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Immunotherapy has emerged as a powerful approach in treating various diseases,
yet its success often hinges on the efficacy of adjuvants, agents that boost
immune responses to therapeutic targets. Traditional adjuvants have offered
foundational support but may fall short in achieving the specificity and potency
required for advanced therapies. This review highlights a new generation of
adjuvants poised to address these limitations. We explore a range of innovative
agents, including non-inflammatory nucleic acid adjuvants, bacterial derivatives,
and synthetic molecules, which are redefining the role of adjuvants in
immunotherapy. These emerging agents hold promise for enhancing immune
responses while tailoring therapies to specific disease contexts, from cancer to
infectious diseases. By examining the applications and potential of these
adjuvants, this review aims to provide a comprehensive understanding of how
they can advance immunotherapy to new levels of efficacy and precision.
Through the development of these novel adjuvants, immunotherapy stands to
achieve more targeted and sustained impacts, paving the way for improved
outcomes in patient care.
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1 Introduction

Immunotherapy represents a paradigm shift in modern medicine, harnessing the
intricacies of the immune system to combat diseases such as cancer, infectious diseases,
and autoimmune disorders. Distinguished by its precision and potential for durable
responses, immunotherapy has ushered in transformative advancements, including
immune checkpoint inhibitors, CAR-T cell therapies, and therapeutic cancer vaccines
(Dagher et al., 2023; Wallis et al., 2023; Chasov et al., 2024). Despite these milestones, the
efficacy of these strategies frequently relies on the integration of adjuvants, which are agents
that enhance immune responses by potentiating antigen recognition, activation of immune
cells, and the downstream orchestration of adaptive immunity (Facciolà et al., 2022).
Traditional adjuvants, such as alum, MF59, and Freund’s adjuvant, have laid the foundation
for vaccine development and immunostimulation for decades. However, their utility in
advanced immunotherapy is limited by their narrow spectrum of immune activation. For
instance, most traditional adjuvants fail to effectively polarize Th1 or Th17 immune
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responses, which are essential for combating intracellular pathogens
and tumours. Furthermore, their inability to induce robust cross-
presentation of antigens hinders the generation of cytotoxic T
lymphocyte (CTL)-mediated immunity (Wang and Xu, 2020;
Facciolà et al., 2022). These constraints necessitate the
development of novel adjuvants designed to complement the
sophisticated demands of modern immunotherapy.

Several emerging adjuvants have been developed to address
these shortcomings, leveraging advances in molecular
immunology and material science (O’Hagan et al., 2020;
Pulendran et al., 2021). These adjuvants, including ARNAX, CpG
oligodeoxynucleotides (ODNs), STING agonists, beta-glucan
derivatives, and synthetic molecules such as poly(I:C), possess
unique mechanisms of action that modulate immune responses
with greater specificity and efficacy. These emerging agents not only
enhance immune responses but also provide tailored solutions for
specific therapeutic contexts, from tumour immunotherapy to
prophylactic and therapeutic vaccines targeting infectious diseases
(Desai et al., 2024a). The rapid evolution of these adjuvants
underscores their potential to redefine immunotherapeutic
strategies. This review aims to provide a comprehensive analysis
of these novel agents, focusing on their mechanisms of action, the

immunological pathways they engage, and their potential
applications in enhancing the efficacy of immunotherapy.

2 Role and need of adjuvants

Adjuvants play an indispensable role in immunotherapy and
vaccine development, acting as critical enhancers of the immune
system’s ability to mount effective and durable responses. By
amplifying the immune recognition of antigens and directing
immune polarization, adjuvants bridge the gap between innate and
adaptive immunity (Schijns et al., 2020). Their primary function is to
compensate for the weak immunogenicity of modern antigen
formulations, such as recombinant proteins and synthetic peptides,
which often fail to elicit robust immune responses without additional
stimulation (Correa et al., 2022b). Moreover, adjuvants significantly
enhance the efficiency of antigen presentation, facilitating the activation
of APCs like dendritic cells and macrophages, which process antigens
and present them to T cells to initiate adaptive immunity (Awate
et al., 2013).

Adjuvants not only enhance the magnitude of immune
responses but also modulate their quality and duration. By

FIGURE 1
Role of adjuvants in enhancing vaccine immunogenicity. (A) Vaccines without adjuvants induce limited APC maturation, modest cytokine
production, and weaker adaptive immune responses. (B) Vaccines with adjuvants enhance APC recruitment and maturation, boost cytokine production,
and promote stronger T cell activation and antibody responses, leading to broader and more durable immunity with improved dose efficiency. Adapted
with permission from Lavelle and McEntee (2024), Copyright Springer Nature 2024.
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polarizing the immune response, adjuvants can promote
Th1 pathways, favouring cellular immunity for intracellular
pathogens and cancer, or Th2 responses for extracellular
pathogens (Sarkar et al., 2019). In addition, some adjuvants can
stimulate Th17 responses, which are crucial for mucosal immunity.
Furthermore, adjuvants reduce the required antigen dose in vaccines
(a phenomenon known as antigen sparing) and ensure the
generation of immunological memory, which is vital for long-
term protection and therapeutic efficacy (Lavelle and McEntee,
2024). Figure 1 shows a schematic representation illustrating the
mechanism by which adjuvants enhance vaccine immunogenicity.

