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Periodontitis is a chronic inflammatory disease associated with dysbiosis in
subgingival plaque biofilm, characterised by damage to the periodontal
tissues, eventually leading to tooth loss. Hence, the pathophysiology of
periodontitis and interaction between subgingival plaque and host tissue
under various environmental cues are central to the pathogenesis of
periodontitis. Therefore, engineering biofilm models that mimic in vivo
pathophysiology is crucial to obtaining a clear insight into the pathology and
developing targeted therapeutic methods. In this review, we provide a
comprehensive overview of the engineering strategies employed of modelling
oral biofilms focusing on surface attachment, fluid microenvironment, gas
environment, shear force, microbial-host interaction and offer insights into
the ongoing challenges and future perspectives, which will enable the
development of novel physiological relevant models for oral biofilms.
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1 Introduction

Periodontitis is an inflammatory disease associated with dysbiosis within the plaque
that colonises the subgingival area, leading to the destruction of both soft (i.e., gum) and
hard tissues (i.e., bone and cementum) (Darveau, 2010). Beyond causing tissue damage in
the oral cavity, periodontitis has been linked to several diseases, including cardiovascular,
cerebrovascular and respiratory conditions (Wu et al., 2000; Scannapieco and Ho, 2001;
Ohyama et al., 2009; Li et al., 2017). These correlations imply a potential systemic
connection between the dental plaque and the host’s organs. The ability to simulate
microbiome dysbiosis within the oral cavity could provide vital mechanistic insights
into the progression of periodontitis and systemic association across the host body,
thereby aiding in the discovery of novel treatments. However, existing models for
periodontitis are constrained by the inherent complexity of the biology and
pathophysiology associated with the progression of the disease.

A key engineering challenge in modelling microbial dysbiosis within the oral cavity is
the multitude of players involved in the pathophysiology, including the oral biofilm formed
by hundreds of oral microorganism species and host cells such as immune cells, bone cells,
and epithelial cells. Unlike traditional theories attributing diseases to specific pathogenic
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bacteria, the development of periodontitis is linked to shifts in the
oral microbial community (Berezow and Darveau, 2011). The
subsequent immune responses triggered by this microbial
dysbiosis lead to severe destruction of periodontal tissues
(Berezow and Darveau, 2011). Consequently, there is a significant
need for periodontitis models that can effectively capture the
intricate microbial-microbial and host-microbial interactions.
Such models are essential not only for unravelling the molecular
mechanisms underpinning the disease but also for serving as a
foundation for the development of new treatments.

In vivo models have long been the gold standard for
periodontitis research. Animal models, including dogs, non-
human primates and small rodents such as rats and hamsters,
are often used for in vivo studies (Tariq et al., 2012). However,
these models come with inherent limitations, such as high costs,
challenges in standardising individual differences and the
complexity of the system. These drawbacks render animal models
not suitable for every scenario, particularly in early-stage
periodontitis studies. Therefore, researcher s’ attention has shifted
towards the utilisation of in vitro models.

In comparison to animal models, in vitro models serve as
simplified and more focused platforms that are ideal for isolating
and examining specific factors or pathways in a controlled manner.
While in vitromodels may not offer the same comprehensiveness as
animal models, they perform better at dissecting underlying
mechanisms at a molecular or cellular level, allowing for a
precise and clear understanding of specific disease components.

However, constructing in vitro models faces significant challenges
when dealing with complex scenarios.

To date, various in vitro models for oral biofilms have been
developed to facilitate pathology studies and drug screenings. While
existing reviews by Luo and Pan extensively cover in vitro biofilm
models (Luo et al., 2022) and the pathophysiology of periodontitis
(Pan et al., 2019), there is limited coverage of in vitro models that
encompass the diverse aspects of periodontitis pathophysiology.
This review aims to provide a landscape perspective on current
engineering approaches that enable the modelling of various aspects
of periodontitis. Additionally, we present additional strategies that
could potentially be integrated into the model for biofilm
development in the context of periodontitis.

