019)

ZIP9 307 AA Cerebral cortex, cerebellum and hippocampusWillekens and
Runnels (2022)

Golgi apparatus, trans-Golgi network membrane Matsuura et al. (2009)

Glioblastoma Münnich et al. (2016) Cell membrane Thomas et al. (2014)

Cytoplasm, perinuclear region Thomas et al. (2014)

Mitochondria Thomas et al. (2014)

Nucleus Thomas et al. (2014)

ZIP10 831 AA Cerebral cortex Talukder et al. (2021) Cell membrane Taylor et al. (2016)

Spinal cord Taylor et al. (2007) Apical cell membrane Landry et al. (2019)

Medulla Bin et al. (2017)

ZIP11 342 AA Not known Not applicable

ZIP12 691 AA Choroid plexus, medulla oblongata, and spinal cord Bin et al.
(2017)

Membrane Zhao et al. (2015)

ZIP13 371 AA Not known Not applicable

ZIP14 492 AA Spiral ganglion neurons Ding et al. (2014) Cell membrane Taylor et al. (2005), Aydemir et al. (2016), Tuschl et al. (2016)

Hippocampal neurons Ji and Kosman (2015) Apical cell membrane Steimle et al. (2019)

Basolateral cell membrane Scheiber et al. (2019), Steimle et al. (2019)

Early endosome membrane Zhao et al. (2010), Aydemir et al. (2016)

Late endosome membrane Aydemir et al. (2016)

Lysosome membrane Zhao et al. (2010)
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ZIP8 and ZIP14 are commonly mentioned together as they both
transport Mn2+ across biological membranes. ZIP8 is a plasma
membrane protein which mediates the uptake of Zn2+, Mn2+ and
Fe2+ (Lin et al., 2017). ZIP14 transports Mn2+ as well as Zn2+into cells
(Girijashanker et al., 2008; Fujishiro et al., 2014; Xin et al., 2017).
Mn2+ is an essential micronutrient in human health as Mn2+

imbalances in the brain may cause parkinsonism–dystonia (Roth,
2014). Mutations in ZIP14 have been shown to disrupt Mn2+

homeostasis and cause childhood-onset parkinsonism–dystonia
(Tuschl et al., 2016). In contrast to what one might expect from
deletion of a transition metal importer, when ZIP14 is knocked out
in mice, increased Mn2+ levels were observed in the brain as was
diminished motor activity suggesting that ZIP14 function is an
essential factor required to prevent Zn2+-linked neurodegeneration
(Aydemir et al., 2017).

In contrast to ZIP8 and ZIP14, ZIP12 transports Zn2+

transporters and is expressed to a high level in the brain
(Takagishi et al., 2017). ZIP12 is essential in the activation of
cAMP response element binding protein (CREB) signaling for
neuronal differentiation, neurite outgrowth, and tubulin
polymerization (Chowanadisai et al., 2013). Although the
association of ZIP12 in human diseases is not clear,
ZIP12 mRNA is increased in brain regions of schizophrenic
patients (Davis et al., 2021). ZIP12 is also thought to have a role
in neural tube closure and embryonic development in Xenopus
tropicalis (Davis et al., 2021).

While many studies in the literature have focused on expression
patterns of single ZIP genes, in recent years, more systemic
approaches have been utilized to quanitfy changes in expression
profiles as undifferentiated cells were differentiated to neurons. For
example, mouse fetal Neural Stem Progenitor Cells (NPSC) were
cultured with 1.5 µM Zn2+ (Mori et al., 2024). Upon differentiation,
ZIP1, ZIP4, ZIP12, and ZIP13 were expressed at a higher rate, while
ZIP8 was downregulated. In addition, ZnT1, ZnT8 and ZnT10 were
upregulated. This provides evidence that the expression profiles of
multiple ZIPs are impacted upon neurodifferentiation.

2.3 Chaperones

Serum albumin is the major carrier for Zn2+ in plasma
(Blindauer et al., 2009). Zn2+ coordinates to two binding sites
within serum albumin, Site A and Site B. Site A of serum
albumin has a moderate (micromolar) affinity for Zn2+ and
therefore this labile pool of Zn2+ is responsible for the largest
portion of exchangeable plasma Zn2+ pool (Kassaar et al., 2015).
Recently, it has been suggested that serum albumin delivers Zn2+ to
ZIPs and that allosteric inhibition of Zn2+-binding to albumin by
free fatty acids increased Zn2+ influx (Coverdale et al., 2022).
However, evidence directly linking transfer of Zn2+ from serum
albumin to ZIPs remains unavailable.