Despite their utility, traditional adjuvants are constrained by
significant limitations. Alum, one of the most extensively used
adjuvants, predominantly induces humoral immunity with a
Th2 bias, making it suboptimal for applications requiring cellular
immunity, such as cancer immunotherapy. Oil-based adjuvants,
such as Freund’s Complete Adjuvant, though effective, are
associated with severe local and systemic toxicities, rendering
them unsuitable for human use (McKee and Marrack, 2017;
Moni et al., 2023). Modern adjuvants like MF59 and AS03 have
improved the delivery of antigens to APCs, but their ability to induce
specific immune polarization, particularly robust Th1 and CTL
responses, remains inadequate in many therapeutic contexts (Ko
and Kang, 2018; Roman et al., 2024).

The need for novel adjuvants has become increasingly apparent
as immunotherapy advances toward more sophisticated
applications, including personalized medicine, cancer vaccines,
and combination therapies. These emerging immunotherapeutic
strategies demand adjuvants that can precisely modulate immune
pathways, overcome immune evasion mechanisms, and ensure
broad efficacy across diverse patient populations (Verma et al.,
2023). The global health landscape has also highlighted
additional challenges that must be addressed by next-generation
adjuvants. These include the need for thermostable and cost-
effective formulations suitable for use in resource-limited settings
and adjuvants that demonstrate safety and tolerability across
different age groups and immunological profiles (Qi and Fox,
2021). Additionally, the increasing integration of adjuvants into
combination therapies requires compatibility with other
immunotherapeutic agents, such as immune checkpoint
inhibitors and monoclonal antibodies, while minimizing systemic
toxicity and off-target effects (Lykins and Fox, 2023).

As the field of immunotherapy continues to evolve, the demand for
adjuvants that can meet the diverse requirements of these therapies is
only increasing. The development of next-generation adjuvants
represents a critical step toward achieving the full potential of
immunotherapy by enhancing efficacy, improving safety, and
expanding the scope of therapeutic and preventive strategies.

3 Emerging adjuvants in
immunotherapy

The development of novel adjuvants signifies a pivotal
advancement in immunotherapy, introducing innovative
mechanisms to enhance and precisely modulate immune
responses. Traditional adjuvants have well-established safety
profiles but are limited in their ability to induce cellular

immunity, primarily favouring humoral responses with a
Th2 bias. They also lack the precision required for advanced
therapeutic applications. In contrast, emerging adjuvants like
ARNAX, CpG ODNs, and STING agonists offer targeted
immune activation by engaging specific pathways such as TLR3,
TLR9, and the STING pathway. These adjuvants enhance antigen
presentation, promote robust Th1 and Th17 responses, and support
long-term immunological memory, making them more effective for
applications like cancer immunotherapy and vaccines targeting
intracellular pathogens. However, their heightened
immunostimulatory capacity may lead to risks such as systemic
inflammation or cytokine storms, necessitating careful formulation
and delivery strategies. This distinction underscores the potential of
emerging adjuvants to overcome the limitations of traditional ones
while highlighting the need for continued optimization to balance
efficacy and safety. Table 1 provides a detailed summary of the
mechanisms, target pathways, advantages, and limitations of each of
the eight emerging adjuvants discussed in this manuscript, offering a
comparative overview of their unique attributes.

3.1 ARNAX

ARNAX is a synthetic double-stranded RNA (dsRNA) adjuvant
engineered for non-inflammatory immune enhancement. It features a
dsRNA core capped with DNA, which enhances its stability and
resistance to nuclease degradation (Seya et al., 2022). ARNAX
specifically targets TLR3, a receptor predominantly found on certain
dendritic cell subsets, including CD141+ dendritic cells in humans. Upon
binding TLR3, ARNAX triggers immune signalling through TICAM-1
(also known as TRIF), bypassing the MyD88 pathway commonly
associated with inflammation (Matsumoto et al., 2015; Seya et al.,
2019). This distinct activation pathway recruits TICAM-1, which in
turn activates transcription factors like NF-κB, IRF-3, and AP-1. This
cascade enhances antigen presentation without the cytokine storm often
triggered by other TLR ligands. By favouring TICAM-1 signalling,
ARNAX promotes antigen presentation and Th1 polarization,
enhancing cellular immunity while minimizing inflammatory
responses (Seya et al., 2023). It facilitates cross-presentation, where
dendritic cells present extracellular antigens on MHC class I
molecules, activating CTLs. This capability is crucial for strong
immune responses against intracellular pathogens and cancer cells,
both of which require potent CTL activation (Jelinek et al., 2011).
ARNAX’s ability to support Th1-biased responses further aids CTL
and natural killer (NK) cell activation, strengthening the immune
system’s response against infected or malignant cells. This profile
makes ARNAX especially suited for cancer immunotherapy and
vaccines targeting intracellular pathogens, where cellular immunity is
critical (Matsumoto et al., 2020; Miyazaki et al., 2025).

