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Preclinical high-field magnetic resonance imaging (MRI) systems offer a diverse
array of MRI techniques, providing rich multiparametric MRI (mpMRI) platforms
for studying numerous biological parameters. mpMRI platforms prove particularly
indispensable when investigating tumors that exhibit profound intratumoral
heterogeneity, such as breast cancer. A thoughtful comprehension of the
origins of intratumoral heterogeneity is imperative for the judicious
assessment of new targeted therapies and treatment interventions.
Furthermore, when data from mpMRI are complemented with data from other
in vivo imaging modalities, such as positron emission tomography (PET), and
correlated with data from ex vivo modalities, such as matrix-assisted laser
desorption imaging mass spectrometry (MALDI IMS), the in vivo parameters
can be further elucidated at a molecular level and microscopic scale.
Nevertheless, extracting meaningful scientific insights from such complex
datasets necessitates the utilization of machine learning (ML) approaches to
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discern region-specific radiomic features. The development of correlative,
multimodal imaging (CMI) workflows, such as one incorporating MRI, PET and
MALDI IMS, is inherently challenging, given the many technological and
methodological challenges related to multimodal data acquisition as well as the
physiological limitations of the laboratorymice of the investigation. Standardization
efforts in image acquisition and processing are required to increase the
reproducibility and translatability of CMI data. To address the challenges of
developing standardized CMI workflows and stimulate dialog regarding this area
of need, we present a practical workflow to investigate tumor heterogeneity in
breast cancer xenografts across various spatial scales. Our workflow entails
simultaneous functional MRI and PET acquisitions in living mice, followed by
correlation with post-imaging MALDI IMS and histologic data. Additionally, we
propose data preprocessing steps for potential ML applications. We illustrate the
feasibility of this workflow through two examples, showcasing its effectiveness in
comparing in vivo and ex vivo images to evaluate tumor metabolism and hypoxia in
mice with breast cancer xenografts.

KEYWORDS

PET/MRI, proteomics, molecular imaging, MALDI IMS, correlative multimodal imaging,
machine learning

1 Introduction

Breast cancer (BC) is the second most prevalent cancer in the
world and is a leading cause of mortality in the female population. It
is characterized by vast inter- and intratumoral heterogeneity which
impedes the assignment of an exact histologic type to a given tumor
or to differentiate the many genetic and molecular subpopulations
within it. Moreover, hypoxia promotes the development of
aggressive and treatment-resistant subpopulations of tumor cells
within the tumor itself and in the surrounding tumoral
microenvironment. Consequently, selecting the optimal treatment
for the personalized treatment of BC remains challenging (Schmitz
et al., 2016). In vivo imaging techniques such as positron emission
tomography (PET), computed tomography (CT), and magnetic
resonance imaging (MRI) can provide non-invasive whole-tumor
information. However, none of these alone provides sufficient
information on tumor heterogeneity. Therefore, hybrid imaging
applications (e.g., combining PET and MRI) for imaging BC are
constantly evolving (Romeo et al., 2023). In preclinical research,
hybrid imaging can be even further expanded in the form of
correlative multimodal imaging (CMI), taking advantage of easy
access to whole-tumor and tissue samples and the ex vivo assessment
of such samples by histological (e.g., multiplexed
immunofluorescence) and molecular/spectrometric (e.g., matrix-
assisted laser desorption/ionization imaging mass
spectrometry—MALDI IMS) techniques. Since CMI allows the
cross-validation of in vivo imaging techniques with histology at
different spatial scales, it also allows the establishment of
relationships between imaging biomarkers and underlying
biological changes (Svirkova et al., 2018; Walter et al., 2020;
Walter et al., 2021; Tuck et al., 2022).

Regarding in vivo imaging techniques, a number of MRI
techniques are currently available on both preclinical and clinical
high-field MRI systems. Such techniques provide physiological
information that is especially useful for assessing tumor
hallmarks within the tumor and the tumoral microenvironment.

For example, chemical exchange saturation transfer (CEST) MRI
allows indirect in vivo quantification of metabolites with
exchangeable protons (e.g., protons present in hydroxyl groups).
When applying several saturation pulses around the proton
resonance frequency, the exchange rate between the exchangeable
protons of an administered metabolite and tissue water can be
measured (van Zijl and Yadav, 2011; Zaiss and Bachert, 2013).
One such endogenous metabolite is the glucose derivative 2-deoxy-
D-glucose, which enables the quantification of aerobic glycolysis
within the tumor and within the tumoral microenvironment (Zaiss
et al., 2019; Capozza et al., 2022). Blood oxygenation level-
dependent (BOLD) MRI provides data on tissue oxygenation and
tumor hypoxia. The BOLD signal originates from the fraction of
deoxygenated hemoglobin in red blood cells, which creates local
variations in magnetic susceptibility that increase the relaxation rate
(R2* = 1/T2*). Conversely, oxygenated hemoglobin leads to an
increase in the T2*-weighted signal. The ratio of oxygenated and
deoxygenated hemoglobin creates a diagnostic contrast which can be
exploited in BOLD-MRI examinations (Greve, 2011). Diffusion-
weighted imaging (DWI) measures the random movement of water
molecules (Brownian diffusion). If this movement is hindered by the
presence of cellular membranes, the directional changes are reflected
by a lower diffusion coefficient (D). D serves as a marker of
extravascular microstructural diffusion within the tumor and
within the tumoral microenvironment (Guadilla et al., 2018).
Moreover, by using a specialized DWI approach called
“intravoxel incoherent motion (IVIM) MRI”, the intravascular
blood microcirculation of tissues can be visualized, allowing
blood flow in capillaries to be monitored without the need for
external contrast agents (Le Bihan, 2019). IVIM-MRI involves
multiple MRI acquisitions at low diffusion weightings (b-values;
b < 200 s/mm2) and with a segmented biexponential fit to quantify
the diffusion signal. The resulting derived IVIM fraction (fIVIM) and
perfusion coefficient (D*) display the fraction of microperfusion
within a given (tumor) tissue as well as the amount of diffusion
within tumor microvessels and therefore provide information on
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tumor angiogenesis (Iima, 2021; Bartsch et al., 2024). Finally,
dynamic contrast-enhanced (DCE)-MRI assesses tissue
vascularity via the administration of gadolinium-based, T1-
shortening contrast agents. A series of fast T1-weighted image
acquisitions are used to measure the uptake kinetics of the
contrast agent. The volume fraction of plasma in the tissue (vp),
the extravascular, extracellular volume fraction (ve), and the transfer
constant (ktrans) of the contrast agent are derived from DCE-MRI
using a compartmental modeling approach (Sourbron and Buckley,
2013; Barnes et al., 2015). The combined analysis of these three
parameter maps is currently considered the gold standard for the
assessment of tumor vascularization.

Combining in vivo MRI techniques with additional
complementary in vivo techniques, such as PET, is appealing for
obtaining holistic information about a tumor (Marino et al., 2018).
Moreover, in preclinical research, CMI can be achieved by
performing spatial mapping of imaging parameters from
simultaneous PET and MRI acquisitions with pathological
features obtained from ex vivo techniques like MALDI IMS. This
provides spatial visualization of differentially expressed proteins,
allowing the characterization of tissue composition and pixel-wise
co-registration and correlation of proteomic and radiomic
information. The proteomic ex vivo protocol includes washing
steps, in situ trypsin digestion, matrix application, and mass
spectrometry signal acquisition. During MALDI IMS acquisition,
singly charged ions are accelerated in an electric field and transferred
to a time-of-flight (TOF) mass analyzer. Ions of the same charge
acquire the same kinetic energy, such that lighter ions reach the
detector faster than heavier ones (Glish and Vachet, 2003). MALDI
IMS datasets hold vast histoproteomic data, necessitating
computational techniques for data condensation, image
formation, and statistical scrutiny.

Machine learning (ML) is invaluable for bridging in vivo and ex
vivo techniques due to its ability to unveil patterns beyond human
perception (Erickson et al., 2017). For the assessment of medical
images, machine learning can be combined with radiomics, a

method that involves calculating diverse image features within a
region of interest (ROI) to predict cancer subtypes or treatment
response after rigorous feature selection (Conti et al., 2021).
Although deep learning, a subset of ML, obviates the need for
predefined regions or feature selection, data preparation is
crucial. This entails aligning, co-registering, and sampling images
to uniform pixel dimensions, as well as segmenting regions of
interest for radiomics. Tools like advanced normalization tools
(ANTs) (Avants et al., 2009) aid in co-registration and are often
implemented in Python alongside various Python libraries like
“scikit-image” (van der Walt et al., 2014), SimpleITK (Lowekamp
et al., 2013), and “torchvision” (www.pytorch.org) for image
processing.

Despite the technological advancements and opportunities
presented by CMI and ML pipelines for analyzing CMI data,
establishing preclinical CMI workflows is inherently difficult due
to technical, methodological, and biological challenges arising from
the acquisition of data across various methods, modalities, and
spatial scales. Ensuring data reproducibility and translatability
necessitates the identification of influential factors in the CMI
workflow and implementing measures to mitigate their
variability. This entails the standardization of preclinical image
data acquisition procedures and postprocessing workflows,
coupled with the transparent reporting of these parameters.
Recent multicenter studies in preclinical PET (Mannheim et al.,
2019) and functional MRI (Grandjean et al., 2020) demonstrate the
importance of standardized workflows in light of their impact on
study results and data interpretation.