It has been proposed that cellular Zn2+ resides in one of three
pools: 1) free Zn2+ which is uncoordinated in solution, 2) loosely
bound Zn2+ which can associate and dissociate from biomolecules
such as metallothionein, and 3) tightly bound Zn2+ which cannot
react with other biomolecules or be readily released (Krezel and
Maret, 2006). Considering that uncoordinated Zn2+ is practically
non-existent in most cell types, it has long been recognized that Zn2+

is largely bound to proteins and other biomolecules (Vallee, 1959).
This requires that once Zn2+ is transported across the plasma
membrane, there must be chaperones that move Zn2+ to its
ultimate destination(s). However, identification of these
chaperones is better understood in bacterial systems (Kandari
et al., 2021).

There have been initial attempts to examine the proteins and
mechanism that mediate Zn2+ intracellular movement. Zn2+

homeostasis in the brain, as in all cells, is tightly controlled by
metallothionein’s (MTs). MTs are small, cysteine-rich proteins that
play important roles in metal homeostasis and protect cells against
heavy metal toxicity, DNA damage and oxidative stress. MTs have
the potential to bind multiple transition metals including Zn2+ and
Cu2+. MTs can also coordinate toxic metals such as Cd2+ and Hg2+.
There are 4 MTs expressed in humans (MT1, MT2, MT3 and MT4).
Up to seven Zn2+ ions can coordinate to MTs in a tetrahedral
geometry. MT3 is expressed in astrocytes, cerebellar cortex and Zn2+

enriched neurons where it sequesters Zn2+ in synaptic vesicles
(Masters et al., 1994).

Two groups recently described a family of COG0523 proteins,
conserved from yeast to humans, whose members function as
Zn2+ metallochaperones (Pasquini et al., 2022; Weiss et al., 2022).
These proteins, named Zn2+-regulated GTPase metalloprotein
activator 1 (ZNG1) have been shown to directly transfer Zn2+ to
type 1 metallopeptidases. This finding provides an exciting
starting point to better understand the molecular mechanism
by which Zn2+ is moved through a cell. In addition, considering
that these studies showed that disruption of
ZNG1 metallochaperone activity results in decreased cellular
proliferation and mitochondrial dysfunction, this is an
important starting point to understand to decipher how Zn2+

dyshomeostasis can result in disease states.

3 Zn2+ as a neurotransmitter

Zn2+ serves as a crucial signaling molecule within the synaptic
cleft, playing multifaceted roles in modulating
neurotransmission and synaptic plasticity. Upon neuronal
excitation, Zn2+ is released from synaptic vesicles alongside
neurotransmitters such as glutamate and GABA. Within the
synaptic cleft, Zn2+ directly activates or modulates a variety of
receptors and ion channels, exerting both excitatory and
inhibitory effects on synaptic transmission. Through its
dynamic regulation of synaptic signaling pathways, Zn2+

contributes to the fine-tuning of synaptic activity, synaptic
plasticity, and ultimately, neuronal communication within
neural circuits. Interestingly, as we will describe below, that
while there is recent evidence Zn2+ can directly gate a
neuronal ion channel the role of this protein in synaptic
signaling remains unclear.

3.1 Zinc Activated Channels

The Zn2+ Activated Channel (ZAC), is encoded by the ZACN
gene. ZAC is a Cys-loop receptor (CLR) and comprises its own
unique subfamily within the pentameric ligand-gated ion channels
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(LGIC) as ZAC diverged from neighboring proteins early in
evolution. Genes for ZAC are present in humans, zebrafish, and
dogs. However, the gene encoding ZAC is a non-functional
pseudogene in mouse and rat genomes (Davies et al., 2003;
Houtani et al., 2005). ZAC has been shown to be expressed in
fetal and adult brain as well as the spinal cord. In addition, tissue-
specific expression studies show that ZAC expression coincides with
neuronal regions of high Zn2+ levels as human (h) ZAC mRNA is
present in human hippocampal, striatum, amygdala, and thalamus
tissues (Houtani et al., 2005).