3.2 CpG oligodeoxynucleotides

CpG ODN are synthetic DNA sequences with unmethylated
CpG motifs that mimic microbial DNA, acting as pathogen-
associated molecular patterns (PAMPs) to stimulate Toll-like
receptor 9 (TLR9) in plasmacytoid dendritic cells (pDCs) and
B cells (Kayraklioglu et al., 2021). Upon endosomal
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TLR9 recognition, they initiate a MyD88-dependent signalling
cascade, activating transcription factors like NF-κB, IRF-7, and
AP-1. This produces Th1 cytokines such as IL-12, TNF-α, and
IFN-α, driving antiviral and antitumor immunity (Yu et al., 2017).
CpG ODN enhance innate immunity through pro-inflammatory
cytokine and type I interferon production, recruiting monocytes,
NK cells, and neutrophils. They strengthen adaptive immunity by
promoting antigen presentation, T-cell activation, and antibody
production, fostering Th1 responses against intracellular
pathogens and tumours (Tu et al., 2020). Additionally, they
enhance dendritic cell maturation, B-cell proliferation, and
humoral immunity (Matsuda and Mochizuki, 2023). CpG ODNs
are classified into K-, D-, C-, and P-types, each with unique
properties. K-types promote TNF-α and B-cell activation, while
D-types strongly induce IFN-α via pDCs. C-types combine IFN-α
and IL-6 induction, and P-types form ordered structures, eliciting
robust IFN-α responses (Shirota and Klinman, 2017;
Hartmann, 2023).

CpG ODN have diverse clinical applications. As vaccine
adjuvants, they boost antibody titters, cellular, and mucosal

immunity, exemplified by HEPLISAV-B®, a CpG-adjuvanted
hepatitis B vaccine offering faster, stronger protection (Lee and
Lim, 2021). They enhance responses to influenza and anthrax and
improve mucosal immunity via oral or intranasal delivery (Givens
et al., 2018; Muranishi et al., 2023; Wang et al., 2024c). In cancer
immunotherapy, they activate tumour-infiltrating dendritic cells
and reduce myeloid-derived suppressor cells, reprogramming the
tumour microenvironment (Zhang et al., 2021). CpG ODN also
shows promise in treating allergies and autoimmune diseases by
shifting immune profiles from Th2 to Th1, benefiting asthma and
similar conditions (Montamat et al., 2021).

3.3 Enterotoxin adjuvants

Enterotoxin adjuvants, derived from bacterial toxins like cholera
toxin (CT) from Vibrio cholerae and heat-labile toxin (LT) from
Escherichia coli, enhance mucosal immunity for oral, nasal, and
intradermal vaccines. These adjuvants amplify systemic and
mucosal immune responses, crucial for defending against

TABLE 1 Summary of emerging vaccine adjuvants for immunotherapy.

Adjuvant Mechanism of action Target
pathways

Advantages Limitations Ref.

ARNAX Activates TLR3 via TICAM-1
(TRIF) pathway, enhancing antigen
presentation and Th1 polarization

without inflammation

TLR3 Non-inflammatory immune
enhancement, promotes CTL and NK
cell activation, cross-presentation for
intracellular pathogens and cancer

Requires specialized stability
for clinical use; limited data on

large-scale production

Miyazaki et al.
(2025)

CpG
Oligodeoxy-
nucleotides

Mimics microbial DNA to stimulate
TLR9 in pDCs and B cells, inducing
Th1 cytokines and promoting innate

and adaptive immunity

TLR9 Induces robust Th1 responses,
enhances antibody production,

effective in antiviral, antitumor, and
mucosal immunity

Potential for systemic
inflammation; delivery
challenges for specific
therapeutic applications

Kayraklioglu
et al. (2021)

Enterotoxin
Adjuvants

Stimulates mucosal immunity via
AB5 toxin structure; enhances APC

uptake and activation of Th1/
Th17 responses

cAMP/PKA/ERK
signaling pathways

Effective mucosal immunity, supports
germinal center reactions, improves
antibody avidity, reduced-toxicity

variants available

Native toxins are highly toxic;
modified versions require

further validation

Crothers and
Norton (2023)

β-Glucans Activates immune cells through
PRRs like Dectin-1 and CR3,
inducing cytokine release and

“trained immunity.”

