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Proteins carry out their biological activity as dynamic structures and populate in
solution or in biological membranes structural distributions with different degrees
of heterogeneity. The central challenge in structural biology is to capture protein
structural dynamics under equilibrium or kinetic conditions shifting from single,
static pictures to movies of conformational ensembles. Ideally, this task should be
pursued both in vitro and in vivo, under the influence of the native environment.
The last decade has seen a tremendous development of biophysical methods for
the investigation of protein structure and dynamics. However, each method has
specific limitations and no single approach offers such a complex level of
description. Nonetheless, the combination of experimental and computational,
complementary methods is opening promising new avenues. Also the ambition of
implementing structural studies on an “omic” scale is becoming more and more
realistic. In spite of still major limitations, integrative structural biology is bringing
dynamics into structural proteomics, with exciting perspectives for basic and
applied sciences.
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Introduction

Proteins are the main actors determining phenotype in the biological world. Their
structural characterization is essential to understand, design and modify protein function,
impacting on basic and applied research. Protein structures in solution or membranes are
not static and interconvert among different conformations with different degrees of
flexibility on a continuum from highly constrained to completely disordered states. A
central challenge of structural biology is the dynamic characterization of conformational
ensembles, rather than the determination of single structures or static ensembles that may
represent only snapshots of biologically relevant transitions. Protein dynamics is relevant to
virtually any kind of protein activity and manifests itself at multiple levels: conformational
dynamics, conformational changes, protein folding and intermolecular interactions.

Molecular recognition is a general phenomenon that highlights the importance of
conformational dynamics in shaping protein affinity and specificity (Chu et al., 2021; Carey,
2022). Consistently, the performance of drug-design methods is strongly affected by the
extent of protein flexibility that is taken into account (Bekker and Kamiya, 2022). Enzymatic
catalysis is intimately linked to protein structure dynamics (Fürst et al., 2019; Lycus et al.,
2023) and catalytic properties can be illuminated by modeling transition-state ensembles
(Bunzel et al., 2021). Conformation-based models for allostery are being displaced by a view
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invoking vibrations and fluctuations from the entire protein
structure and associated entropy changes mediating allosteric
communication (Madan et al., 2023). Chain flexibility has been
adjusted by evolution to adapt to different environments, as shown
by proteins from psychrophilic, mesophilic and thermophilic
organisms (Arcus and Mulholland, 2020; Rabbani et al., 2023).

The mechanism of protein folding has been a “Holy Grail” of
modern biology. Again, the key seems to be depicting
conformational ensembles according to a rough energy landscape
of protein folding with populated metastable states (Biasini and
Faccioli, 2023). A related open question remains how to model the
unfolded state, the goal being characterization of conformational
ensembles along the folding coordinate from the unfolded to the
native state. Furthermore, the intracellular environment affects
conformational ensembles, stability and dynamic quaternary
structure by crowding effects, phase transitions, post-translational
modifications (PTMs) and transient intermolecular interactions
(quinary structure) (Guin and Gruebele, 2019; Selenko, 2019;
Marciano et al., 2022). The physiological folding process is in
competition with aberrant pathways leading to misfolded
conformations and amyloid aggregates. Innovative diagnostic and
therapeutic strategies for amyloid diseases needs to take into account
the dynamics of amyloidogenic proteins and supramolecular
complexes (Sun et al., 2023).

Molecular evolution has posed varying degrees of selective
pressure on protein dynamics (Patil, 2022). Some biological
functions, mostly regulatory switches, involve proteins or protein
regions that do not fold by themselves into an ordered three-
dimensional structure. These “intrinsically disordered proteins”
(IDPs) or “intrinsically disordered regions” (IDRs) may fold
partially or completely upon binding a partner. This adaptability
may enable combinatorial interactions with multiple partners
(Chakrabarti and Chakravarty, 2022). More than half of the
human proteome contains predicted IDRs of 30 residues or
longer (Toth-Petroczy et al., 2016). The functional advantages of
structural disorder coexist with the threat of misfolding and
aggregation (Tsoi et al., 2023). IDPs and IDRs are key actors in
physiology, as well as in many devastating diseases, and represent
targets of central pharmacological interest (Choudhary et al., 2022).