The hZAC gene encodes a 411-residue protein with four
TransMembrane Domains (TMD) and an extracellular
N-terminus domain. This extracellular domain encodes the
signature Cys-loop motif. ZAC is a non-selective monovalent
cationic ion channel which can be activated by Zn2+ and Cu2+

(Trattnig et al., 2016). ZAC is the only known human ion
channel to be directly activated by transition metals. To date,
there is little information on the mechanism or physiological
significance of ZAC.

3.2 Zinc modulates neurotransmitters

Synaptic vesicles of glutaminergic, glycinergic and GABAergic
neurons in the hippocampus possess high concentration of Zn2+. In
fact, fifteen percent of Zn2+ in the brain can be found in synaptic
vesicles (Frederickson, 1989). Zn2+ is transported into these vesicles
by ZnT3. When an action potential reaches the presynaptic
terminal, it causes synaptic vesicles to fuse to the plasma
membrane of the neuron and release Zn2+ as well as co-localized
neurotransmitter(s) into the synaptic cleft.

The region most susceptible to Zn2+ deficiency in the brain is the
hippocampus. Here, Zn2+ deficiency results in impaired neuronal
proliferation, differentiation, and activation of apoptotic pathways,
thus leading to unalterable impairment of learning and memory
capacity during early development. In addition, if large quantities of
Zn2+ are released from the presynaptic cleft to the postsynaptic
neurons neurotoxicity can result. Neurotoxicity due to excess Zn2+

in the synaptic cleft can also be the result of traumatic injury (Morris
and Levenson, 2017).

FIGURE 2
Zn2+ at the synaptic cleft. (A) Illustration of the proteins that regulate and are impacted by Zn2+ at the synaptic cleft. ZnT3 loads Zn2+ into presynaptic
vesicles where upon neuronal activation it is released into the synaptic cleft alongside neurotransmitters. Zn2+ release in the synaptic cleft can modulate
excitatory or inhibitory receptors. Transient increases in Zn2+ can modulate the function of voltage gated ion channels thereby impacting neuronal
excitability. (B) Zn2+ signaling in ROS level regulation in mitochondria.
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In the central nervous system, glutamate is the predominant
excitatory neurotransmitter involved in numerous neural functions
including learning and memory, long-term potentiation, and
synaptic plasticity (Zhou and Danbolt, 2014). In the brain,
glutamate binds several receptors. Glutamate receptors are
classified into two main subgroups: ionotropic receptors and
metabotropic receptors. Ionotropic receptors are transmembrane
ligand-gated ion channels while metabotropic receptors act either
directly or indirectly as signal transduction enzymes. There are three
types of ionotropic glutamate receptors (Figure 2): N-methyl-D-
aspartate (NMDA), α-amino-3-hydroxy-5-methy-4-isoxazole
propionic acid (AMPA) and kainite receptors. Zn2+ directly
inhibits NMDA-sensitive glutamate-gated channels by two
separate mechanisms: high-affinity binding to N-terminal
domains of GluN2A subunits reduces channel open probability,
and low-affinity voltage-dependent binding to pore-lining residues
blocks the channel (Amico-Ruvio et al., 2011). Synaptically released
Zn2+ modulates AMPA receptors and impacts fast excitatory
neurotransmission and plasticity in glutamatergic synapses
(Kalappa et al., 2015). Finally, it is been shown that synaptically
released Zn2+ inhibits postsynaptic kainate receptors at mossy fiber
synapses (Mott et al., 2008). Therefore, disruption of Zn2+ transport
into synaptic vesicles can have broad impacts on neuronal
development.

As a more specific physiological relevant example, it has been
shown that Zn2+ has multiple roles in how neurons respond to
sounds of different volumes (Anderson et al., 2017). First, the
addition of Zn2+ causes excitatory neurons to increase responses
to sounds. Second, addition of Zn2+ causes inhibitor neurons to
decrease their responses to sounds. Taken together, it was suggested
that Zn2+ enables the brain to process sounds when moving from
one environment to another that has higher or lower sounds.