To showcase some of the challenges of developing standardized
CMI workflows and to stimulate dialog regarding this area of need,
we describe in detail a practical workflow involving (a) the
performance of simultaneous in vivo PET/MRI in tumor-bearing
mice, followed by (b) the correlation of in vivo PET/MRI images
with ex vivo MALDI IMS and histologic data, and finally (c) the
preprocessing of multimodal data for ML applications (Figure 1). To
demonstrate the feasibility of the workflow, we applied it to

FIGURE 1
Overview of the proposed workflow consisting of (A) steps to acquire simultaneous PET/MRI for metabolic imaging and hypoxia imaging in breast
cancer xenografted mice, followed by (B) steps to perform ex vivo MALDI IMS and (C) data preprocessing steps of multimodal data for potential ML
applications.
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preclinical research in BC xenograft-bearing mice for (1) assessing
changes in glucose metabolism in tumors using simultaneous
glucoCEST MRI and [18F]fluorodeoxyglucose ([18F]FDG)-PET
and (2) regional mapping of hypoxia and hypoxia-induced tumor
angiogenesis using simultaneous mpMRI and [18F]
fluoromisonidazole ([18F]FMISO)-PET.

2 Material & methods

2.1 General

2.1.1 Chemicals
All cell culture media, phosphate buffered saline (PBS), and fetal

bovine serum (FBS) were purchased from Sigma-Aldrich Handels
GmbH (Vienna, Austria) or Gibco (Fisher Scientific GmbH,
Schwerte, Germany) and were used without further purification.
Estrogen pellets were obtained from Innovative Research of America
(Sarasota, FL, United States). We purchased 2-deoxy-D-glucose as a
CEST contrast agent from Sigma-Aldrich (Merck KGaA,
Darmstadt, Germany). Isoflurane was obtained from Zoetis
Österreich GmbH (Vienna, Austria). [18F]FDG was obtained
from the in-house radiopharmacy unit of the Medical University
of Vienna and diluted for administration into animals with 0.9% (w/
v) aqueous saline solution. For this study, [18F]FMISO was
synthetized via cassette-based radiosynthesis (FASTlab PET-
FMISO Cassette, GE Healthcare Handels GmbH, Vienna,
Austria) on a commercial synthesis module (GE Healthcare,
Chicago, IL, United States) with a radiochemical purity of >96%
following established procedures (Kniess et al., 2023).

Gelatin from bovine skin, ammonium bicarbonate,
trifluoroacetic acid (TFA), potassium sulfate (K2SO4), acetonitrile
(ACN), red phosphorus, and α-Cyano-4-hydroxycinnamic acid
(HCCA) were purchased from Sigma-Aldrich Handels GmbH
(Merck Life Science, Darmstadt, Germany). Carnoy’s solution
consisted of absolute ethanol (EtOH)–chloroform –acetic acid at
a 6:3:1 ratio; all chemicals for this solution were acquired from
Sigma-Aldrich Handels GmbH. Trypsin/Lys-C Mix, Mass Spec
Grade was sourced from Promega GmbH (Madison, WI,
United States). Hematoxylin according to Mayer and 1% eosin
(aqueous solution) were procured from Morphisto GmbH
(Frankfurt, Germany).

2.1.2 Generation of BC xenografts
BC cells of luminal A (MCF-7), HER2+ (SKBR-3), and triple

negative (MDA-MB-231) subtypes were purchased from the
American Type Culture Collection (Manassas, VA, United States)
and kept under standardized conditions in a humidified incubator at
37°C in an atmosphere of 5% CO2. MCF-7 cells were cultivated in
RPMI medium, while SKBR-3 and MDA-MB-231 cells were
cultivated in Dulbecco’s Modified Eagle Medium (DMEM), both
supplemented with 10% FBS. To generate BC xenografts, female
athymic BALB/c-derived nude mice were purchased at age
4–6 weeks from Charles River Laboratories (Wilmington, MA,
United States). Mice were housed in groups of 7–10 individuals
in a temperature-controlled facility on a 12-h light/dark cycle with
water and a standard laboratory diet provided ad libitum. An
acclimatization period of ≥2 weeks was allowed before mice were

used in experiments. One week prior to the inoculation of MCF-7
cells, estrogen pellets (0.36 mg/day, 60-day release, Innovative
Research of America, Sarasota, FL, United States) were implanted
subcutaneously into the neck region of isoflurane-anesthetized mice
via a 10G precision trocar to support luminal A tumor growth.
Thereafter, the mice were inoculated under anesthesia with 1 × 107

MCF-7 cells, suspended in FBS-free RPMI medium, in their right
flank. Alternatively, for the generation of HER2+ and triple negative
BC xenografts, the mice were inoculated under anesthesia in their
right flank with 3 × 106 SKBR-3 or 3 × 106 MDA-MB-231 cells,
suspended in PBS. Tumors were grown for 14–21 days until
reaching a size of 650–1,000 mm3—suitable for imaging studies.
All studies involving laboratory research animals were approved by
the Austrian Federal Ministry of Education, Science and Research
[66.009/0284-WF/V/3b/2017; 2020–0.363.124; 2022–0.726.820] and
the Intramural Committee for Animal Experimentation of the
Medical University of Vienna. Study procedures were in
accordance with the European Community’s Council Directive of
22 September 2010 (2010/63/EU), and all data reported in the study
adhered to ARRIVE (Animal Research: Reporting of In Vivo
Experiments) guidelines.

2.1.3 PET/MRI scanner hardware
All PET/MRI scans were performed using a 9.4 T Bruker Biospin

30/94 USR preclinical MRI system equipped with a PET insert
(Bruker, Ettlingen, Germany) combined with a BGA 20 gradient
system and a PET-optimized 35-mm 1H volume coil. To perform
PET and MRI simultaneously, all scans were acquired with the PET
insert installed. The PET insert Si 198 (Bruker, Ettlingen, Germany)
consisted of three rings of detector blocks. Each ring was arranged
with eight monolithic LYSO crystals (50 mm × 50 mm × 10 mm³),
coupled to an array of 12 × 12 silicon photomultipliers (SiPMs),
resulting in a total of 144 units used for projection readout. The field
of view (FOV) was fixed at 90 mm × 90 mm × 150 mm. The system
was operated using the ParaVision v360.3 software suite (Bruker,
Ettlingen, Germany).

2.2 Metabolic imaging using simultaneous
[18F]FDG-PET and glucoCEST MRI

2.2.1 General [18F]FDG-PET/glucoCEST
MRI protocol

The proposed protocol of simultaneous glucoCEST MRI and
[18F]FDG-PET for the assessment of changes in glucose metabolism
is shown in Figure 2. Animals were anesthetized, canulated,
intraperitoneally administered with [18F]FDG, and positioned
into the MRI gantry. According to the proposed protocol,
scanning began with the acquisition of T2-weighted images to
serve as anatomical references, and then glucoCEST MRI
acquisitions began with the initial acquisition of a T1-weighted
map followed by repeated cycles of a modified glucoCEST
sequence (Section 2.2.2). Simultaneously with glucoCEST
acquisition and 50 min after [18F]FDG administration, a 60-min
dynamic [18F]FDG-PET acquisition was initiated, during which
150 μL of 2-deoxy-D-glucose at a dose of 0.5 g/kg as a
glucoCEST MRI contrast agent in 0.9% (w/v) aqueous saline
solution was injected. Taking the animal´s body weight into
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account during the preparation of the 2-deoxy-D-glucose solution,
the concentration of 2-deoxy-D-glucose was 0.130 g/mL for mice up
to a body weight of 25 g and 0.150 g/mL for mice up to a body weight
of 30 g. We remotely infused 2-deoxy-D-glucose in three steps:
0.04mL at an initial rate of 0.03mL/min to displace residual saline in
the intravenous catheter, followed by 0.06 mL at 0.015 mL/min and
0.05 mL at a rate of 0.03 mL/min. Splitting the infusion of 2-deoxy-
D-glucose into two stages enhanced the tolerability of the animals
while still enabling rapid signal accumulation for effective
glucoCEST MRI measurements. The total anesthesia time for the
animals for the whole imaging protocol was 120 min (10 min
preparation and 110 min scan activities).

2.2.2 Animal preparation and [18F]FDG-PET/
glucoCEST MRI parameters

Animals were positioned in an induction box, and anesthesia
was initiated using 3% isoflurane mixed into medical air as a carrier
gas. Then, under continued anesthesia, animals were repositioned
on a heated pad (37°C), and a 10-cm catheter equipped with a 30G
needle and filled with heparinized 0.9% (w/v) aqueous saline
solution was inserted into their lateral tail vein. Including the
needle connectors, the volume of tail vein catheters was
approximately 50 μL. Finally, the animals were repositioned on
the MRI cradle, and a respiratory pad was placed below them to
monitor their breathing rate throughout [18F]FDG PET/MRI (SA
Instruments Inc., Stony Brook, NY, United States). Additionally, the
tail vein catheter was connected to a 1-mL syringe mounted on a
remote-controlled infusion pump (PHD 2000, Harvard Apparatus,
Holliston, MA, United States) via a 2-m long administration tubing
line with an inner diameter of 0.25 mm (Tycon® Flexible Plastic
Tubing, Compagnie de Saint-Gobain, Courbevoie, France) and
prefilled with a solution of 2-deoxy-D-glucose. Before
commencing scanning, 100–150 μL of [18F]FDG solution
containing 10.54 ± 3.10 MBq of activity was injected
intraperitoneally using an insulin syringe. During scanning, the
isoflurane concentration levels were adjusted (range: 0.5%–1.5%
(v/v)) to maintain a respiratory rate of 60–80 breaths per min.