NF-κB, MAPK
signaling pathways

Enhances phagocytosis, promotes
Th1/Th17 responses, supports innate
and adaptive immunity, potential as

dietary supplements and oral
adjuvants

Structural variability affects
activity; scalability and

consistency in production need
improvement

Jin et al. (2018)

DDA with
Saponin

Combines lipid-based and natural
surfactants to enhance antigen

delivery to APCs, balancing Th1/
Th2 responses

MHC Class II, IL-
12, IL-4, IL-17

pathways

Balanced Th1/Th2 immunity,
supports both humoral and cellular
responses, effective in cancer vaccines

and mucosal immunization

Potential membrane toxicity;
requires optimized

formulations for diverse
vaccine applications

Marciani
(2018)

Poly(I:C) Mimics dsRNA to activate TLR3 and
MDA-5, inducing IFN-α/β and

promoting CTL and NK cell activity

TLR3, MDA-5 Potent antiviral and antitumor
immunity, induces Th1 responses,
enhances dendritic cell maturation,
versatile for peptide- and protein-

based vaccines

Risk of systemic inflammation;
instability in physiological

conditions

Martins et al.
(2015)

STING Agonists Activates the STING pathway,
producing type I interferons and

modulating the tumour
microenvironment

cGAS-STING
pathway

Boosts antigen presentation, promotes
cytotoxic T-cell activity, synergizes

with checkpoint inhibitors, effective in
cancer immunotherapy and systemic

antitumor responses

Delivery challenges,
particularly for systemic
application; potential for
overstimulation and

inflammation

Gajewski and
Higgs (2020)

Microtubule-
Targeting Agents

Disrupts tubulin polymerization,
inducing immune activation via
MAPK and NF-κB signaling, and

dendritic cell maturation

MAPK and NF-κB
pathways

Dual antitumor and
immunomodulatory effects, promotes
Th1-biased responses, synergizes with
checkpoint inhibitors and cancer

vaccines

Cytotoxicity concerns at higher
doses; limited clinical validation

for immunotherapy
applications

Sato-Kaneko
et al. (2018)
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infections in mucosal surfaces like the gastrointestinal and
respiratory tracts (Crothers and Norton, 2023). Structurally, these
adjuvants have an AB5 configuration: the A-subunit activates
intracellular signalling, while the B-subunit binds ganglioside
receptors like GM1, enabling antigen-presenting cell (APC)
uptake (Valli et al., 2020). Within APCs, they stimulate cAMP
pathways, promoting T-helper cell (Th1 and Th17) activation and
antigen presentation. They also enhance germinal centre reactions,
boosting high-affinity antibody production (Ma et al., 2024).
Delivery route influences efficacy, with oral routes targeting
gastrointestinal pathogens and nasal routes excelling for
respiratory pathogens (Liang and Hajishengallis, 2010).

CT potently stimulates mucosal immunity, especially IgA, but its
toxicity limits clinical use. Modified CT variants reduce toxicity
while retaining efficacy. LT, structurally like CT, includes derivatives
like double-mutant LT (dmLT), featuring mutations (R192G/
L211A) that reduce toxicity while enhancing mucosal and
systemic immunity (Toprani et al., 2017). dmLT supports vaccine
development against E. coli, polio, and influenza. Innovative
derivatives like LTA1 and CTA1 mitigate toxicity further (Stone
et al., 2023). LTA1 enhances antigen uptake in nasal vaccines, while
CTA1, conjugated to targeting motifs (e.g., CTA1-DD), promotes
B-cell activation and antibody production (Lavelle andWard, 2022).
Detoxified variants like LTh(αK), which completely inhibit
enzymatic activity, show promise in nasal influenza vaccines (Pan
et al., 2019). Enterotoxin adjuvants are valuable for vaccines
targeting mucosal pathogens (E. coli, Helicobacter pylori, V.
cholerae), systemic infections, and emerging applications like
HIV, influenza, and substance abuse prevention (Salvador-Erro
et al., 2024; Yin et al., 2024).