3.3 Zinc as a signaling molecule

Changes in extracellular Zn2+ levels impact a myriad of cellular
signaling processes. For example, the plasma membrane G protein-
coupled receptor 39 (mZnR/GPR39) senses changes in extracellular
Zn2+ (Hershfinkel, 2018; Xia et al., 2022). Once Zn2+ binds to mZnR/
GPR39 the ERK/MAPK and PI3K/AKT signaling pathways can be
activated. Disruption of this signaling pathway can contribute to
neurodegeneration (Abramovitch-Dahan et al., 2016; Khan, 2016;
Rychlik and Mlyniec, 2019). Zn2+ has been shown to modulate the
phosphorylation state of proteins including transcription factors by
activating or inhibiting interactions of Zn2+ with several enzymes.
Therefore, changes in Zn2+ levels regulate gene expression and
biological outcomes. In addition, Zn2+ can function to suppress
phosphatase activity and promote phosphorylation reactions. The
activation of proteins and subsequent cell signaling pathways are
modulated by changes in intracellular levels of Zn2+, including
proteins such as MAPK, Ca2+/calmodulin-activated protein
kinase-2 (CaMPK-2), protein kinase C (PKC), P70S6 kinase
(P70S6K), cyclic nucleotide phosphodiesterases (PDE), and
protein tyrosine phosphatases (PTP) (Figure 2) (Costa et al., 2023).

Changes in cellular Ca2+ levels can alter cellular Zn2+ levels and
vice versa. Activation of the ZnR/GPR39 receptor leads to
mobilization of Ca2+ in the cytosol and ER reservoirs (Sato et al.,

2016). Increasing intracellular Ca2+ levels can trigger Zn2+ release,
ROS production and Zn2+ waves which are generated from the
endoplasmic reticulum (ER). Furthermore, Ca2+/calmodulin
contributes Zn2+ regulation in cells under oxidative stress by NO
signal generation. Under oxidative stress conditions, Zn2+ initiates
antioxidant and repair response to restore cellular balance. Zn2+ can
also modulate the activation of the major neuronal kinase, serine/
threonine-specific kinase, CaMPK-2 (Figure 2) (Poddar et al., 2016).
It has been reported that low levels of Zn2+ stimulate kinase activity,
whereas high concentration of Zn2+ inhibits the binding of Ca2+/
calmodulin and inactivate the substrate phosphorylation activity of
CaMPK-2. Moreover, Ca2+ and Zn2+ shape each other’s
intraneuronal dynamics (Dorward et al., 2023).

4 Zn2+’s role in neurodevelopment

Zn2+ plays a pivotal role in neurodevelopment, orchestrating a
myriad of processes critical for the formation, maturation, and
function of the nervous system. Zn2+ is intricately involved in
various aspects of neuronal development, including neurogenesis,
neuronal migration, synaptogenesis, and myelination. Zn2+ also
serves as a cofactor for numerous enzymes and transcription
factors involved in DNA synthesis, cell proliferation, and
differentiation, thereby influencing the generation and
organization of neural cells. Dysfunction in Zn2+ homeostasis
during critical periods of neurodevelopment has been implicated
in a range of neurological disorders, underscoring the significance of
Zn2+ in shaping the structural and functional architecture of the
developing brain.

4.1 Neurodifferentiation and Zn2+

Neurodifferentiation is a multi-stage process that involves
morphological and functional changes of precursor cells into
mature neurons (Martorana et al., 2018). Neurodifferentiation
begins with the proliferation of neural progenitor cells, which
subsequently undergo differentiation into various types of
neurons and glial cells, each with distinct functions. This
complex process involves a series of molecular signals and
genetic cues that regulate cell fate determination, migration, and
connectivity, ultimately sculpting the intricate circuitry of the brain
and spinal cord. Neurodifferentiation plays a critical role in shaping
the structure and function of the nervous system, enabling it to carry
out a vast array of cognitive, sensory, and motor functions essential
for human life. During neurodifferentiation, physical changes are
accompanied by the expression of various membrane proteins and
receptors (Ernfors et al., 1990).

Transcription factors influence the ability of precursor cells to
differentiate into different neuronal cell types and thus impact the
formation of different brain areas and sub-structures (Silbereis et al.,
2016). Transcription factors are a family of protein molecules that
drive gene transcription by binding directly and/or indirectly to
upstream genome regulatory elements of protein-coding genes.
Among these transcription factors, are Zn2+

finger proteins which
participate in brain development (Grinberg et al., 2004; Nowick
et al., 2009). Zn2+ coordinates to Zn2+

finger proteins, thereby
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regulating gene expression. Thus, it should come as no surprise that
Zn2+ deficiency limits growth in children and can result in mental
retardation and learning disabilities. Fortunately, it has been shown
that supplemental Zn2+ can improve spatial memory, learning and
exploratory activities (Piechal et al., 2016).