Following scout image acquisition, T2-weighted anatomical
images were acquired using a RARE sequence (repetition time
[TR]: 2,000 ms; echo time [TE]: 35.0 ms; spatial resolution:
0.102 mm × 0.107 mm; matrix size: 320 × 320; number of slices:

10; slice thickness: 1 mm; acquisition time [TA]: 1 min 20 s). Then,
also using a RARE sequence, a T1-weighted map was acquired to
correct for T1 effects in image postprocessing in the axial slice with
maximal tumor diameter but minimal necrosis based on visual
inspection of T2-weighted anatomical images (variable TR [VTR]:
867–6,000 ms; TE: 28 ms; spatial resolution: 0.234 mm × 0.234 mm;
matrix size: 128 × 128; FOV: 30 mm × 30mm; slice thickness: 1 mm;
TA: 4 min 27 s). Subsequently, glucoCEST MRI acquisitions were
performed based on the sequence described in Villano et al. (2021)
but modified to operate using the scanner console software
ParaVision v360.3. A single image slice Z-spectrum (CEST-
spectrum) in the same position as the T1 map was acquired,
including 120 frequency offsets between 6 and −6 ppm from
water protons (TR: 3.000 ms; TE: 4.3 ms; spatial resolution:
0.234 mm × 0.234 mm; FOV 30 mm × 30 mm; matrix size:
128 × 128; saturation pulse strength: 3 μT; interval: 0.1 ppm;
slice thickness: 1 mm; TA: 7 min). To correct for shifts in water
resonance frequency (due to B0 drift), water saturation shift
referencing (WASSR) correction was used (Lim et al., 2014).
WASSR correction measurements with 30 images of frequency
offsets between 1.5 ppm and −1.5 ppm were repeated prior to
each measurement of the Z-spectrum (TR: 3,313 ms; TE: 4.3 ms;
spatial resolution: 0.234 mm × 0.234 mm; matrix size: 128 × 128;
FOV: 30 mm × 30 mm; saturation pulse strength: 0.2 μT; interval:
0.1 ppm; slice thickness: 1 mm; TA: 2 min). Meanwhile, following
baseline glucoCEST MRI, a 60-min dynamic [18F]FDG-PET
acquisition with an energy window of 358–664 keV and a timing
window of 7 ns was initiated. Prior to the onset of the 2-deoxy-
D-glucose challenge, 10 min of baseline [18F]FDG-PET data were
acquired. After the final step in 2-deoxy-D-glucose infusion, four
additional repeated cycles of the glucoCEST MRI sequence were
performed to monitor changes in glucoCEST MRI-derived
parameters over time.

2.2.3 Image postprocessing and analysis
For glucoCEST image postprocessing and analysis, T2-weighted

anatomical images were exported as DICOM files from ParaVision
v360.3, while glucoCEST MRI images and corresponding T1

parameter maps were exported as raw imaging files (*.2Dseq).
GlucoCEST MRI images were analyzed in MATLAB (version
R2018a) using a code published previously in Zaiss and Bachert

FIGURE 2
General overview of metabolic imaging using glucoCEST MRI and [18F]FDG-PET in breast cancer xenografted mice.

Frontiers in Biomaterials Science frontiersin.org05

Bartsch et al. 10.3389/fbiom.2024.1420114

https://www.frontiersin.org/journals/biomaterials-science
https://www.frontiersin.org
https://doi.org/10.3389/fbiom.2024.1420114


(2013). After WASSR correction involving fitting the WASSR
Z-spectrum with spline functions on a pixel-wise basis and
aligning the measured Z-spectra to the water resonance
frequency at 0 ppm frequency offset, magnetization transfer ratio
asymmetries (MTRasym) were quantified using the formula:

MTRasym � Zlab − Zref

whereZlab refers to the signal value at the selected frequency offset, and
Zref refers to the signal value on the opposite side of the frequency
spectrum, where the signal is independent of the presence of a
particular proton exchange pool. As a reference for successful signal
saturation, a phantom with 1 mL 2-deoxy-D-glucose solution of a
known concentration was placed next to the mouse within the FOV.
MTRasym values at ± 0.6 ppm, ±1.2 ppm, ±2.0 ppm, ±2.9 ppm
frequency offsets, which were chosen based on previously identified
frequency offsets of the exchangeable protons of 2-deoxy-D-glucose
(Knutsson et al., 2022), were calculated by subtracting the signal values
from the positive and negative sides of the respective Z-spectrum.

For [18F]FDG-PET image postprocessing and analysis, [18F]
FDG-PET images were reconstructed using the maximum
likelihood expectation maximization (MLEM) algorithm
(isotropic resolution: 0.5 mm; 18 iterations; corrections: scatter,
randoms decay; image size: 180 × 180 × 300; FOV: 90 mm ×
90 mm × 150 mm) in ParaVision v360.3. [18F]FDG-PET images
were split into 20 timeframes of 3 min to generate a dynamic [18F]
FDG-PET dataset. [18F]FDG activity concentrations given in kBq/cc
were transformed into standardized uptake values (SUVs) by taking
the injected activity and body weight of the animals into account,
yielding SUVbw. [18F]FDG-PET images were then exported as
DICOM files from ParaVision v360.3. The exported [18F]FDG-
PET images were analyzed using the “Fusion” module in pmod
(version 4.3, PMOD Technologies LLC, Switzerland). [18F]FDG-
PET images were co-registered with T2-weighted anatomical
reference images using rigid matching. Three-dimensional
volumes of interest (VOIs) covering the whole tumor were
defined on T2-weighted anatomical images and loaded onto [18F]
FDG-PET images to derive time–radioactivity concentration curves
expressed in units of SUVbw. To correlate findings from [18F]FDG-
PET with findings from the single-slice glucoCEST MRI, a separate
two-dimensional ROI from the corresponding glucoCEST-MRI
section was transferred to the respective plane of the PET image.

2.3 Hypoxia imaging using simultaneous [18F]
FMISO-PET and mpMRI

2.3.1 General [18F]FMISO-PET/mpMRI protocol
The proposed protocol of simultaneous mpMRI and [18F]

FMISO-PET for quantifying hypoxia and hypoxia-induced
angiogenesis is shown in Figure 3. According to the proposed
protocol, BOLD-MRI and [18F]FMISO-PET acquisitions were
conducted under normoxic and hyperoxic conditions by elevating
the isoflurane carrier gas levels from normal air (21% oxygen) to
100% oxygen, respectively, with the aid of an air–oxygen blender
between the individual scans. Additionally, IVIM-MRI and DCE-
MRI were performed. Scanning began 1 h after the animals were
intravenously administered with [18F]FMISO. Following [18F]
FMISO administration, they were anesthetized, canulated,
positioned into the MRI gantry, and T2 anatomical MRI images
were acquired. Subsequently, a BOLD T2*map was acquired under
normoxic conditions followed by a simultaneous IVIM-MRI and the
first 10-min static PET scan. Thence, the oxygen level was increased
to 100% followed by a 10-min equilibration phase after which
simultaneous BOLD and PET acquisitions were performed.
Finally, DCE-MRI scans were conducted, during which 30 μL of
0.2 mM/kg gadopentetate-dimeglumin (Magnevist®, Bayer Vital
GmbH, Leverkusen, Germany) were intravenously administered.
The overall protocol required two intravenous administrations for
which both lateral tail veins of the animals (one for [18F]FMISO
administration; the contralateral one for contrast agent
administration) were used. Total anesthesia time for the animals
for the whole imaging protocol was 120 min (10 min preparation
time and 110 min scan activities).

2.3.2 Animal preparation
On the day of imaging, the animals were placed in an induction

box and anesthesia was initiated using 3% isoflurane mixed into
medical air as a carrier gas. Then, under continued anesthesia, they
were repositioned on a heated pad (37°C), and a catheter equipped
with a 30G needle was inserted into their lateral tail vein.
Subsequently, 100 μL [18F]FMISO solution containing 15.5 ±
3.09 MBq of initial activity was administered via the tail vein
over approximately 30 s. The catheter was flushed using 50 μL
saline solution to minimize residual activity. Following tracer

FIGURE 3
General overview of metabolic imaging using mpMRI and [18F]FMISO-PET in breast cancer xenografted mice.

Frontiers in Biomaterials Science frontiersin.org06

Bartsch et al. 10.3389/fbiom.2024.1420114

https://www.frontiersin.org/journals/biomaterials-science
https://www.frontiersin.org
https://doi.org/10.3389/fbiom.2024.1420114


administration, the animals were placed back into their cage with
water and standard laboratory nutrition provided ad libitum.
Approximately 50 min after radiotracer injection, they were
anesthetized again and prepared for scanning. Another tail vein
catheter was placed into the contralateral tail vein for the
administration of contrast agent for DCE-MRI. Afterwards, the
animals were repositioned on the MRI cradle, with the tail vein
catheter connected to a 1 mL syringe mounted on a remote-
controlled infusion pump prefilled with 0.9% (w/v) saline solution.