2 Key environmental factors in
periodontitis

To thoroughly understand the pathophysiology of periodontitis,
it is crucial to clarify the oral microbial dysbiosis and the subsequent
response of the host immune system. This clarification includes all
factors involved in the development of periodontitis (Figure 1)
including microbiome interspecies interaction (Jakubovics, 2015;
Marsh and Zaura, 2017), biofilm surface adhesion (Hao et al., 2018;
Sterzenbach et al., 2020), local liquid and dissolved gas environment
(Pöllänen et al., 2013; Stacy et al., 2016; MarkWelch et al., 2020), and
microbiome-host cell interactions (Pan et al., 2019; Lamont et al.,

FIGURE 1
Environmental factors contributing to periodontitis. Key factors involved in the pathological mechanisms include inter-bacterial interactions,
microbial adhesion to the host, the fluid environment (both liquid and gas) within periodontal tissues, and the interaction between host cells and
microorganisms. When developing in vitro models for periodontal diseases, selecting suitable methods to simulate these factors becomes essential.
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2023). These aspects have been extensively discussed in multiple
reviews; hence, they will only be briefly covered in this review.

2.1 Bacterial interspecies interactions

The oral microbiome, comprising roughly 700 species, plays a
crucial role in both health and disease (Zhao et al., 2017). Among
them subgingival plaque was found most relevant to periodontitis
(Zijnge et al., 2012). Initial research identified six microbial
complexes within the plaque, correlating their presence with
health or disease states, among which red complex species
[Porphyromonas gingivalis (P. gingivalis), Treponema denticola (T.
denticola), Tannerella forsythia (T. forsythia)] are considered most
relevant to periodontitis (Socransky S. et al., 1998; Hajishengallis
et al., 2012). However, with the detection of red complex species in
healthy individuals, it is evident that attributing disease solely to
these species is not a comprehensive theory (Lamont and Jenkinson,
1998; Carrouel et al., 2016). The subsequent Keystone theory
suggests that pathogens like P. gingivalis do not directly cause
inflammation in the body. Instead, they induce a noticeable shift
from Gram-positive facultative anaerobic bacteria to Gram-negative
anaerobic bacteria in the subgingival microbiome (Balan et al.,
2023), causing a microbiome dysbiosis and then triggers
complement-dependent inflammation (Hajishengallis et al.,
2012). The polymicrobial synergy and dysbiosis (PSD) model, on
the other hand, points out that the pathogenicity of red complex
species is only manifested within a synergistic microbial community
(Hajishengallis and Lamont, 2012). Therefore, in modern theories,
the concept of pathogens and commensals is gradually becoming
blurred. Researchers tend to focus more on analysing the species

abundance, microbial dynamics, and complex interspecies
interactions including nutritional symbiosis and competitive
antagonism within the subgingival plaque under different disease
states (Christensen et al., 2002; Coppenhagen-Glazer et al., 2015;
Marsh and Zaura, 2017). These findings shift the focus from
individual pathogens to the dynamics of microbial communities,
underscores the significance of microbial interactions within the oral
ecosystem, highlighting periodontitis as a condition driven by the
collective pathogenic potential of microbial communities rather
than the presence of a single pathogen. Figure 2 shows the shift
in subgingival plaque.

2.2 Surface properties for biofilm formation

Oral microorganisms predominantly form biofilms in the oral
cavity, creating complex, three-dimensional structures that enhance
their survival. These biofilms begin with the adhesion of bacteria to
oral surfaces such as teeth and epithelial cells, facilitated by salivary
glycoproteins that attract microbes through electrochemical forces
(Weerkamp et al., 1988; Ren et al., 2018), primarily involving Gram-
positive facultative anaerobic cocci and rods (Kriebel et al., 2018).
Biofilm formation includes not only passive adhesion but also active
surface attachment mechanisms, such as the involvement of flagella
that allow bacteria to sense and move toward surfaces (Yang et al.,
2016). Through cell proliferation and a phenotypic shift towards
increased extracellular polymeric substance (EPS) production,
biofilm starts to mature, enhancing the structural stability and
enabling further microbial aggregation (Flemming et al., 2007;
Bowen and Koo, 2011; Laventie et al., 2019). This process is
facilitated by high-affinity surface adhesins, which help transition