Molecular chaperones (Margulies et al., 2022), molecular motors
(Ariga et al., 2020), pores (Hendriks et al., 2021), transporters (Hou
et al., 2022), and host proteins of membraneless organelles
(Hardenberg et al., 2020) provide additional examples of the
biological relevance of protein structural dynamics.

Methodological approaches

The shift from static to dynamic protein characterization poses
major technical challenges. The ambition is to approach equilibrium
and kinetics, therefore dealing with heterogeneity of conformational
ensembles and motions describing conformational transitions.
Advancements in biophysical methods are bringing these difficult
tasks within reach, but still many bottlenecks must be overcome.
While no single method can give us the answers, the combination of
multiple techniques in an “integrative structural biology” approach
is highly promising (Evans et al., 2023). Computational methods
have an increasingly important role in guiding, interpreting and

complementing experiments, and multiple experimental approaches
exploiting orthogonal principles can be combined.

The experimental techniques yielding atomic-resolution models
of protein structures are X-ray crystallography, cryogenic electron
microscopy (cryo-EM) and nuclear magnetic resonance (NMR). By
observing molecules in a crystal lattice, X-ray crystallography has
limitations in studying protein dynamics. However, the
development of time-resolved crystallography by X-ray free
electron lasers (XFELs) has opened new avenues, yielding serial
diffraction data-sets from protein microcrystals with femtosecond
time resolution (serial femtosecond crystallography, SFX) and
overcoming radiation damages by a “diffraction-before-
destruction” approach (Liu and Lee, 2019). Combination with
light pulses has revealed structural dynamics and transient states
in light-sensitive proteins (Malla and Schmidt, 2022; Weik and
Domratcheva, 2022). Other protein types can be approached, by
using substrate or ligand diffusion, rather than irradiation, as an
external stimulus (Malla and Schmidt, 2022).

Limitations of this approach are the dependence on
crystallization, which can be difficult or impossible for some
proteins and can affect conformational states, and data averaging,
rather than yielding single-particle information. The latter view is of
utmost importance in the investigation of heterogeneous systems.
Thus, further development of XFEL technology towards single
particle imaging (SPI) is highly attractive. An innovative
perspective is to exploit the ion-sorting capabilities of mass
spectrometry (MS) for sample injection in XFEL-SPI (Kadek
et al., 2021), replacing the flow of microcrystals by the flow of
single particles produced by electrospray ionization (ESI). These
could then be presented to XFEL after mass selection and possibly
also conformational selection by ion mobility (IM). Future
improvements in XFEL power and resolution, and advances in
hybrid technologies, could make this approach available for in-
depth analysis of protein conformational ensembles.

Cryo-EM has entered into the realm of high-resolution
techniques for protein structure determination. Rapid sample
vitrification at cryogenic temperatures into a thin layer of
vitreous ice, followed by EM imaging of a high number of single
particles, allows reconstructing three-dimensional structures with
atomic resolution, bypassing crystallization (Guaita et al., 2022).
Rapid mixing and rapid freezing technologies are making time-
resolved cryo-EM a reality on the millisecond time scale, although
optimization will be needed for routine practice and improved time
resolution (Klebl et al., 2021; Mäeots and Enchev, 2022). Cryo-EM
can face the dual challenges of kinetic and equilibrium
heterogeneity. Ensemble reconstruction into distinct conformers
is already well established and progress is being made in
methodologies to face continuous conformational heterogeneity
(Toader et al., 2023). These tools will bring us closer to the
fundamental goal of depicting conformational ensembles at
atomic resolution.

NMR measures protein structural features in solution or solid
state. It describes protein dynamics by an array of different protocols
and observables (Camacho-Zarco et al., 2022; Nishiyama et al.,
2023) on a wide time scale, from days to picoseconds in
combination with molecular-dynamics (MD) simulations
(Stenström et al., 2022). NMR has treated highly dynamic
systems, such as IDPs (Dyson and Wright, 2021; Camacho-Zarco
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et al., 2022), and difficult-to-handle systems, such as membrane
proteins (Xue et al., 2021; Günsel and Hagn, 2022) and amyloid
aggregates (Bonaccorsi et al., 2021). NMR is inherently a bulk
method with little potential for single-molecule implementations
and is exposed to the issue of signal averaging, depending on the
time scale of the transitions and the procedure employed. However,
the combination with MD simulations and low-resolution methods
describing species distributions is a powerful approach to tackle
structural heterogeneity (Harish et al., 2017). Solid-state NMR at
cryogenic temperatures could open new avenues to dissecting
disordered ensembles (Kragelj et al., 2023). Combination with
rapid-mixing and freeze-trapping technologies offers promising
perspectives for kinetic studies, e.g., capturing intermediates of
protein folding and assembly on the millisecond timescale (Jeon
et al., 2019).