2.3.3 BOLD-MRI
Following scout and T2-weighted anatomical image acquisition

(TR: 2000 ms; TE: 35.0 ms; spatial resolution: 0.234 mm × 0.234 mm;
matrix size: 128 × 128; FOV: 30 mm × 30 mm; number of slices: 10;
slice thickness: 1 mm; TA: 1 min 20 s), baseline BOLDmeasurements
at 21% oxygen as an anesthetic carrier gas were conducted. For this, a
T2* map was acquired using a multi-gradient-echo sequence (TE:
14 echoes between 2.8 and 34.4 ms; TR: 500 ms; repetitions: 3; flip
angle [FA]: 15⁰; spatial resolution: 0.234 mm × 0.234 mm; matrix size
128 × 128; FOV: 30mm× 30mm; number of slices: 10; slice thickness:
1 mm; TA: 2 min 24 s). The fraction of oxygen delivered to the animal
was modulated by an air–oxygen blender (Sensor Medics
Corporation, Yorba Lina, CA, United States). “Challenged” BOLD
measurements were conducted using identical sequence parameters
10 min after switching to 100% oxygen.

2.3.4 IVIM-MRI
Following baseline BOLD acquisition, IVIM-MRI using

14 diffusion weightings, i.e., b-values, was performed to assess
tumor microvascularity. Echo-planar imaging (EPI) sequences
were acquired using the following parameters: TE: 24.08 ms; TR:
1,500 ms; spatial resolution: 0.313 mm × 0.313 mm; matrix size: 96 ×
96; FOV: 30 mm × 30 mm; readout segments: 24; bandwidth:
87,719 Hz; number of slices: 10; slice thickness: 1 mm; b-values:
20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 500, 800, 1,000 s/mm2

[max. gradient duration 5ms and gradient separation 11.12ms]; TA:
8 min 24 s.

2.3.5 DCE-MRI
DCE-MRI was performed to assess the microvascular parameters

vp, ve, and ktrans. To account for tissue T1 independent of the
administration of the contrast agent, a single-slice T1 mapping in
the slice withmaximal tumor diameter andminimal necrosis based on
visual inspection of T2-weighted anatomical images was performed
before the administration of the contrast agent (TE: 28 ms; VTR:
200–6,000 ms in 12 steps; spatial resolution: 0.234 mm × 0.234 mm;
matrix size: 128 × 128; FOV 35 mm × 35 mm; slice thickness: 1 mm;
TA: 6 min 50 s). Magnevist served as the contrast agent, where a bolus
injection of 0.2 mM/kg Magnevist was administered via the tail vein
catheter at a flow rate of 600 μL/min and an injection volume of
150 μL (including 30 μL 0.2 mM/kg Magnevist and 120 μL
physiological saline solution to flush the catheter) using a remote-
controlled syringe pump. In DCE-MRI, a fast FLASH sequence (TE:
83 ms; TR: 10 ms; number of repetitions: 600; FA: 15⁰; acquisition
time: 10 min) with a time resolution of approximately 1 s per image
and the same position as the T1 mapping was used, with the contrast
agent being administered 1 min after baseline acquisition.

2.3.6 [18F]FMISO-PET
Two hours following the intravenous administration of [18F]

FMISO, 10-min static PET acquisition was initiated with an energy
window of 358–664 keV and a timing window of 7 ns. By the end of a
10-min break, during which the amount of oxygen in the anesthetic
gas was increased to 100% for BOLD-MRI challenged measurements,
a second PET acquisition using identical parameters was initiated.

2.3.7 Image postprocessing and analysis
Figure 4 provides an overview of [18F]FMISO-PET/mpMRI

image postprocessing. T2-weighted anatomical images were
exported as DICOM files from ParaVision v360.3.

FIGURE 4
General overview of the postprocessing of PET/MRI data. Segmented tumors on PET images andMRI parametermaps aremasked onto T2-weighted
anatomical reference images. File formats in which image data are imported into the respective image analysis software application are specified next to
the arrows in the figure (*.dcm, DICOM image format; *.nii, NIfTI image format; *.2dseq, Bruker raw data format; *.bvals, b-value file in FSL datasets;
*.bvec, b-vector file in FSL datasets).
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For BOLD-MRI, T2* maps were calculated using the image
sequence analysis tool built into the ParaVision v360.3 software
suite. For further processing, the T2* maps were exported as
DICOM files from ParaVision v360.3 and converted to NIfTI
files using the conversion tool in MRIcro-GL (version
1.2.20210317). Subsequently, the T2* maps were analyzed
using in-house MATLAB code (MATLAB version R2018a) as
follows. First, T2* maps, which were originally calculated in
milliseconds, were converted into seconds. Then, the
transverse relaxation rate (R2*) was calculated as the inverse
of T2*. To assess the decrease in R2* following the increase of
oxygen in the anesthetic gas, ΔR2* was calculated using the
following formula:

ΔR2* � R2* challenge( ) − R2*avg baseline( )

where R2*(challenge) corresponds to the transverse relaxation rate
following 100% oxygen in the anesthetic gas, while R2*avg(baseline)
corresponds to the average transverse relaxation rate during the
baseline, 21% oxygen, measurements. The resulting BOLD
parameter maps were exported as NIfTI files.

For IVIM-MRI, Bruker raw data (*.2dseq) were loaded into DSI
studio software (version 10/2020) and converted into an FMRIB
Software Library (FSL) dataset, consisting of a *.nii file with the
image data, a *.bval file containing a list of b-values, and a *.bvec file
containing the exact diffusion vectors used for IVIM-MRI
acquisition. These files were further processed using the IVIM
module built into the MITK diffusion software package (version
4.13.2, Deutsches Krebsforschungszentrum, Heidelberg, Germany).
A segmented fitting model was used to calculate parameter maps for
the IVIM-related perfusion coefficient (D*) and IVIM fraction
(fIVIM), as well as the diffusion coefficient (D). The calculations
ofD* and fIVIM were based on diffusion-weighted images acquired at
b-values below 500 s/mm2.

For DCE-MRI, the Kinetic module of the pmod software
package (version 4.303) was used. Each pixel was treated as a
separate region in the PKIN module to allow pixel-wise model
fitting. For quantitative analysis, a population-based arterial input
function (AIF), quantified from a separate cohort of four animals
using the same bolus administration protocol, was used in all
specimen as a standardized reference of Magnevist uptake. A
one-tissue, two-compartment model was calculated, and the
corresponding parameters vp, ktrans, and ve for each pixel of the
imaging slice location were extracted as a *.csv file with each row
representing a single pixel and each column representing

corresponding DCE parameter values. To generate DCE
parameter maps, *.csv files were loaded into a MATLAB routine
developed in-house. The script transformed each column into a
matrix of 128 × 128 cells and saved them as a *.nii file for
further analyses.

For [18F]FMISO-PET, images were reconstructed as one-
frame static images using the MLEM algorithm (isotropic
resolution: 0.5 mm; 18 iterations; corrections: scatter,
randoms, decay; image size 180 × 180 × 300; FOV 90 mm ×
90 mm × 150 mm) in ParaVision v360.3. The reconstructed [18F]
FMISO PET images were exported as DICOM files from
ParaVision v360.3 and analyzed using the Fusion module in
pmod (version 4.303). PET images were aligned to T2-weighted
anatomical images by rigid matching to define tumor VOIs. In
addition to a three-dimensional VOI, a second ROI was drawn in
the same slice position as in the single-slice acquisition of DCE-
MRI. Summary statistics on SUVbw values were extracted for
further analysis.

2.4 Ex vivo imaging of BC specimens

2.4.1 Resection of BC xenografts and preparation
for ex vivo imaging

Figure 5 shows a detailed depiction of the tumor resection
protocol in preparation for ex vivo imaging. Following in vivo
PET/MRI, animals were sacrificed by intravenous injection of
300 mg/kg pentobarbital (Release®, WDT, Garbsen, Germany).
To retain the tumor orientation for subsequent co-registration,
we applied the following protocol to all specimens. The skin
surrounding the tumor was removed and the tumor orientation
in situ was labeled on the right and dorsal side with different colored
tissue dyes (Thermo Fisher Scientific, Waltham, MA, United States).
Subsequently, the tumor was resected, and its left side was marked
with another color of tissue dye. To prepare the tumor for MALDI
IMS and subsequent hematoxylin and eosin (H&E) staining, tumor
specimens were cut in half. A T2-weighted anatomical image was
used as a reference for the cutting position so that the cutting plane
most likely reflects the slice of the corresponding single-slice
glucoCEST-MRI or DCE-MRI images (Supplementary Figure S1).
The rostral half of the tumor was embedded in 10% (v/v) gelatin and
stored at −80°C. The caudal half was fixed in 4% formalin and stored
in 70% (v/v) ethanol at 4°C for long-term storage before
paraffin-embedding.

FIGURE 5
Preparation of breast cancer xenograft tissue probes for ex vivo analysis. Following the cultivation of MCF-7 (luminal A), SKBR-3 (HER2+), and MDA-
MB-231 (triple negative) cells, female athymic BALB/c nudemice were inoculated, and tumors were allowed to grow for 14–21 days. Mice were sacrificed
after MRI/PET examinations, and tumors were resected. Resected tumors were labeled using three different colors of tissue dye on the left, right, and
dorsal sides, and then cut along the same axial slice as the slicemeasured in the corresponding glucoCESTMRI or DCE-MRI images. The anterior half
was embedded in gelatine and stored at −80°C, and the posterior half was embedded for 24 h in formaldehyde and then transferred into 70% ethanol for
storage prior paraffin embedding.
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2.4.2 MALDI IMS
The proposed MALDI IMS protocol is depicted in Figure 6.