3.4 β-glucans

β-Glucans are naturally occurring polysaccharides found in the
cell walls of fungi, yeasts, bacteria, algae, and cereals like oats and
barley. They are glucose polymers linked by β-(1→3) and β-(1→6)
glycosidic bonds, with structural variations depending on their
source (Liang et al., 2024). These variations significantly
influence their biological functions, particularly their
immunomodulatory properties, making them effective biological
response modifiers (BRMs) and promising vaccine adjuvants
(Abbasi et al., 2022). As adjuvants, β-glucans activate immune
responses through interaction with pattern recognition receptors
(PRRs) such as Dectin-1, complement receptor 3 (CR3), and
scavenger receptors on immune cells, including dendritic cells,
macrophages, and neutrophils. Binding to these receptors triggers
key signalling pathways, such as NF-κB and MAPK, leading to
immune activation, cytokine release, and enhanced phagocytosis
(Jin et al., 2018). They also induce “trained immunity” by
epigenetically reprogramming innate immune cells, enabling a
stronger and more rapid response to infections and vaccinations.
Moreover, β-glucans promote dendritic cell maturation,
upregulating co-stimulatory molecules and MHC class II
expression to improve T cell activation (Guo et al., 2024; Wang
et al., 2024b). They activate the complement system, enhancing
pathogen clearance and supporting immune cell phagocytosis. By
fostering Th1 and Th17 immune responses through cytokines like

IL-12 and IL-6, β-glucans are crucial for combating intracellular
pathogens and tumours (Cognigni et al., 2021; Córdova-Martínez
et al., 2021).

The source and structural diversity of β-glucans define their
specific activities. Fungal β-glucans, such as those from Lentinula
edodes and Ganoderma lucidum, feature β-(1→3) backbones with
β-(1→6) branches, excelling as immunomodulators in cancer and
infectious disease therapies (Steimbach et al., 2021). Yeast β-glucans
(e.g., Saccharomyces cerevisiae) are highly branched, activating
Dectin-1 and CR3 to boost macrophage and neutrophil activity,
with FDA-approved uses as dietary supplements and adjuvants
(Azevedo-Silva et al., 2024). Cereal β-glucans (oats, barley),
composed of β-(1→3) and β-(1→4) linkages, are effective in
metabolic regulation and show potential as oral vaccine
adjuvants. Algal β-glucans, primarily β-(1→3)-linked, have
emerging roles in marine immunity and food science (Barsanti
and Gualtieri, 2023).

3.5 Dimethyldioctadecylammonium
bromide with saponin

The combination of Dimethyldioctadecylammonium bromide
(DDA) and saponin enhances humoral and cellular immune
responses in advanced vaccine formulations. DDA, a synthetic
cationic lipid often delivered as liposomes, and saponin, a natural
surfactant from Quillaja saponaria, possess complementary
properties for mucosal and systemic vaccine delivery. Together,
they underpin cationic adjuvant formulations (CAF) and
immunostimulating complexes (ISCOMs), critical in next-
generation vaccine development (Correa et al., 2022a). DDA
binds negatively charged antigens via charge-based interactions,
improving antigen stability and delivery to APCs. Its particle size
(~40–200 nm) promotes lymphatic uptake, while stimulating Th1-
biased cytokines like interferon-gamma (IFN-γ) and interleukin-12
(IL-12), essential for intracellular pathogen defence and tumour
immunity (Qu et al., 2018).

Saponin enhances immunogenicity by disrupting membranes,
facilitating antigen entry into APCs and inflammasome activation. It
boosts Th2 and Th17 cytokines like IL-4 and IL-17, vital for
extracellular pathogen and mucosal immunity. By promoting
antigen presentation via MHC class II, it strengthens T-helper
and B-cell activation, increasing antibody titters and avidity (den
Brok et al., 2016; Marciani, 2018). The DDA-saponin combination
delivers a balanced Th1/Th2 response, enhancing IgG titters,
antigen recognition, and long-term memory. It supports diverse
applications, including meningococcal vaccines, where it raises
bactericidal antibody levels against Neisseria meningitidis. In
cancer immunotherapy, DDA’s Th1 polarization drives cytotoxic
T-cell responses, making this adjuvant pair a promising strategy for
therapeutic cancer vaccines (Yu et al., 2010; Vishwakarma
et al., 2024).

3.6 Polyinosinic-polycytidylic acid

Poly(I:C), a synthetic double-stranded RNA analogue, mimics
viral replication intermediates and acts as a potent
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immunostimulant. It enhances both innate and adaptive immunity,
making it a promising adjuvant for cancer immunotherapy and
vaccine development. Poly(I:C) activates pattern recognition
receptors like Toll-like receptor 3 (TLR3) and melanoma
differentiation-associated protein 5 (MDA-5) (Martins et al., 2015).

In dendritic cells and macrophages, Poly(I:C) binds TLR3 in
endosomes, triggering the TRIF pathway. This induces type I
interferons (IFN-α/β) and pro-inflammatory cytokines like TNF-
α. In the cytoplasm, it engages MDA-5 and RIG-I, activating
transcription factors such as IRF3 and NF-κB. These pathways
promote dendritic cell maturation, enhancing MHC expression,
co-stimulatory markers, and T-cell activation (Kester and Bortz,
2018). Poly(I:C) indirectly boosts NK cell cytotoxicity via IL-12 and
IFN-γ, fostering a Th1-biased response critical for CTL activation
and tumour elimination (Ball et al., 2024). Additionally, Poly(I:C)
directly induces tumour cell apoptosis by activating TLR3, triggering
caspase-dependent mechanisms and reducing anti-apoptotic
molecules like survivin. This apoptosis releases tumour antigens,
enhancing APC uptake and cross-presentation, leading to robust
CD8+ T-cell priming (Zhu et al., 2015; Ko et al., 2023).