Ideally, we would also like to investigate proteins in vivo, under
the influence of their native environment. The advancements of in-
cell and in-situ NMR offer unique possibilities in this regard
(Luchinat and Banci, 2022). In-cell NMR, in either solution- or
solid-state, has already successfully characterized folded, soluble
proteins disordered ensembles, PTMs, quinary structure, ligand
binding, dynamics of membrane proteins and amyloid
aggregation (Selenko, 2019; Bonaccorsi et al., 2021; Theillet and
Luchinat, 2022). One challenge is sample maintenance during the
long acquisition times. Dedicated bioreactors seem a promising
perspective. Microorganisms and mammalian cells have proven
amenable to in-cell NMR. Possibly, organoids or small animals
will become tractable in the future, thanks to improved sensitivity.
Again, the most promising perspective lies in hybrid strategies,
particularly exploiting the complementarity of NMR and cryo-
electron tomography (cryo-ET) (Theillet and Luchinat, 2022).

Cryo-ET takes projection images of appropriately thinned
biological samples, such as cells and tissues, under cryogenic
conditions from different angles, computationally reconstructing
three-dimensional images (Doerr, 2017; Moebel and Kervrann,
2022). The presently limited resolution is offset by the amplitude
of the inspected field, which could in principle embrace the entire
proteome, motivating expectations for the emerging new field of
“visual proteomics” (Baumeister, 2022). Averaging over multiple
copies can lead to near-atomic resolution, although not yet for low-
abundance or small structures. The so-called “resolution revolution”
will likely continue, opening new avenues to in-situ structural
biology (Kwon, 2021). Cryo-ET could address structural
heterogeneity and fast-freezing technology could be adaptable to
kinetic studies.

A very important synergism can be established between high-
resolution techniques that struggle to dissect conformational
ensembles and low-resolution techniques that describe, instead,
structural heterogeneity. This synergism is well established for
small-angle, X-ray or neutron scattering (SAXS, SANS),
integrating measurements with advanced algorithms for spectra
deconvolution and analysis of polydisperse systems (Da Vela and
Svergun, 2020). Other methods, such as structural MS and atomic-
force microscopy (AFM), go a step further, by physically sorting
particles and assessing their individual properties, being intrinsically
free from averaging shortcomings. Structural MS includes different
strategies (Haubrich et al., 2023). Native MS provides species
distributions of conformers and supramolecular complexes upon

gentle desolvation and ionization, yielding values of stoichiometry
and solvent accessible surface area (Tamara et al., 2022).
Combination with IM introduces an additional dimension in ion
separation and analysis, detecting structural heterogeneity even
within each charge state and measuring rotationally-averaged,
collisional cross-section (CCS) (Kaltashov et al., 2022;
Santambrogio et al., 2022, Christofi and Barran, 2023; Reid et al.,
2023).

Alternatively, conformation-sensitive labeling in solution is
followed by denaturing MS analysis. Labeling can probe
accessibility/flexibility, as isotope exchange (Masson et al., 2019),
fast photochemical oxidation (FPOP) (Cornwell and Ault, 2022) and
limited proteolysis (Malinovska et al., 2023), or generate distance
restraints, as chemical cross-linking in vitro or in vivo (Piersimoni
et al., 2022). This rich structural information can guide particle
classification in cryo-EM/ET, ensemble deconvolution by NMR and
computational modelling by experimental constraints. Structural
heterogeneity deriving from PTMs, ligand binding and protein
assemblies can also be described (Kaltashov et al., 2022; Reid
et al., 2023). MS methods can in principle be implemented in a
time-resolved mode on the millisecond scale (even microsecond for
FPOP), although such instrumental setups are still not widespread
(Lento and Wilson, 2022). An interesting hybrid approach
(Martinez Molina et al., 2013) is thermal proteome profiling,
which monitors proteome-wide changes in protein thermal
stability in vitro or in vivo upon application of a stimulus
(Mateus et al., 2020).