FIGURE 2
Changes in the composition of subgingival microbiome during periodontitis. As periodontitis progresses, there are changes in the microbial species
composition of subgingival plaque. Microbial species associatedwith health decrease in proportion as the disease develops, while the number of disease-
associated species gradually increases. In terms of species richness, the diversity of species in subgingival plaque increases as the disease worsens (Griffen
et al., 2012).
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from reversible to irreversible attachment (Bowen and Koo, 2011;
Groeger et al., 2022), and by dispersion mechanisms that allow
divided cells to detach and form new biofilms, significantly
increasing the biofilms’ resistance to external stresses (Stoodley
et al., 1999; Tolker-Nielsen et al., 2000).

2.3 Liquid and soluble gas environment

Periodontitis takes place in the gingival pockets, an area
characterised by a mix of host tissues, oral biofilms, saliva, and
various gases, creating a complex environment crucial for microbial
survival and interaction. Saliva, acting as the primary liquid
medium, facilitates material exchange, while gingival crevicular
fluid (GCF), comprising serum, leukocytes, and other cellular
components, maintains an alkaline pH that aids in microbial
adhesion (Uitto, 2003; Barros et al., 2016; Carpenter, 2020).
Liquid shear forces within this niche play a crucial role in
microbial adsorption and the dispersal of bacteria, enabling the
formation of new biofilms (Weerkamp et al., 1988; Stoodley et al.,
1999; Ren et al., 2018).

The oxygen gradient within gingival pockets significantly
influences the progression of periodontitits (Celik and Kantarci,
2021). Most pathogenic bacteria in subgingival plaque are anaerobes
thriving in the low-oxygen conditions exacerbated by inflammation
(Socransky S. S. et al., 1998; Celik and Kantarci, 2021). This
environment promotes the proliferation of anaerobic pathogens,
further fuelling the inflammatory process (Celik and
Kantarci, 2021).

Furthermore, cross-species communication within biofilms
alters the local environment, supporting biofilm growth (Joshi
et al., 2021). For example, a notable “hedgehog” structure
observed within oral biofilms illustrates the complex spatial
organisation, with Corynebacterium at the core surrounded by
various bacteria, creating gradients that cater to both aerobic and
anaerobic species (Mark Welch et al., 2016). This intricate
interaction within biofilms and the surrounding
microenvironment underscores the complexity of periodontal
inflammation and the challenges in managing periodontal disease
(Mark Welch et al., 2016).

2.4 Microbiome-host cell interactions

Subgingival plaque dysbiosis, triggered by factors such as bad
dietary habits, alcohol, and smoking, prompts a host immune
response to oral biofilms harbouring pathogenic bacteria like P.
gingivalis, T. forsythia, and T. denticola (Sedghi et al., 2000). These
pathogens activate toll-like receptors (TLR-2 and TLR-4), inducing
inflammatory responses and disrupting epithelial barrier proteins
through proteases, leading to periodontal tissue damage (Kawai and
Akira, 2005; Yilmaz et al., 2006; Yoshioka et al., 2008; Zheng et al.,
2021). The immune response includes neutrophil accumulation and
altered functions due to bacterial interference, affecting phagocytosis
and promoting inflammation through cytokine secretion and
macrophage activation (Kudrin and Ray, 2008; Bostanci et al.,
2013; Li et al., 2013; Maekawa et al., 2014; Olsen and
Hajishengallis, 2016; Abe-Yutori et al., 2017; Papadopoulos et al.,

2017; Pan et al., 2019; Takeuchi et al., 2021a). The ongoing
inflammation disrupts alveolar bone homeostasis by tipping the
balance between bone-forming osteoblasts and bone-resorbing
osteoclasts, mediated by imbalances in RANKL and
osteoprotegerin (OPG), resulting in alveolar bone loss (Vernal
et al., 2005). The complex interactions between various
periodontal bacteria and the host immune system underline the
challenges in understanding and treating periodontal disease.
Developing models that mimic the periodontal
microenvironment could enhance our understanding and lead to
better prevention and treatment strategies.