According to this protocol, one section of each tumor was cut at 10-
μm thickness using a cryostat (CM3050S, Leica Microsystems,
Wetzlar, Germany) and thaw-mounted onto indium-tin-oxide-
coated conductive slides (Bruker Daltonics, Bremen, Germany).
Thence, Carnoy´s washing procedure was immediately used, which
included the following steps: 70% EtOH, 100% EtOH, Carnoy´s
solution, 0.2% TFA, and 100% EtOH. After washing, the slides
were dried in a desiccator for 30 min and then scanned at a
resolution of 3,200 dpi (Epson Scan; Image Scanner III) prior to
MALDI IMS to enable accurate co-registration. Trypsin was dissolved
in 20 mM ammonium bicarbonate/0.01% glycerol to a final
concentration of 0.025 μg/μL and applied in 20 layers using a
HTX M5 sprayer (HTX Technologies, Chapel Hill, United States).
After enzyme deposition, the tissue was incubated in saturated K2SO4

solution for 16 h. Finally, the tissue was coated with six layers of α-
cyano-4-hydroxycinnamic acid (5 mg/mL in 50% ACN/0.3% TFA).

MALDI IMS TOF/TOF measurements were obtained using a
mass spectrometer (RapifleX™ MALDI Tissuetyper™, Bruker
Daltonics, Bremen, Germany) at spatial resolutions of 20 μm,
200 Hz, and 200 accumulated laser shots per pixel. Red
phosphorus was used to calibrate the instrument prior to all
measurements. Tissue sections were measured in the positive ion
mode with a mass range of 700–3,000 m/z. Ions were detected with a
digitization rate of 0.63 GS/s in reflectron mode. After
measurements were obtained, slides were stored in a desiccator at
4°C until staining with H&E.

Mass spectrometer measurements were imported and analyzed
with SCiLS Lab software (version 2023c, Bruker Daltonics) using the
Data Import wizard and selecting a preference for the reduced
spectra format (.dat). For baseline removal, the convolution
algorithm and Savitzky–Golay smoothing (width 0.005 m/z, one
cycle) in SCiLS Lab were applied. Total ion count (TIC)
normalization was selected to normalize the datasets with ±0.1 as
an interval width. To identify relevant peaks, an orthogonal

matching persuit algorithm for peak detection in individual
spectra was used. The “Move Peaks to Local Max Tool” function
was utilized to create m/z intervals where each peak center was
individually marked by its maximum intensity. Matrix-related
signals were identified and removed by correlation analysis to the
matrix peaks (peaks with a Pearson correlation coefficient
of ≥0.5 were considered matrix-related). This provides
background and noise removal, and therefore enormous data
reduction, as the original files from Rapiflex are tens of gigabytes,
whereas these pre-processing steps more than halve the file size.

Subsequently, segmentation based on hierarchical clustering was
used to distinguish between different regions. This approach grouped
the most similar spectra (Pearson correlation as a distance metric,
combined with an average linkage algorithm), thus identifying
heterogeneous regions within morphologically homogeneous
sections of BC xenograft tissue without needing a predefined
number of clusters. MALDI IMS datasets were exported to the
vendor-neutral imzML file format which contained a large number
of mass spectra for producing ion images for the whole slide as well as
for extracting individual spectra for any coordinate. We selected 30 of
the most intense ions belonging to the tumor region (after TIC
normalization) as exemplary peaks and exported them as a peak list.

After MALDI IMS analysis, the remaining matrix was removed
with 70% ethanol, and slides were stained according to a standard
H&E protocol and scanned using a Vectra Polaris imaging system
(Akoya Biosciences, MA, United States) at a resolution of 0.25 μm/
pixel. The histopathological evaluation of the tissue was performed
by an expert pathologist, as our aim was to target heterogeneity
within the tumor and exclude mouse-specific tissues, such as muscle
cut out with the tumor. Furthermore, the Rapiflex settings did not
allow for precise ROI definition. Tissue annotation was performed in
QuPath and then imported into SCiLS Lab for co-registration,
ensuring the elimination of irrelevant spectra around the tissue
(see Supplementary Figures S2, S3 for a detailed explanation).

Therefore, tissue region margins were annotated using
QuPath (version 0.3.2.) and ROIs were imported to SCiLS Lab.

FIGURE 6
MALDI-IMS ex vivo analysis. MALDI-IMS sample processing includes sectioning andmounting the tissue section onto slides. Both trypsin andmatrix
solutions were homogenously sprayed over the tissue. Using FlexImaging software (Bruker Daltonics), ROIs on the tissue sections were created, and the
number of pixels within the ROIs was calculated. A laser systematically irradiated the specified ROI in a raster pattern, producing a unique mass spectrum
for every measurement spot. For each ROI, an aggregate spectrum was compiled. Detected mass signals, characterized by mass-to-charge ratio
(m/z), are illustrated as color intensity maps, or ion images, which correlate molecular patterns with specific cell types. Finally, the collected mass spectra
underwent hierarchical clustering analysis, offering a comprehensive and intuitive view of the multidimensional data.
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The co-registration process of the annotated H&E scan to theMALDI
imaging images defines the precise location and orientation of the
imported image within the global coordinate system of the data set.
This involves defining the image orientation relative to the reference
image, followed by accurate image co-registration.

H&E-stained bright-field images of the tissue sections were
overlaid with MALDI IMS data in SCiLS Lab for visualization
and analysis. ROIs annotated in QuPath (Supplementary Figure
S5) were then used to extract region-specific proteomic signatures
from the MALDI IMS data.

2.5 Data preprocessing of multimodal
imaging data for ML applications

2.5.1 General data preprocessing steps
Figure 7 provides a general overview of the proposed data

preprocessing steps that precede ML applications. In addition to
these steps, the images were normalized. In general, data
preprocessing for ML applications was performed with
Python as a programming language using open-source
frameworks and the library for deep learning models PyTorch
(Paszke et al., 2019).

2.5.2 Data selection
Datasets were assessed for possible image artifacts such as 1)

geometrical distortions (especially affecting EPI-based sequences),
2) B0 inhomogeneity (affecting, e.g., CEST measurements), 3)
movement artifacts, and 4) flow artifacts. Subsequently, data
selection was performed to exclude images where artifacts
completely overlapped with ROIs using the following criterion:

D � I ∈ Dall ∨ noartifact ∈ IROI

Consequently, a subset of the image data I of all samplesDall was
selected within image data IROI as the final dataset D which had
sufficient image quality and which was free of artifacts that
completely overlapped the ROIs. In samples that contained
artifacts within the overlapping ROIs, the respective areas were
masked to exclude the affected region from further data analysis.

2.5.3 Resampling
The scikit-image library (van der Walt et al., 2014) was used for

image resampling to a target resolution of 128 × 128 pixels. The
“skimage.transform.resize” transform was used to up- or downsize

the images to one equal image shape. Scans with different matrices—
[18F]FDG PET (320 × 320 px) and the diffusion maps D, D*, and
fIVIM (96 × 96 px) —were resampled accordingly. The order of the
spline interpolation was set to 0, while the antialiasing was turned
off. This was done to minimize interpolation during image
resampling.

2.5.4 Data normalization
Data normalization was performed using NumPy (Harris

et al., 2020) to normalize multimodal imaging data to the
same range of image signals. A typically used normalization is
the range [0,1]. The normalized Image Ĩ was calculated based on
the image data I as

Ĩ � I −min I( )
max I–min I( )( )

2.5.5 Cropping
Cropping was performed using NumPy (Harris et al., 2020)

using a square bounding box of side length s = 2d, where d is the
distance from the ROI center of mass to the edge of the bounding
box, so that it was large enough to include the lesion as well as
surrounding tissue (Figure 7C). For known image dataset I
(i.e., lesion annotation), the cropped image Ic was extracted as

Ic � I cx − d: cx + d, cy − d: cy + d[ ]

with the position of the center of mass of the ROI data (cx,cy).

2.5.6 Co-registration of multimodal imaging data
For image co-registration, the commonly available algorithm

ANTs that is available for Python in the library ANTsPy (Avants
et al., 2009), using mutual information (MI) and cross correlation
(CC) approaches, was used (Avants et al., 2011).

The respective image co-registration(s) were formulated as an
optimization problem to find the transformation ϕ(x,p), with
parameters p and spatial position x that minimize a similarity
metric M between images I and J (Avants et al., 2014):

Find transformation ϕ x, p( ) ∈ T thatminimizesM I, J,ϕ x, p( )( )

ANTs image co-registration was performed based on affine and
non-affine transformations. Affine transformations include
translation, rotation, and scaling. Non-affine transformations,
such as deformable or elastic transformations, include more

FIGURE 7
Preprocessing of multimodal data for potential ML applications. (A)Data selection: example of an image (BOLD-MRI in this case) with artifacts in the
ROI of the tumor that would be excluded due to the data selection process; (B) resampling: example of an image with a different x- and y-resolution than
the target resolution being resampled to uniform resolution; (C) cropping: example showing the tumor ROI being cropped out; (D) co-registration:
example of co-registration of cropped images using affine and elastic deformations.
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complex operations. Except for the images derived from EPI
sequences, the images were not deformed and so it was optimal
to use affine transformations like “Affine,” “AffineFast”, or
“TRSAA” from the ANTs library. For images derived from EPI
sequences, it was necessary to apply a non-affine transformation. In
this case, non-affine transformations like SyN or SynCC from the
ANTs library using MI and CC as the similarity metric,
respectively, were used.