Among transcription factors, the C2H2-type Zn
2+
finger proteins

form the largest family in the animal kingdom (Nowick et al., 2010).
The C2H2-type Zn2+

finger encodes a consensus sequence, CX2-

4CX12HX2-8H where X is any amino acid. These proteins are small
peptide domains, which upon Zn2+ coordination bind directly or
indirectly to upstream DNA sequences to regulate gene
transcription. Once Zn2+-containing C2H2-type Zn2+

finger
proteins are bound to DNA, proteins including cofactors and
RNA polymerase II are recruited to initiate and modulate
transcription rates of downstream coding sequences (Urrutia, 2003).

Evidence of the importance of C2H2-type Zn2+
finger in

neurodifferentiation includes studies showing that Zeb1, a C2H2-
type Zn2+ promotes differentiation of radial glial progenitor cells
(Yan et al., 2017). Zeb1 performs this function by acting as a
transcriptional repressor, thereby regulating proliferation,
migration and differentiation. The highest level of expression of
Zeb1 are observed during neocortical development and then
decreases following birth. Interestingly, genome wide association
studies have linked Zeb1 with schizophrenia (Borglum et al., 2014).

ZNF536 is another C2H2-type Zn2+ transcription factor
expressed in the brain, including the cerebral cortex,
hippocampus, and hypothalamic area (Qin et al., 2009). As
P19 cells are differentiated with retinoic acid, it was observed
that ZNF536 expression increases. Furthermore, while
overexpression of ZNF536 inhibits retinoic acid-induced
differentiation, depletion of ZNF539 has the opposite effect. As a
consequence of these experiments, it has been proposed that
ZNF539 is involved in negative regulation of transcription by
RNA polymerase II.

More recent efforts in understanding role of C2H2-type Zn2+

finger transcription factors have included high throughput methods.
For example, leveraging the power of CRISPR-Cas in screening all
~1900 human genome transcription factors, identified one C2H2-
type Zn2+ transcription factor, ZBTB18, involved in
neurodifferentiation (Lu et al., 2023). Loss of this protein resulted
in cells which had cytoskeletal defects and stunted neurites/spines.

4.2 Neurite outgrowth

Newly generated neurons undergo neurite outgrowth to
establish connections with other neurons and form neural
circuits. In other words, neurite outgrowth refers to the extension
of neurites (axons and dendrites) from neurons (Bostrom et al.,
2010). Zn2+ is an essential participant in the neurogenesis process
(Fidalgo et al., 2011). Neurite outgrowth occurs after neuronal
differentiation from stem cell precursors and following the
migration of immature neurons from their origin site in the
embryo to their final positions. This is an essential step in
nervous system development, as it produces new projections for
the wiring of neurons.

Zn2+ has a direct impact on neurite outgrowth. Using adipose-
derived mesenchymal stem cells, which can differentiate into

neurons, it was shown that addition of Zn2+ promoted
outgrowth, while addition of the chelator CaEDTA decreased the
level of outgrowth (Moon et al., 2018). On the molecular level, Zn2+-
enhanced neurite outgrowth was the result of inactivation of RhoA.
The activated form of RhoA, V14RhoA, has been shown to inhibit
the initiation of neuronal differentiation while the inactivated form
of RhoA is necessary for neurite outgrowth (Sebok et al., 1999).
Addition of Zn2+ promoted the expression of microtubule-
associated protein 2 (MAP2) and nestin (NES), two neuronal
markers (Moon et al., 2018). Correlated to these results is the
observation that mouse neurons produce fewer and shorter
neurites after the Zn2+ importer, ZIP12, is knocked down
(Chowanadisai et al., 2013). Chelation of Zn2+ has the same
impact as when ZIP12 is knocked down in neurons. In contrast,
loading neurons with Zn2+ reduced the impact of ZIP12 knockdown
neurons on neurite outgrowth.