3 In vitro biofilm models for
periodontitis research

Animal models are a good option for periodontitis study as they
may effectively simulate the full spectrum of periodontitis
progression, offering valuable insights into the condition (Tariq
et al., 2012). For instance, ligature-induced periodontitis models are
widely applied in mice as they presented high availability for
genetically engineered strains and high-quality immunochemical
and cellular reagents (Marchesan et al., 2018). Monkeys have been
proven to possess gingival immunological and histological
characteristics identical to humans (Weinberg and Bral, 1999).
They also exhibit microbiological characteristics of subgingival
plaque in various states—healthy, gingivitis, or
periodontitis—mirroring those in humans (Weinberg and Bral,
1999). However, animal models have inherent drawbacks. Firstly,
there are xenotypical and physiological differences between animal
models and human (Schou et al., 1993). Furthermore, the complex
nature of animal models introduces challenges in isolating and
analysing individual factors to provide a systematic approach to
identify the mechanism of the disease. Beyond these limitations,
animal experiments are known to involve high costs, lengthy
turnaround times, and ethical controversies, prompting
researchers to develop in vitromodels suitable for various scenarios.

As the subgingival plaque plays a crucial role in the development
of periodontitis, extensive research has been dedicated to
constructing in vitro models of pathogenic microbes. These
models aim to replicate the morphology of microorganisms in
the oral cavity or the interaction between oral microorganisms
and host cells. In contrast to animal models, in vitro
periodontitis models offer a versatile platform that enables better
control over the microenvironment, including parameters such as
liquid shear stress, surface stiffness and the availability of essential
biomolecules crucial for the development and maintenance of
the biofilm.

Being simpler, in vitro periodontitis models are more focused,
stable, and provide strong observability and ease of operation.
However, current in vitro models cannot comprehensively mimic
all the microenvironment factors contributing to the disease
progression compared to in vivo models. Therefore,
microbiologists and tissue engineers need to consider the
research question and experiment needs when choosing the
appropriate in vitro models.

Till today, there are various models have been developed to
recapitulate different essential aspects of microenvironments in
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periodontitis. McBain conducted a comprehensive review of biofilm
models developed across various domains (McBain, 2009),
including simple agar plate models (Verhamme et al., 2009; Chai
et al., 2011), well plate-based models (Friedman and Kolter, 2004;
Sánchez et al., 2011; Sánchez et al., 2014), flow cell models (Aspiras
et al., 2000), constant-depth film fermenter models (McBain et al.,

2005), and drip-flow biofilm reactor models (McBain et al., 2005),
among others. However, not all models are equally suitable for
modelling periodontitis-associated biofilms. A concise overview of
common models for in vitro modelling of oral biofilms, their
operating principles and their respective advantages and
disadvantages, is presented in Table 1.

TABLE 1 Common biofilm models in periodontal research.

Mimicked
physiological
aspect

In vitro
platforms

Operating principles Pros (+) References

Cons (−)

Biofilm Attachment,
Development, and
Maturation

• Microplate Utilising treated substrate,
providing surface for bacteria to
attachment and form

+ Straightforward in design and user-
friendly

Kumbar et al. (2021), Guggenheim et al.
(2009), Ramachandra et al. (2023a)

• CDC bioreactor - Incompatible for long term co-culture
due to the need to culture the
mammalian cells requiring normoxic
environment while periodontitis-
associated bacteria need anaerobic
environment

- Limited to 24-hourculture period
when co-culturing with mammalian
cells to prevent bacterial overgrowth

Liquid Shear Stress • Modified
Robbins device

Leverage on liquid pumps to push
liquids within the bioreactors

+ Introduce liquid shear force into the
microenvironment

Maezono et al. (2011), Ramachandra
et al. (2023a), Zainal-Abidin et al.
(2012), Lam et al. (2016), Pratten and
WillsBarnettWilson (1998)• CDC bioreactor

• Flow cell culture - Setup can be costly and technically
challenging

• Microfluidic
devices

• Constant depth
film fermenter

Physicochemical
Microenvironment

• Chemostat Incorporating additional flow
chambers and flow systems to flow
pH and dissolved gas