Poly(I:C) is versatile, functioning in peptide-, protein-, and cell-
based vaccines. It synergizes with adjuvants like CpG ODNs and
anti-CD40 antibodies, enhancing immune responses (Gupta et al.,
2016). In cancer immunotherapy, it amplifies antigen-specific CTL
and NK cell responses, showing potential in combination with
tumour-associated antigens and immune checkpoint inhibitors
(Aznar et al., 2019; Akache et al., 2021). For infectious diseases,
it bolsters vaccine immunogenicity against viral and intracellular
pathogens, making it valuable in both prophylactic and therapeutic
vaccine strategies (Bardel et al., 2016; Bruun et al., 2024; Yao
et al., 2024).

3.7 STING agonists

STING (Stimulator of Interferon Genes) agonists are agents that
activate the STING pathway, a key element of the innate immune
system. This pathway responds to cytosolic DNA by producing cyclic
dinucleotides (CDNs), which stimulate robust production of type I
interferons and pro-inflammatory cytokines (Gajewski andHiggs, 2020).
STING agonists, either small molecules or biologically derived, are
integral to enhancing cancer immunotherapy and vaccine efficacy (Le
Naour et al., 2020). Located in the endoplasmic reticulum, STING is
activated when CDNs like cGAMP bind to it. These CDNs are either
endogenously synthesized by cGAS (cyclic GMP-AMP synthase) or
delivered exogenously through STING agonists. Activation prompts
STING to translocate to the Golgi, where it initiates IRF3 and NF-κB
signalling pathways. This induces the expression of type I interferons
(e.g., IFN-β) and inflammatory cytokines (e.g., TNF-α, IL-6), amplifying
immune responses (Ohkuri et al., 2018; Van Herck et al., 2021).

STINGagonists enhance antigen presentation bymaturingAPCs like
dendritic cells, boosting their ability to activate T cells. This primes
adaptive immune responses, especially against tumour-associated
antigens (TAAs). They also modulate the tumour microenvironment,
shifting it from immunosuppressive to immunostimulatory, promoting
cytotoxic T-cell infiltration and activity (Xuan and Hu, 2023). These
effects are critical for overcoming tumour-induced immune evasion. Two
primary types of STING agonists exist. Cyclic dinucleotides (CDNs)

include natural molecules like cGAMP and synthetic versions such as
2′3′-cGAMP, which are optimized for stability and bioavailability
(Dubensky et al., 2013). Non-nucleotide agonists, small molecules that
activate STING without mimicking CDNs, offer advantages in synthesis,
stability, and delivery (Wang et al., 2021). Applications include cancer
immunotherapy, where STING agonists synergize with immune
checkpoint inhibitors (e.g., anti-PD-1, anti-CTLA-4) to enhance T-cell
activation and counter tumour immunosuppression (Nicolai et al., 2020;
Da et al., 2022). Intratumoral delivery can trigger systemic antitumor
responses, including the abscopal effect. In vaccines, STING agonists
enhance immune responses by promoting dendritic cell maturation and
activation of B and T cells (Wang et al., 2024a). Combination therapies,
integrating STING agonists with adjuvants like CpGODNs or treatments
such as chemotherapy and radiation, further amplify their
immunostimulatory effects (Vasiyani et al., 2023; Eiro et al., 2024;
Khalifa et al., 2024).

3.8 Microtubule-targeting agents

Microtubule-targeting agents (MTAs) are compounds that disrupt
microtubule dynamics, essential for intracellular transport, mitosis, and
cellular signalling. Traditionally utilized in chemotherapy for their ability
to inhibit tumour cell division, recent research highlights their
immunomodulatory potential, making them promising adjuvants for
cancer immunotherapy and vaccines (Wordeman and Vicente, 2021).
MTAs, including 4H-chromene-3-carbonitrile derivatives, inhibit
tubulin polymerization, disrupting mitosis and intracellular
trafficking. This disruption induces mitochondrial depolarization,
activating pathways such as the mitogen-activated protein kinase
(MAPK) cascade, which drives immune activation (Steinmetz and
Prota, 2018). Furthermore, MTAs prolong NF-κB pathway activation,
enhancing APC function and pro-inflammatory cytokine production.
These effects amplify immune responses, with MAPK signalling
fostering cytokine and chemokine production to recruit and activate
immune cells. MTAs also promote dendritic cell maturation and
cytokine secretion (e.g., IL-12, IL-6, TNF-α), which are crucial for
effective antigen presentation and T-cell priming (Serpico et al., 2020).