A C2H2-type Zn
2+-finger protein (DISC1- Zn2+

finger protein or
DBZ) has been implicated in impacting neurite length in PC12 cells.
DBZ is expressed solely in the brain of mice and is highly expressed
in the cerebral cortex, hippocampus, olfactory tubercle, and striatum
(Hattori et al., 2007). In PC12 cells, DBZ co-localizes with disrupted-
in schizophrenia (DISC1). These two proteins were shown to
interact with each other by immunoprecipitation. Furthermore,
expression of DBZ led to a significant decrease of neurite length,
implicating DBZ in neurite outgrowth.

5 Zn2+ as a function of age

Zn2+ levels change based on genetics, sex, nutritional intake,
health status, physiological conditions, and age (Qu et al., 2020).
Serum Zn2+ levels in newborn babies (70–150 μg/dL) decrease
shortly after birth (60–120 μg/dL) (Hotz et al., 2003). Individuals,
less than 10 years of age, with serum Zn2+ levels of less than 65 μg/dL
are considered to be Zn2+ deficient. Above 10 years of age, Zn2+ levels
are considered to be normal if they are at least 66 and 70 μg/dL for
females and males, respectively. Recently, changes in Zn2+ levels as a
function of aging have been quantified in the Japanese population
(Yokokawa et al., 2024). Here it was shown that the proportion of
patients with Zn2+ deficiency increased with age. Approximately
33% of patients 20–29 years old and 11% of patients in their 80s had
a normal range of Zn2+ in their blood serum. Among the younger
group of patients (20–29 years old), only 16% of them had Zn2+

deficiency (<60 μg/dL). However, Zn2+ deficiency increased to about
45% among those in their 80s (Yokokawa et al., 2024).

Zn2+ levels in the brain change during one’s lifespan
(Santhakumar et al., 2018). Zn2+ levels remain relatively stable
during childhood and adolescence in the brain (Black, 1998). In
elderly people, changes in Zn2+ metabolism leads to dyshomeostasis
of Zn2+ in certain brain regions including the olfactory bulb, cerebral
cortex, and hippocampus (Sikora et al., 2022). In some regions of the
brain (the olfactory bulb), Zn2+ levels decrease. While in other parts
of the brain, Zn2+ levels increase (such as the hippocampus) (Sikora
et al., 2022). Excessive Zn2+ accumulation in the hippocampus may
contribute to synaptic dysfunction and cognitive decline associated
with aging. Zn2+ dyshomeostasis is related to aging within the
cerebral cortex, as well. As the cerebral cortex is involved in high
levels of cognitive functions, alterations in Zn2+ levels within this
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area could impact cognitive performance in elderly individuals
(Vogler et al., 2022). Fluctuations in Zn2+ distribution, transport,
and signaling may contribute to age-related cognitive decline,
neurodegenerative diseases, and other age-related
neuropathological conditions and psychiatric disorders (Takeda
et al., 2018; Marchetti et al., 2022). The level of Zn2+ in the brain
is essential to support neuronal growth, synaptic plasticity, and
cognitive development.

6 Zn2+ and neuronal disease

Considering that Zn2+ directly or indirectly impacts such a wide
variety of cellular processes within the nervous system, Zn2+

dyshomeostasis exerts a profound impact on neuronal diseases
including neurotransmission, synaptic plasticity, and oxidative
stress responses. Dysregulation of Zn2+ homeostasis has been
implicated in the pathophysiology of neurodegenerative diseases
such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic
lateral sclerosis (ALS), where alterations in Zn2+ levels contribute to
protein misfolding, aggregation, and neurotoxicity. Conversely, Zn2+

deficiency or excess has been associated with cognitive impairments,

mood disorders, and epilepsy, highlighting the delicate balance
required for optimal neuronal function. Understanding the
intricate roles of Zn2+ in neuronal diseases offers promising
avenues for therapeutic interventions aimed at restoring zinc
homeostasis and ameliorating neurological dysfunction.