In addition to requiring the type of transformation to be
defined, ANTs image co-registration also requires the fixed and
moving image to be defined. The fixed image is the target and the
moving image is the deformed image that needs to be co-registered
to the target image by applying the transformation. For images
with large differences in intensity distribution, initial co-
registration was poor. This specifically applied to the DCE
maps as well as to the parameter maps for D*. In these cases,
co-registration was based on manually drawn ROI (tumor lesion)
masks that were annotated on both images by an biological expert
to subsequently calculate the respective image transformation.
Once the transformation was calculated, it was applied to
the image.

For multiple images resulting from the same scan, it was possible
to calculate the transformation once and apply it to all other images,
ensuring the exact same co-alignment of the images after the
transformation. This way the transformation was calculated for
the diffusion map of D and also used for D* and fIVIM. The
same was done for the DCE maps: calculating the transformation
for ktrans and applying it to “ve” and “vp”.

The quality of the co-registration was validated thus: 1) the value
distributions (histograms) of the pre- and post-registration images
were compared to ensure values were not altered by the
transformation; 2) the quality was analyzed by visual inspection
of the pre- and post-registration images.

3 Results

3.1 Metabolic imaging using simultaneous
[18F]FDG-PET and glucoCEST MRI

Using the proposed simultaneous [18F]FDG-PET and
glucoCEST MRI imaging workflow, a total of 58 female athymic
nude mice which grew xenograft tumors of three differently
aggressive BC cell lines (luminal A: n = 16; HER2+: n = 17;
triple negative: n = 25) were examined. The imaging protocol
was tolerated by the animals, with marked reactions
(hypoventilation) following 2-deoxy-D-glucose infusion. One
mouse inoculated with luminal A BC cells one died during the
experiment, probably due to a misplaced intraperitoneal tracer
injection. For the purpose of this study, example images derived
from in vivo simultaneous [18F]FDG-PET/glucoCEST MRI of a
HER2+ (SKBR-3) BC xenograft, compared to images derived
from ex vivo MALDI IMS, are shown in Figure 8. Figure 8A
shows the T2-weighted anatomical image which served as the
reference for [18F]FDG-PET and glucoCEST MRI co-registration.
Figure 8B illustrates the parameter map of the tumor´s MTRasym at
1.2 ppm frequency offset, 16 min following 2-deoxy-D-glucose
administration (MTRasym: mean ± SD = 0.0816 ± 0.102),

superimposed onto the T2-weighted anatomical image. More
pronounced MTRasym corresponds to a higher exchange of
hydrogen between sugar-related hydroxyl groups and the
surrounding water pool. The extent of MTRasym is therefore
higher in more active and well-perfused tumor regions. Due to
artifacts, the upper left section of the tumor was not analyzed and is
not shown on the MTRasym map. Intratumoral heterogeneity of
tumor metabolism (Figure 8B) is also confirmed by the
superimposed [18F]FDG PET image in Figure 8C, which clearly
shows heterogeneous tracer uptake 60 min after tracer
administration (SUVbw: mean ± SD = 2.79 ± 0.42). The pattern
of [18F]FDG uptake is slightly different from the change inMTRasym
at 1.2 ppm frequency offset shown in Figure 8B, which corroborates
the notion of complementary, rather than redundant, information
captured by [18F]FDG and glucoCEST MRI images. Figure 8D
depicts an example MALDI IMS ion image at 1,282.901 m/z,
demonstrating heterogeneous signal distribution within the
tissue. Figure 8E shows a data-driven tissue section
segmentation map that was built based on region-specific
peptide fingerprints, and different tissue regions with similar
peptides signatures were grouped together and given a specific
color. Different tissue regions in breast cancer sections exhibit
obvious color diversity, suggesting that there are differences in the
spatial expression of peptides. The H&E-stained tissue in Figure 8F
offers a view of the tissue’s cellular architecture, facilitating the
identification of tumor boundaries and the overall shape of the
tumor. The H&E scan reveals that the tumor region consists solely
of the tumor mass (Supplementary Figure S5).

3.2 Hypoxia imaging using simultaneous [18F]
FMISO-PET and mpMRI

A total of 32 female athymic nude mice underwent imaging
using the proposed simultaneous multiparametric [18F]FMISO-PET
and mpMRI imaging protocol (luminal A: n = 11; HER2+: n = 10;
triple negative: n = 11). Among the mice inoculated with luminal
A BCs, two died during PET/MRI imaging, presumably due to renal
insufficiency as a result of estradiol pellet implantation. For this
study, exemplary images derived from in vivo simultaneous [18F]
FMISO PET/mpMRI of a triple negative (MDA-MB-231) BC
xenograft, compared to images derived from ex vivo MALDI
IMS, are shown in Figure 9. Figure 9A shows the T2-weighted
anatomical image which served as the reference for [18F]FMISO-
PET and mpMRI co-registration. The [18F]FMISO-PET image in
Figure 9B reveals a relatively high degree of hypoxia in the tumor
core (SUVbw: mean ± SD = 0.84 ± 0.25). The small change in R2*
following a hyperoxic gas challenge, especially in the center of the
tumor (Figure 9C), reflects the inability of the tumor
microvasculature to transport sufficient oxygen to the entire
tumor. A direct assessment of tumor perfusion is presented in
Figure 9D, which illustrates DCE-MRI-derived parameter maps
of ktrans (mean ± SD = 0.034 ± 0.037 min−1), ve (ve: mean ±
SD = 0.20 ± 0.33), and vp (vp: mean ± SD = 0.022 ± 0.021).
The ktrans and ve parameter maps illustrate that the influx of
contrast agent is higher in the tumor periphery, where it is in
direct contact with healthy surrounding tissue. IVIM-MRI
parameter maps for D, D*, and fIVIM are shown in Figure 9E.

Frontiers in Biomaterials Science frontiersin.org11

Bartsch et al. 10.3389/fbiom.2024.1420114

https://www.frontiersin.org/journals/biomaterials-science
https://www.frontiersin.org
https://doi.org/10.3389/fbiom.2024.1420114


Tissue diffusion, assessed by D, is higher in the hypoxic core of the
tumor, where the lack of oxygen already impairs the structural
integrity of the tissue, whereas the structurally intact, dense tumor
tissue is more prevalent in the periphery (D [mm2/s]: mean ± SD =
0.55e−3 ± 0.15e−3). D* and fIVIM, surrogate markers for microvessel
diffusion, are higher in the contact zone of the tumor with healthy
surrounding tissue (D* [mm2/s]: mean ± SD = 0.010 ± 0.014; fIVIM:
mean ± SD = 0.17 ± 0.06). Figure 9F depicts an example MALDI
IMS ion image at 2,483.473 m/z demonstrating heterogeneous

signal distribution within the tissue. The H&E-stained slide in
Figure 9G shows the tissue that was used for the analysis.
Annotations with QuPath, included in the supplementary
material (Supplementary Figure S2), were crucial for targeting
tumor heterogeneity while excluding non-tumor tissues. The
Rapiflex settings lack precise ROI definition (Supplementary
Figure S2a), so the tissue annotation was performed in QuPath
and imported into SCiLS for co-registration, eliminating irrelevant
spectra (Supplementary Figure S2b).

FIGURE 8
Example images of SKBR-3 breast cancer xenograft derived from the proposed [18F]FDG-PET/glucoCEST protocol for metabolic imaging. (A) T2-
weighted image serving as an anatomical reference. (B)GlucoCEST MRI parameter map showing MTRasym values at 1.2ppm frequency offset (high values
correspond to high asymmetry, i.e., much glucose present in this area of the tumor). (C) [18F]FDG-PET image of the tumor, showing high tracer uptake on
the ventral side of the tumor. (D)MALDI IMS ion images: the first image provides a visualization of the tumor at 1,282.901 m/z. (E) Subsequent image
employs hierarchical clustering to define variations among pixels. Hierarchical clustering in MALDI IMS groups pixels based on the similarity of their
spectral profiles, thus highlighting areas with distinct molecular compositions. (F) H&E staining.
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3.3 Ex vivo assessment using MALDI IMS and
H&E staining

The use of a MALDI TOF/TOF mass spectrometer enabled the
collection of high-resolution spectral data across a mass range of
700–3,000 m/z with a spatial resolution of 20 μm. Figure 8D, e) and
Figure 9F present the processed MALDI IMS data of the tumor
xenografts. Visualization was reconstructed from pixel information,
including spatial coordinates (x and y) and mass-to-charge (m/z)
values, along with their intensities. The figures show that
hierarchical clustering in MALDI IMS successfully reveals
distinct regions within morphologically homogeneous sections of
the xenograft tissue (Supplementary Figure S4). Hierarchical
clustering, which does not rely on a predefined number of
clusters, allows for the data-driven identification of unique
proteomic signatures.

Furthermore, MALDI IMS data overlaid with H&E-stained
bright-field images (see Supplementary Figure S3 for detailed
explanation) provided a composite analysis of proteomic and
histological landscapes. ROIs annotated in QuPath were

instrumental in extracting region-specific proteomic
signatures, which were subsequently correlated with visual
histopathological evaluation. H&E staining merely allows for
the delineation of the boundaries of neoplastic areas. Given the
correlation of MALDI IMS and histopathological data, MALDI
IMS is thus essential for identifying distinct cellular populations
in tumor tissue.