MTAs’ dual antitumor and immune activation properties make
them valuable in cancer immunotherapy, combining cytotoxicity with
stimulation of innate and adaptive immunity. By sustaining NF-κB
signalling, MTAs ensure prolonged immune activation and synergize
with immune checkpoint inhibitors, such as anti-PD-1 antibodies, to
enhance antitumor responses. This combination induces systemic
effects, including the abscopal effect, where tumours at untreated sites
regress. Additionally, MTAs selectively modulate cytokine production
(e.g., IL-12, IL-6, IL-1β), driving Th1-biased responses critical for
antitumor immunity and intracellular pathogen defence (Sato-
Kaneko et al., 2018). Clinically, MTAs are used with immune
checkpoint inhibitors to boost antitumor immunity, as seen with
intratumoral 4H-chromene-3-carbonitrile derivatives in murine
cancer models, which slow tumour growth and activate systemic
immunity (Wang et al., 2023). MTAs also enhance cancer vaccines by
improving antigen presentation and T-cell activation, making them
strong candidates for next-generation vaccines. In combination
therapies, MTAs are paired with chemotherapeutics or other
adjuvants to enhance treatment efficacy while leveraging their
immunostimulatory effects (Liang et al., 2022).
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4 Challenges and future directions

Emerging adjuvants discussed herein offer immense potential to
transform immunotherapy and vaccine development, but their
advancement is constrained by several challenges that require
careful consideration. Among the foremost concerns is the issue
of safety and tolerability. Many next-generation adjuvants, such as
STING agonists and poly(I:C), are designed to induce potent
immune responses, yet their high immunostimulatory capacity
can lead to unintended side effects (De Waele et al., 2021; Sun
et al., 2023). Excessive activation of the immune system can result in
systemic inflammation, cytokine storms, or localized reactogenicity,
including significant pain, swelling, or erythema at the injection site
(Karki and Kanneganti, 2021). These adverse effects limit their
clinical applicability and necessitate the development of strategies
to balance efficacy with safety. Future efforts must focus on refining
the formulations of adjuvants to modulate their activity and
targeting. Delivery platforms such as nanoparticles, liposomes, or
hydrogels are promising approaches to localize the action of
adjuvants, reduce systemic exposure, and minimize off-target
effects while maintaining their immunostimulatory potential
(Desai et al., 2023).

Another major hurdle is the instability and scalability of many
emerging adjuvants. Complex molecules like ARNAX or synthetic
cyclic dinucleotides used in STING agonists often exhibit poor
stability in physiological conditions, with short half-lives that
limit their therapeutic efficacy (Boehm et al., 2021; Wu et al.,
2023). Furthermore, the intricate manufacturing processes
required to produce these agents contribute to high production
costs and hinder their scalability for widespread clinical use (Kis
et al., 2019). Stabilization techniques, such as encapsulating
adjuvants in biodegradable polymers or using modified molecular
analogues, are critical for addressing these issues (Yenkoidiok-Douti
and Jewell, 2020; Freire Haddad et al., 2023). Simplifying production
workflows and developing cost-effective methodologies will also be

necessary to ensure the large-scale deployment of these advanced
adjuvants, particularly in resource-limited settings where
affordability and accessibility are paramount.

Population-specific variability in immune responses presents an
additional challenge in the clinical implementation of emerging
adjuvants. Differences in genetic backgrounds, age, sex, and
environmental factors significantly influence how individuals
respond to adjuvants (Sanz et al., 2018). For instance,
polymorphisms in genes encoding receptors such as Toll-like
receptors (TLRs) or the STING protein can alter the efficacy and
safety profiles of these agents. This variability complicates the design of
adjuvants capable of eliciting consistent immune responses across
diverse populations (Medvedev, 2013). Addressing this challenge
requires a personalized approach to adjuvant development,
incorporating insights from genomics, proteomics, and
immunoprofiling (Bravi, 2024; Kumar et al., 2024). Future research
should aim to identify biomarkers that predict individual
responsiveness to specific adjuvants, enabling the design of tailored
formulations optimized for distinct patient groups or populations.