6.1 Zn2+ and Alzheimer’s disease

The β-amyloid precursor protein (APP) is a single-pass
695 residue transmembrane protein (Figure 3A). APP encodes a
large extracellular region and a small intracellular domain. The
extracellular domain encodes three distinct domains including E1,
KPI and E2. E1 has also been proposed to be important for cell
adhesion. The KPI domain is normally expressed in non-neuronal
cells (Rohan de Silva et al., 1997). The E2 site can readily dimerize
and has multiple metal binding sites (Dahms et al., 2012). The APP
can be cleaved by multiple proteases including α-, β-, and γ-
secretases. When α-secretase cleaves APP, the product is not
amyloidogenic. In contrast when APP is sequentially cleaved by
β- and γ-secretases, neurotoxic Aβ peptides are released into the
extracellular space. Mutations within APP can result in a decreased

FIGURE 3
Schematic demonstration of the (A) β-amyloid precursor protein (APP) and (B) residues which can coordinate Zn2+ leading to fibrilization.
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rate of cleavage by α-secretase and a subsequent increase in
proteolysis by β- γ-secretases. These Aβ peptides can form an
oligomeric aggregate, which is the major protein component of
amyloid plaques in Alzheimer’s disease (Masters et al., 1985).

Zn2+ coordinates with Aβ mainly through N-terminus
histidine residues (H6, H13, H14) (Figure 3B) (Minicozzi
et al., 2008; Nair et al., 2010; Rezaei-Ghaleh et al., 2011). Zn2+

can also coordinate by with Aβ aspartic acid (D1) and tyrosine
(Y10) residues (Danielsson et al., 2007; Lee et al., 2018). Aβ self-
assembly into an insoluble aggregated form is affected by metal
binding to the Aβ peptide. For example, generation of a histidine-
Zn2+-histidine inter-peptide bridge results in an insoluble
aggregate (Miura et al., 2000). In addition, it has been shown
that high concentrations of Zn2+ enhance Aβ oligomers’ stability
thereby increasing cytotoxicity effect of Aβ aggregation. On the
other hand, low Zn2+ levels may inhibit Aβ oligomerization
aggregation.

6.2 Cerebral ischemia and hypoxia

When resting, the brain uses around twenty percent of the
body’s metabolic energy. This includes about twenty percent of the
body’s oxygen supply. Therefore, disrupting the blood supply to the
brain can have serious health impacts. Ischemia occurs when blood
supply to a specific organ tissue or muscle group is limited. This can
lead to a lack of oxygen needed for cellular metabolism. Cerebral
ischemia (or brain ischemia) can be a medical emergency that occurs
when the brain does not receive enough blood flow to meet
metabolic needs.

Cerebral ischemia and hypoxia lead to an abnormally high
amount of synaptic Zn2+ to be released into the synaptic cleft
(Ueba et al., 2018). This can lead to neuronal inflammation and in
extreme cases, neuronal cell death. The molecular basis of Zn2+-
induced neuronal inflammation/death is a complex process and
damage can occur through multiple processes. For example,
when Zn2+ levels are elevated in the synaptic cleft, Zn2+ can
flow directly into postsynaptic neurons, inducing oxidative stress
and resulting in neuronal cell death. In addition, Zn2+ can directly
damage neurons by activating microglia to produce
proinflammatory facts. Finally, increased levels of Zn2+ can
result in the upregulation of inflammatory proteins which
then are toxic to neurons. Interestingly, elevated levels of
extracellular Zn2+ were reduced in mice with a neuronal-
specific ZnT3 knockout (Qi et al., 2023). This suggests that
ZnT3 could be a useful target to counteract the impact of
elevated Zn2+ levels in ischemic neurons.

6.3 Kufor-Rakeb Syndrome

Kufor-Rakeb Syndrome is a very rare form of inherited
juvenile-onset Parkinson’s Disease (PD). While PD usually
affects individuals aged 60 and over, onset of KRS symptoms
can be observed prior to age 20. Common symptoms of this
disease include bradykinesia (slow movement), rigidity and
tremors. Mutations in the ATP12A2 gene result in KRS.
ATP13A2 is a P-type ATPase. P-type ATPases use the energy

generated from ATP hydrolysis to pump cations and small
molecules across biological membranes against their
chemoelectrical gradient. ATP13A2 is expressed in
intracellular vesicular compartments including lysosomes and
early and late endosomes and functions to transport transition
metals, including Mn2+, Fe2+ and Zn2+, into lysosomes (Ramirez
et al., 2006). Therefore, ATP13A2 functions to prevent transition
metal toxicity. Consequently, mutations in ATPA12A2 result in
abnormally high cytosolic levels of transition metals leading to
toxic effects.