4 Discussion

Herein, we describe in detail a proposed preclinical workflow for
simultaneous in vivo PET/MRI, followed by ex vivo MALDI IMS
tissue analysis, showcasing their potential for assessing tumor
metabolism and the hypoxic microenvironment of BC xenografts
in vivo. The workflow also addresses the intrinsic challenges in data
post-processing to co-register multi-scaled images obtained using
different imaging methods. Furthermore, the proposed workflow
describes the data preprocessing process to obtain datasets suitable
for potential ML applications.

FIGURE 9
Example images of an MDA-MB-231 breast cancer xenograft derived from the proposed [18F]FMISO-PET/mpMRI protocol for hypoxia imaging. (A)
T2-weighted image serving as an anatomical reference. (B) [18F]FMISO PET image of tumor, showing high tracer uptake in its hypoxic center. (C) BOLD-
related parametermap of ΔR2*, in which large absolute values correspond to areas where the fraction of oxygenized hemoglobin increased, following the
hyperoxic gas challenge. (D)DCE-related parametermaps of the transfer constant ktrans (with high values in areas of increased blood vessel leakage),
extravascular volume fraction ve, and plasma volume fraction vp (with high values in areas with increased blood supply). (E) IVIM-DWI parameter maps of
diffusion coefficient D (with low values in areas of increased tissue density), perfusion coefficient D* (with high values in areas of increased blood flow),
and IVIM-fraction fIVIM (with high values in areas of high blood vessel density). (F) MALDI IMS data. Images generated using SCiLs Lab software. Figures
reconstructed from pixel information, including coordinates (x and y) and mass-to-charge (m/z) values detected at each pixel, including their intensities.
MALDI IMS ion images: the first image provides a visualization of the tumor at 2,483.473 m/z. The subsequent image employs hierarchical clustering to
define variations among pixels. Hierarchical clustering in MALDI IMS groups pixels based on the similarity of their spectral profiles, thus highlighting areas
with distinct molecular compositions. (G) H&E staining.
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Technological advances in preclinical instrumentation have enabled
holistic approaches to image tumors and their microenvironments
(Ramamonjisoa and Ackerstaff, 2017; Matsumoto et al., 2021). In
MRI, functional and spectroscopic protocols added to anatomical
imaging allows the interrogation of the profound heterogeneity
within the tumor and in the surrounding tissue. Combining MRI
with PET simultaneously adds even more information, enabling the
detection of malignant tumor phenotypes, the differentiation of tumor
and healthy tissues, and the classification of the tumor
microenvironment. However, while preclinical PET/MRI presents
great promise, the degrees of freedom for preclinical PET/MRI
protocols are ultimately limited by the physiology of the investigated
animal—laboratory mice in most cases. The total blood volume of mice
is approximately 1.8 mL, effectively limiting the maximum amount of
injectable volume via the intravenous route to ~0.125 mL when
administered as a single bolus with administration times below
1 min (Diehl et al., 2001). Multiple intravenous injections, even when
administered at slow rates (<0.025 mL/min), may lead to significant
changes in blood hemodynamics, which must be considered in
quantitative image analysis, and more importantly, are not well-
tolerated in mice. Another challenge for PET/MRI protocols is the
prolonged period of anesthesia required for the immobilization of mice
in the respective imaging device during image acquisition. Inmost cases,
inhalant anesthetics such as isoflurane or sevoflurane are used. However,
anesthetic concentration, duration, and the depth of consciousness of the
investigated animal, as well as the carrier gas delivering anesthetic to the
animal itself, strongly affect imaging outcomes andmust be adjusted and
standardized for each respective application (Navarro et al., 2021).

Regarding our proposedmetabolic imaging protocol, we initially
addressed the challenge of sequentially administering the PET tracer
[18F]FDG and the glucoCEST MRI contrast agent 2-deoxy-
D-Glucose in a single protocol. Fortunately, it has been shown
for [18F]FDG that uptake kinetics and biodistribution at 50 min after
administration does not differ between intravenous or
intraperitoneal administration. Studies have demonstrated that
tissue uptake in major organs and subcutaneous tumor models is
comparable at that timepoint and that intraperitoneal injections are
a suitable alternative to intravenous injections for PET studies with
[18F]FDG (Fueger et al., 2006; Wong et al., 2011). Therefore,
intraperitoneal injections of [18F]FDG were performed to avoid
intravenous infusion volumes that would not be tolerated by
mice and also due to the necessity of injecting 2-deoxy-D-glucose
intravenously for glucoCEST-MRI. This procedure also kept the
overall anesthesia time as short as possible and omitted the need to
place two catheters into both lateral tail veins to avoid
administration problems due to incompatible solvents in the
administered solutions. Notably, the total mass of injected [18F]
FDG in mice was within the nanogram range. Therefore,
interference by [18F]FDG with baseline glucoCEST assessments is
highly unlikely given the intrinsic low sensitivity of glucoCEST
imaging and the requirement to administer pharmacologically active
amounts of 2-deoxy-D-glucose to actually measure significant
changes in MTRasym (Capozza et al., 2022). To increase blood
glucose levels enough to induce diagnostic changes in MTRasym,
0.5 g/kg 2-deoxy-D-glucose had to be administered. To avoid acute
hyperglycemic shocks, we split the infusion into three steps over
approximately 8 min. Glucose administrations and the resulting
changes in blood glucose levels significantly alter [18F]FDG uptake

kinetics and tissue/tumor distribution. We therefore performed the
first 10 min of the dynamic [18F]FDG-PET scan before 2-deoxy-
D-glucose administration. To obtain further data on glucoCEST
dynamics, we then continued with simultaneous PET acquisitions
and repeated cycles of glucoCEST scans after administration.
Currently, the exact origin of the glucoCEST signal is still being
investigated, but it most probably originates from changes in glucose
concentration between the intracellular and extracellular matrix.
Therefore, data on the temporal and spatial distribution and kinetics
of glucoCEST signal are needed. However, the temporal dynamics of
glucose concentration are difficult to obtain with glucoCEST MRI,
and comparative studies of glucoCEST MRI and [18F]FDG PET in
BC are of high interest (Kim et al., 2022). The protocol presented
herein provides the basis for further studies on the post-challenge
glucoCEST kinetics in BC xenografts and facilitates research on the
complementary value of [18F]FDG PET to glucoCEST MRI.

Our proposed hypoxia imaging protocol addressed several
challenges. Two intravenous administrations were required: one for
the hypoxia PET radiotracer [18F]FMISO and a second for the
gadolinium-based contrast agent for DCE-MRI performed at the
end of the protocol. Additionally, we needed to account for the fact
that the uptake kinetics of hypoxia radiotracers are highly dependent
on the anesthetic agent, the inhalant anesthesia carrier gas, and the
timepoint after administration used for imaging. We also needed to
account for the fact that the uptake of [18F]FMISO in target (hypoxic)
tissues and clearance from non-target tissues is generally slow due the
lack of a specific uptake mechanism and dependency on passive,
diffusion-driven intracellular uptake mechanisms. For hypoxia
imaging in tumors by simultaneous BOLD-MRI, two data
acquisitions—at normoxic conditions (room air) followed by a
second scan at hyperoxic (100% O2) conditions—are needed
(Bartsch et al., 2023). This requires a change of the oxygen
concentration in the isoflurane carrier gas during the imaging
protocol, which in turn influences or even compromises [18F]
FMISO uptake in hypoxic tumor areas. Moreover, changes in the
isoflurane anesthetic conditions directly affect blood pressure and
tissue oxygenation, and the resulting changes in blood
microcirculation perfusion do interfere with IVIM-MRI. Hence, the
intravenous administrations, the long [18F]FMISO uptake phase, the
anesthesia management, timing of oxygen challenge, and ultimately
the order of mpMRI sequences were the keymethodological challenges
in this protocol requiring standardization.

Initial experiments with intraperitoneal administered [18F]
FMISO yielded insignificant systemic uptake from the
peritoneum and, hence, proved unsuitable for tumor imaging
(data not shown). However, intravenous tracer administrations
into awake animals were technically challenging and potentially
increased the radiation exposure of the personnel involved. As a
compromise between radiation protection measures and animal
welfare considerations, we performed the first intravenous
administration at low anesthetic depth conditions (immediately
after the loss of the frightening reflex) and initiated recovery as
soon as the intravenous administration was finished. The overall
procedure was accomplished within several minutes, and therefore a
standardized 60-min uptake interval under awake conditions in the
animals’ breathing room air, followed by another 60 min of uptake
time during the initial MRI scans, was easily manageable. The
optimal time window for [18F]FMISO PET imaging has been
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found to be in the range of 2–3 h after intravenous administration
(Dos Santos et al., 2023). Exactly 120 min after [18F]FMISO
administration, the first static PET acquisition was initiated
under normoxic conditions, followed by a change of the
anesthetic carrier gas from air to 100% oxygen for hyperoxic
BOLD-MRI. Recent studies using oxygen-sensitive electrodes in
tissues have confirmed that both tumoral and muscle
oxygenation rapidly increase within 10 min when the isoflurane
carrier gas is switched from air to 100% oxygen (Mahling et al.,
2015). We therefore selected a 10-min equilibration interval in our
workflow as a compromise between the overall anesthesia time for
the animal and sufficient oxygen distribution time within the animal
before continuing with hyperoxic BOLD-MRI and the second
simultaneous [18F]FMISO PET acquisition. DCE-MRI was
included as the last sequence in our workflow, as the infusion of
the gadolinium-based contrast agent would interfere with the
detection of small changes in the spin–spin relaxation rate during
hyperoxic BOLD-MRI and to maximize the time interval between
the two intravenous administrations.