The integration of adjuvants into combination therapies,
particularly in cancer immunotherapy, introduces additional
complexities. While combining adjuvants with immune
checkpoint inhibitors or monoclonal antibodies holds promise
for synergistic effects, it also increases the risk of adverse
interactions and unpredictable immune dynamics (Seliger, 2019).
These interactions can result in overactivation of the immune
system or heightened toxicity. To address this, preclinical studies
and clinical trials must rigorously evaluate the compatibility of
adjuvants with other therapeutic agents. Developing standardized
protocols for co-administration and optimizing the timing and
dosing of combined treatments will be essential to harness their
full therapeutic potential while minimizing risks (Desai et al.,
2024b). Regulatory and ethical challenges further complicate the
translation of novel adjuvants from research to clinical application.
The stringent safety requirements imposed by regulatory agencies,
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while necessary, often result in lengthy and costly approval processes
(Sun et al., 2012). Additionally, ethical concerns surrounding the
testing of potent adjuvants in vulnerable populations, such as
children, the elderly, or immunocompromised individuals, add
layers of complexity (Rajani et al., 2022; Salave et al., 2023).
Collaborative efforts between regulatory bodies, researchers, and
industry stakeholders will be essential to streamline these pathways
while maintaining rigorous safety and efficacy standards. The
development of advanced preclinical models, including organ-on-
chip systems and computational simulations, can provide more
accurate predictions of clinical outcomes, reducing the risks
associated with early-stage testing (Sunita et al., 2020; Rajpoot
et al., 2022; Cook et al., 2025).

Despite these challenges, the future of adjuvant technology is
promising. Continued investment in fundamental research to
elucidate the molecular mechanisms underlying adjuvant activity will
be critical for designing safer and more effective agents. Technologies
such as single-cell sequencing, proteomics, and artificial intelligence can
accelerate the discovery and optimization of novel adjuvants by
providing deeper insights into immune modulation at the cellular
and molecular levels (Noé et al., 2020; Shenoy et al., 2021; Kim
et al., 2023; Li et al., 2023). Additionally, expanding the scope of
adjuvant applications beyond traditional immunotherapy to areas
such as neuroinflammation, autoimmune diseases, and metabolic
disorders could unlock new therapeutic opportunities.

Global accessibility remains an overarching challenge that must
be addressed to ensure the equitable distribution of next-generation
adjuvants. The high costs and technical complexities associated with
their production and distribution disproportionately affect low- and
middle-income countries, where the need for affordable vaccines
and immunotherapies is greatest (Mahoney et al., 2023). Addressing
this requires the development of cost-effective formulations, scalable
production techniques, and international collaborations to ensure
these advances benefit all populations, regardless of geographic or
economic constraints (Kozak and Hu, 2023; Yemeke et al., 2023).

5 Discussion

The integration of adjuvants into immunotherapy and vaccine
development has long been recognized as a critical factor in overcoming
the inherent limitations of antigens in eliciting robust immune
responses. This review has highlighted the transformative potential
of emerging adjuvants, including ARNAX, CpG ODNs, STING
agonists, synthetic double-stranded RNA like poly(I:C), beta-glucan
derivatives, and microtubule-targeting agents. Unlike traditional
adjuvants, which are often limited by poor specificity, safety
concerns, and suboptimal immune polarization, these next-
generation agents leverage precise molecular mechanisms to enhance
immune activation. By targeting specific pathways such as TLR3, TLR9,
and the STING pathway, these adjuvants have demonstrated their
ability to amplify antigen presentation, promote Th1 and
Th17 responses, and induce long-lasting immunological memory.
Their ability to complement and synergize with other
immunotherapeutic agents, such as immune checkpoint inhibitors,
further underscores their importance in modern medical strategies.

The adjuvants discussed in this review represent a significant leap
forward, but their full potential remains untapped. Advances in

molecular and cellular biology, nanotechnology, and computational
modelling offer exciting opportunities to refine these agents further. For
example, personalized adjuvant designs tailored to individual genetic or
immunological profiles could revolutionize the way we approach
precision medicine. Furthermore, the development of adjuvants that
are compatible with non-traditional delivery platforms, such as
intranasal, oral, or transdermal routes, could open new doors for
vaccine and immunotherapy applications. Adjuvants designed for
targeted delivery using nanoparticles or ligand-conjugated systems
can enhance specificity while reducing systemic toxicity. Beyond
their established roles in cancer and infectious disease vaccines,
future applications may include conditions such as
neuroinflammation, autoimmune diseases, and even metabolic
disorders, where modulation of immune activity is increasingly
recognized as a therapeutic strategy. The role of artificial intelligence
and machine learning in accelerating adjuvant discovery and
optimization is another frontier that holds great promise.

Next-generation adjuvants signify a pivotal advancement in the
evolution of immunotherapy and vaccine development. Their capacity
to precisely modulate immune responses, enhance therapeutic efficacy,
and overcome the limitations of traditional approaches positions them
as indispensable tools in modern medicine. Despite the challenges of
safety, scalability, and regulatory approval, the continuous refinement of
these agents through interdisciplinary efforts is expected to address
these hurdles. The future of immunotherapy lies in the seamless
integration of these adjuvants into therapeutic strategies, creating
more effective, accessible, and patient-centric solutions.
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