7 Zn2+ based therapeutic targets

Considering the central role Zn2+ plays, either directly or
indirectly, in initiating or progressing various disease states,
regulating Zn2+ levels or the proteins with which Zn2+

coordinates in these pathologies may provide a novel avenue
towards effective therapeutics. For example, reduced levels of
serum Zn2+ have been observed in patients with Alzheimer’s
disease when compared to healthy controls (Ventriglia et al.,
2015). This suggests a linkage between Zn2+ dyshomeostasis and
AD pathogenesis. This difference could be due to either changes in
diet, metabolism or the expression/activities of proteins which
regulate Zn2+ levels. In fact, there is accumulating evidence that
AD coincides with changes in expression levels for proteins that
regulate Zn2+ influx, efflux and homeostasis. It has been observed
that protein levels of ZnT1 were altered in a variety of neuronal cell
types in AD patients: Higher in amygdala, hippocampus/
parahippocampal gyrus and inferior parietal lobule, while
ZnT1 protein levels were lower in the superior and middle
temporal gyrus (Lovell et al., 2005). In addition, the expression of
ZnT4 and ZnT6 were shown to be higher in the hippocampus/
parahippocampal gyrus of individuals with early AD and AD (Smith
et al., 2006). ZnT6 is higher in the superior and middle temporal
gyrus of AD patients (Smith et al., 2006). The expression of
ZIP1 increases as a function of age in the human frontal cortex
(Olesen et al., 2016). At the same time, higher mRNA levels of
ZIP1 were observed in the cortex of AD patients (Beyer et al., 2012).
Similar changes in expression levels of ZIP1 have been seen in a
Drosophila model of AD leading these authors to suggest that
manipulating Zn2+ transporters in AD brains could be a novel
therapeutic strategy (Lang et al., 2012). Interestingly, MT-3 has
been shown to be downregulated in patients with AD (Yu et al.,
2001). In addition, MT-3 has been associated with
neurodegenerative diseases including amyotrophic lateral
sclerosis. Here, overexpression of MT-3 prevented neuronal death
and prolonged the life span of mice modeling amyotrophic lateral
sclerosis (Hashimoto et al., 2011). MTs have also been implicated in
protecting neurons against Parkinson’s disease in mice (Miyazaki
et al., 2007).

Considering these molecular changes, clinical trials which have
focused on changing levels of Zn2+ carry a new level of importance.
Considering that excess Zn2+ in the synaptic cleft can lead to
neuroinflammation and/or death, application of zeolite-based
nanomaterials which coordinate Zn2+ have been shown to
counteract Zn2+-induced cerebral ischemia (Huang et al., 2022).
Trials which included Zn2+ supplements resulted in individuals who
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had improved performance on cognition tests (Van Rhijn et al.,
1990; Potocnik et al., 1997).

8 Perspective/conclusion

Zn2+ is an essential micronutrient used throughout the lifespan
of the human brain. Zn2+ is a central participant in neuronal
differentiation and as humans age, their levels of Zn2+ vary in a
cell-type specific manner. These cell type specific changes are largely
mediated by changes in ZIP and ZnT expression profiles. However,
considering the central role of Zn2+-finger transcription factors in
regulating cellular homeostasis, these changes in Zn2+ levels have an
outsized impact on cellular homeostasis. At the same time, there is
an increased awareness that changes in Zn2+ levels have been shown
to be an important microenvironmental risk factor for the
development of neurobiological pathologies. Recent studies
suggest that there are important interactions between
intracellular/extracellular Zn2+ levels and neuronal responses that
may explain some elements of pathogenesis such as Alzheimer’s
Disease. However, the long latency between Zn2+ dyshomeostasis
and onset of neurological diseases outcome makes it challenging to
study these correlations. Enhanced approaches, including new
imaging approaches make it plausible to more accurately
monitoring Zn2+ levels in a time-resolved manner. This provides
hope that it may be possible to reduce the incidence of various
neurobiological diseases. In addition therapeutics that specifically
target Zn2+ levels could also lead to new avenues to treat neurological
diseases. Thus, it is essential that as investigators learn more about
the impact of Zn2+ on brain function, one eye is kept towards
potential therapeutic approaches.
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