AFM measures height and force of a cantilever making
interactions with proteins on a surface in aqueous media, a single
molecule at a time (Müller et al., 2021; Yu and Yoshimura, 2021).
The surface is scanned by a sharp tip, functionalized according to the
experimental design, reaching speeds of ~70 frames/second in high-
speed AFM (HS-AFM) (Ando, 2022). AFM can be implemented for
imaging (microscopy) of biological or nanostructured surfaces, or
for unfolding and interaction analysis (force spectroscopy) on
recombinant proteins and polyproteins. Images at micrometer-to-
sub-nanometer resolution can be obtained on isolated proteins,
membrane-mimetic systems, organelles, living cells and tissues
(Müller et al., 2021; Yu and Yoshimura, 2021). HS-AFM provides
movies of protein conformational dynamics, polymerization and
depolymerization, folding and unfolding, binding and dissociation,
and measurements of the involved forces (Jukic et al., 2023; Lostao
et al., 2023).

AFM can be combined with microscopy and spectroscopy
probes, achieving higher levels of morphological and biochemical
characterization (Müller et al., 2021). Coupling with Fourier-
transform infrared spectroscopy enables chemical imaging and
quantitative secondary-structure determination of single protein
molecules (Ruggeri et al., 2020). Complementation by optical and
magnetic tweezers (Alegre-Cebollada, 2021) offers versatile
approaches to study protein folding and protein machineries
(Banerjee et al., 2021; Buzón et al., 2021; Dai et al., 2021). Förster
Resonance Energy Transfer (FRET) brings single-molecule
investigation inside living cells, with nanoscale spatiotemporal
resolution (Puthenveetil et al., 2022). Although it requires protein
labeling, it is a versatile method for in-vivo investigation of protein
dynamics (Bhat and Blunck, 2022; Majumdar and Mukhopadhyay,
2022). It has also been combined with AFM for simultaneous
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recording of pulling force and FRET trajectories of individual
unfolding events (He et al., 2012).

MD simulations describe vibrations and motions at atomic
resolution, offering a unique view into mechanistic aspects of
protein dynamics. Advancements in computational biophysics
are making accessible progressively larger systems on
progressively larger timescales (Borkotoky et al., 2022).
Multiscale quantum mechanics/molecular mechanics (QM/MM)
simulations bring quantum-mechanical accuracy into simulations
of large protein structures and supramolecular complexes towards
the exascale (Bolnykh et al., 2021; Vennelakanti et al., 2022; Kar,
2023). Supercomputers with exascale calculation power afford
simulation times in the submillisecond (or even millisecond)
timescale, covering biochemically relevant processes, from
enzyme catalysis to conformational transitions and can simulate
large supramolecular structures (millions of atoms) on the
microsecond timescale (Bolnykh et al., 2021; Melo and Bernardi,
2023). Force fields are being optimized to face the specific
complexity of folded, soluble proteins membrane proteins and
IDPs (Piana et al., 2020; Coskuner-Weber and Caglayan, 2021;
Robertson and Skiniotis, 2022). Enhanced sampling algorithms
improve simulation performance on rough energy landscapes
(Capelli et al., 2019; Hénin et al., 2022). The combination with
machine-learning methods further improve investigation of
transitions between metastable states and simulations of large
ensembles (Ansari et al., 2021; Bhatia et al., 2023).

MD simulations are suitable for equilibrium and kinetic
investigation of macromolecular systems. For the relatively small
IDP α-synuclein (140 aa), simulations of the entire conformational
ensemble, validated against NMR chemical shifts, describe the
conformational landscape in the presence or absence of ligands
(Robustelli et al., 2022). Large-scale, all-atom, explicit-solvent
simulations have reached impressive sample sizes, such as the
chromatophore organelle (Singharoy et al., 2019) and bacterial
cytoplasm (Yu et al., 2016; Oliveira Bortot et al., 2020). Kinetic
studies can capture transition states, calculate dissociation rates of
protein-drug complexes (Ahmad et al., 2022; Sohraby and Nunes-
Alves, 2022), simulate irreversible conformational changes (Ansari
et al., 2021) and amyloid aggregation (Rizzuti, 2022). The role of the
computational approach is continually expanding towards
multidisciplinary investigation guided by reciprocal input and
mutual validation with experiments (Paissoni and Camilloni,
2021; Sali, 2021) and the computational challenges become larger
rather than smaller, as the experimental methods become more
sophisticated and integrated. Exciting perspectives take shape,
translating structural into functional models, designing new
proteins, making disordered targets druggable and simulating
protein dynamics in vivo.