Great attention has been given to the resection of tumors and the
labeling of tumor orientation, which was required during tumor
embedding to allow in vivo and ex vivo image co-registration.
Although studies such as Baldi et al. (2019) have suggested the
fabrication of 3D-printed tumor molds, we found that these
approaches were not manageable as a standard resection protocol
for large-scale animal studies. Instead, we developed a protocol
which included marking the tumor on three sides using differently
colored tissue dye prior to its resection from the mouse. To ensure
the same cutting plane as the slice in single-slice MRI acquisitions,
the T2-weighted anatomical image was used as a guide when cutting
the tumors in halves for embedding.

The subsequent ex vivo analysis of resected tissue was focused on
MALDI IMS, a powerful tool for mapping the molecular complexity of
BC tissues due to its ability to directly visualize the distribution of a
high number of proteins within tissue sections. A notable advantage of
MALDI IMS, as demonstrated in our study, is its ability to reveal the
subtle nuances of tumor heterogeneity. By applying hierarchical
clustering to the MALDI IMS data, we identified distinct molecular
patterns that define heterogeneity within BC xenografts. This analytical
approach facilitated the distinction of proteomic profiles that
morphological assessments alone could not reveal. The
segmentation of peptides to reveal tissue heterogeneity is crucial for
identifying potential therapeutic targets and understanding the
mechanisms that drive tumor progression and resistance.

An additional advantage of MALDI IMS is its ability to perform
H&E staining on the same tissue subsequent to MALDI IMS
measurement, facilitating the straightforward co-registration of
molecular data with histopathological features. The utility of
MALDI IMS in revealing the proteomic landscape of BC is
further enhanced when compared to in vivo imaging modalities.
In our study, the co-registration of MALDI IMS data with in vivo
imaging data from [18F]FDG PET/glucoCEST MRI and [18F]FMISO
PET/mpMRI could offer a more comprehensive interpretation of
the tumor. This multimodal approach effectively captures the spatial
heterogeneity of tumors, thereby offering a composite view that
integrates the dynamic metabolic and structural information from
PET and MRI with the molecular snapshot provided by MALDI
IMS. Co-registration allows for multiscale analysis that combines

macroscopic imaging findings with microscopic molecular details.
Such an approach is instrumental in enhancing our understanding
of the pathophysiological processes, potentially leading to the
identification of novel biomarkers and therapeutic targets.

Despite the findings provided by MALDI IMS of BC xenografts,
several challenges persist. The technique’s sensitivity to sample
preparation, matrix application, and ionization efficiency can lead
to variability in the data, highlighting the need to standardize the
experimental protocol. The vast quantity of data generated requires
sophisticated computational methods for effective data reduction
and image reconstruction—a bottleneck for researchers without
access to advanced bioinformatics tools.

Concerning ML analyses of CMI data, data preprocessing and
preparation for subsequent ML applications are, in many aspects,
similar to clinical data. However, there are substantial differences in
sample size and the underlying biological rationale. The typical
tumor ROIs of a mouse are significantly smaller than that of human
tumors (i.e., BC in this case). Thus, the first step we presented,
dataset selection, is most important. Small-scale motion and
susceptibility artifacts are more pronounced in preclinical high-
field PET/MRI systems than in clinical MRI hardware. They have a
profound effect on small-animal imaging data and can render the
whole image unusable. The next steps we presented, resampling,
normalization, and cropping, are very similar to the established
clinical preprocessing pipelines and are equally critical for the
application of ML to radioproteomic datasets and preclinical
image data. Furthermore, these next steps are important, as ML
algorithms depend on equidistant pixels and uniform value ranges.
The last step, co-registration, addresses a non-trivial problem that is
an area of active research. We applied an approach using ANTs,
which has become a standard approach in the field (Avants et al.,
2009). The validation and quality control of co-registration remain
challenging as there is usually no ground-truth (i.e., non-deformed,
perfectly aligned) scan available.

Lastly, it must be mentioned that all proposed imaging
workflows are non-recovery investigations, with subsequent ex
vivo MALDI IMS investigations requiring the euthanasia of the
animals at the end of the imaging workflows. For longitudinal
assessments (e.g., for predictive assessments of therapy response
in distinct BC subtypes), new workflows will need to be determined
which consider aspects such as peri-anesthetic management after
each respective imaging session, an optimized recovery phase after
anesthesia employing oxygen support and body temperature
maintenance, fluid management by subcutaneous administrations
of (warmed) supportive isotonic solutions, and the minimum time
interval for full recovery before the next imaging session. Moreover,
considerable volume and shape changes of tumors during
progression and in response to therapeutic interventions pose
additional challenges in image co-registration and -analysis.

In summary, we present here in detail a practical simultaneous
multiparametric PET/MRI preclinical workflow for in vivo
metabolic and hypoxia imaging, maximizing the number of
assessed parameters within a reasonable anesthesia time that was
well-tolerated by the investigated mice. The workflow provides
further guidance on the subsequent collection of tumor samples
in a comparable anatomical orientation for ex vivo analysis and
showcases the correlative value of MALDI IMS to PET/MRI for
assessing tumor heterogeneity. For instance, the identification of
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hypoxic and normoxic tumor regions using multiparametric PET/
MRI imaging could be of great use for the longitudinal assessment of
differential response following novel tumor microenvironment-
targeting therapy. For a multifaceted, holistic view, these imaging
biomarkers can only be validated by ex vivo molecular data from
CMI datasets. Finally, the workflow describes data preprocessing
steps for the co-registration of image data from different in vivo
sources at different scale levels, with the clear perspective of
facilitating ML radioproteomic applications.
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Glossary
ACN acetonitrile

ADC apparent diffusion coefficient

BC breast cancer

BOLD-MRI blood oxygen level-dependent MRI

CEST chemical exchange saturation transfer

CMI correlative multimodal imaging

CT computed tomography

D diffusion coefficient

D* perfusion coefficient

DCE-MRI dynamic contrast-enhanced MRI

EPI echo planar imaging

EtOH ethanol

FBS fetal bovine serum

[18F]FDG 2-[18F]Fluor-2-desoxy-D-glucose

fIVIM IVIM fraction

FLASH fast low-angle shot

[18F]FMISO 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole

FOV field of view

GS/s gigasamples per s

H&E hematoxylin and eosin

HCCA α-cyano-4-hydroxycinnamic acid

IVIM-MRI intravoxel incoherent motion MRI

ktrans transfer constant between intravascular and extravascular space

m/z mass-to-charge ratio

MALDI IMS matrix-assisted laser desorption/ionization imaging mass
spectrometry

ML machine learning

mpMRI multiparametric MRI

MRI magnetic resonance imaging

MTRasym magnetization transfer ratio asymmetry

PBS phosphate-buffered saline

PET positron emission tomography

RARE rapid acquisition with relaxation enhancement

ROI region of interest

SUVbw standardized uptake value (body weight)

TA acquisition time

TE echo time

TFA trifluoroacetic acid

TIC total ion count

TR repetition time

ve extravascular volume fraction

vp plasma volume fraction

VOI volume of interest

VTR variable repetition time

WASSR water saturation shift referencing

Frontiers in Biomaterials Science frontiersin.org18

Bartsch et al. 10.3389/fbiom.2024.1420114

https://www.frontiersin.org/journals/biomaterials-science
https://www.frontiersin.org
https://doi.org/10.3389/fbiom.2024.1420114

	Methodological aspects of correlative, multimodal, multiparametric breast cancer imaging: from data acquisition to image pr ...
	1 Introduction
	2 Material & methods
	2.1 General
	2.1.1 Chemicals
	2.1.2 Generation of BC xenografts
	2.1.3 PET/MRI scanner hardware

	2.2 Metabolic imaging using simultaneous [18F]FDG-PET and glucoCEST MRI
	2.2.1 General [18F]FDG-PET/glucoCEST MRI protocol
	2.2.2 Animal preparation and [18F]FDG-PET/glucoCEST MRI parameters
	2.2.3 Image postprocessing and analysis

	2.3 Hypoxia imaging using simultaneous [18F]FMISO-PET and mpMRI
	2.3.1 General [18F]FMISO-PET/mpMRI protocol
	2.3.2 Animal preparation
	2.3.3 BOLD-MRI
	2.3.4 IVIM-MRI
	2.3.5 DCE-MRI
	2.3.6 [18F]FMISO-PET
	2.3.7 Image postprocessing and analysis

	2.4 Ex vivo imaging of BC specimens
	2.4.1 Resection of BC xenografts and preparation for ex vivo imaging
	2.4.2 MALDI IMS

	2.5 Data preprocessing of multimodal imaging data for ML applications
	2.5.1 General data preprocessing steps
	2.5.2 Data selection
	2.5.3 Resampling
	2.5.4 Data normalization
	2.5.5 Cropping
	2.5.6 Co-registration of multimodal imaging data


	3 Results
	3.1 Metabolic imaging using simultaneous [18F]FDG-PET and glucoCEST MRI
	3.2 Hypoxia imaging using simultaneous [18F]FMISO-PET and mpMRI
	3.3 Ex vivo assessment using MALDI IMS and H&E staining

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary Material
	References
	Glossary