A revolution we are witnessing is de-novo structural prediction
of folded proteins at atomic resolution and near-experimental
accuracy by deep-learning methods (AlQuraishi, 2021; Varadi
et al., 2023). Notably, AlphaFold2 and RoseTTAFold decipher

FIGURE 1
Schematic representation of the complementary approaches discussed in this review. The ribbon protein structure was generated from the PDB
entry 8DDJ. The native MS spectrumwas obtained in our laboratory as described (Halabelian et al., 2014). The other panels were adapted with permission
from (Ahuja et al., 2019) and (Goodsell, 2012).
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co-evolution of residue pairs from multiple sequence alignments
and compute inter-residue distance probabilities, then guiding
three-dimensional modeling (Baek et al., 2021; Jumper et al.,
2021). Language models, such as ESMFold, learn to speak the
protein language from known structures and predict structures
from single sequences, relieving the requirement for multiple-
sequence alignments and enabling exploration of regions of the
protein universe that are not represented in current databases,
including products of metagenomic sequences (Callaway, 2022;
Lin et al., 2023). The number of parameters used to train the
language model impacts on model resolution and fidelity. By
increasing the ESMFold parameters up to 15 billion, model
accuracy from single sequences compares with those by
RoseTTAFold and AlphaFold2 from multiple sequence
alignments (Lin et al., 2023). These impressive achievements
make predicted structures of primary importance in structural
proteomics, potentially closing the “sequence-structure gap”
(Varadi et al., 2023), boosting in-silico drug screening and drug
design, interactomics, functional investigation, evolutionary studies
and more. Deep-learning methods will also be applicable to the
reverse issue of predicting sequences from structures for protein
design (Dauparas et al., 2022).

However, a still missing ingredient in these predictors is
protein dynamics, since they output single structures rather
than structural distributions and fail to predict folding
pathways and conformational changes (Outeiral et al., 2022;
Lane, 2023). Efforts are being devoted to predict alternative
conformations (Stein and Mchaourab, 2022; Hatos et al., 2023;
Vani et al., 2023). Expectations are legitimate, since protein
dynamics and folding pathways, just like structures, are
encoded by the protein sequence and subjected to selective
pressure (Carvalho et al., 2015; Tang et al., 2022; Zhao et al.,
2023). Increasing experimental characterization of protein
dynamics will also help training more sophisticated deep-
learning algorithms. AlphaFold2 achieves a ~60% structural
coverage of the human proteome, on a per-residue basis, with
good confidence (Tunyasuvunakool et al., 2021). The portion
that still lacks structural models largely overlaps with the
predicted disordered proteome, to the point that the
AlphaFold2 confidence score performs as an excellent disorder
predictor, compared with state-of-the-art tools
(Tunyasuvunakool et al., 2021; Guo et al., 2022; Ma et al.,
2023). The challenge is shifting from predicting disorder to
modeling disordered ensembles. The combination with MD

simulations and NMR is promising and has been undertaken
(Laurents, 2022; Nussinov et al., 2022; Agajanian et al., 2023; Ma
et al., 2023). Deep-learning structural proteomics is a new
important actor in integrative structural biology and mutual
exchange with complementary approaches will be extremely
fruitful (Figure 1).

Future grand challenges

Integrative structural biology began approximately a decade
ago (Ward et al., 2013) and impressive progress is continually
made, interpreting the role of conformational entropy and
structural dynamics in biological activity. The major challenge
is modeling conformational ensembles and their changes during
biological processes, as well as making such investigation
accessible in vivo. Another major challenge is high-throughput
application of biophysical methods to reach the omic scale and
integrated omic sciences. Structural and functional proteomics
will then be mature to support systems biology and precision
medicine.
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