+ Introduce a precisely controllable
homogenous liquid environment

Zilm and Rogers (2007), Lam et al.
(2016)

• Microfluidic
devices

-Setup can be costly and technically
challenging

Interbacterial Species
Interactions

• Microplate Culturing of mixed population of
bacteria

+ Straightforward in design and user-
friendly

Kumbar et al. (2021), Guggenheim et al.
(2009), Ramachandra et al. (2023a)

• CDC
bioreactors

+ Scalable platform

- Limited capability to study and track
dynamic bacterial population changes
for investigating disease mechanism

• Flow cell culture Compartmentalisation of bacteria
linked by liquid flow network

+ Enables systemic investigation of
bacterial interactions

Zainal-Abidin et al. (2012), Lam et al.
(2016)

• Microfluidic
devices

- Does not always reflect the true spatial
organisation of periodontal bacteria

- Difficult to setup

Microbial-Host Interactions • Microplate Suspending bacteria-laden surface
into mammalian cell culture
platform

- Due to rapid bacterial overgrowth, co-
culture with bacteria and mammalian
cells are limited to 24 h

Guggenheim et al. (2009), Bao et al.
(2015)

• Perfusion
bioreactor
system

• Microfluidic
devices

Compartmentalisation of bacteria
and mammalian cells linked by
liquid flow network

+ Enables systemic investigation of host
cell interactions with bacteria

Makkar et al. (2023)

+ Uses liquid shear stresses to prevent
bacterial overgrowth

- Difficult to setup
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As periodontitis entails dynamic interactions among multiple
bacterial species and host cells in a heterogeneous environment,
in vitro models capable of mimicking the native physiology of
periodontitis will be ideal to facilitate a systematic understanding
of the disease pathophysiology. This review primarily explores the
methodologies used to simulate various aspects of periodontal
diseases. Figure 3 provides a concise overview of some typical
methodologies. The integration of new techniques has expanded
the possibilities for creating biofilm models and addressing
pertinent factors.

3.1 Bacterial interspecies interactions

When modelling the dynamics within subgingival plaque, it is
essential to first identify the key bacterial species and understand
their potential interactions within the microbial community. In the
context of microbiome and biofilm modelling, it is important to
consider the role of early colonisers, which establish the initial
biofilm matrix, and the subsequent cross-feeding of metabolites.
These interactions are critical for the development and maturation
of biofilms. For instance, Mishra et al. (2010) co-cultured fimA-,
fimB- and srtC2-deficient Actinomyces oris (A. oris) with streptococci
demonstrating the role of A. oris in synthesising fimbriae, essential
for the adhesion of the streptococci during biofilm formation. Apart
from the synergistic relationship of the bacteria, the potential
antagonistic effect between the bacterial species is important to
help researchers identify strategies to treat and halt periodontitis.
Duran-Pinedo et al. (2014) co-cultured Streptococcus mitis (S. mitis),
a member of the yellow complex commonly found in healthy
gingival biofilms, along with members of the red complex, P.
gingivalis and T. forsythia. At high populations, P. gingivalis and
T. forsythia induce an inflammatory response in host cells that leads
to the death of S. mitis. This facilitates the colonisation of P.
gingivalis and T. forsythia and contributes to the development of
periodontitis. These studies underscore the importance of modelling
interactions between bacterial species to advance our understanding
of disease progression and to identify potential treatment strategies.

The simplest strategy to model the interaction between bacterial
species is to mix a defined ratio of microbial species into a culture
broth. Due to their consistency, ease of analysis, and the scalability of
microplates, this platform has been routinely applied to screen for
drug treatments that require multiple dose-response studies. For
instance, Li and Kumbar observed the inhibitory effect of curcumin
on the biofilm formation of S. mutans and P. gingivalis (Li et al.,
2018; Kumbar et al., 2021) while Izui et al. (2016) constructed a P.
gingivalis- S. gordonii (Streptococcus gordonii) interbacterial biofilm
model in microtiter plates using a similar approach. This verification
demonstrated that curcumin also inhibits the ability of P. gingivalis
to form biofilms based on early colonisers such as S. gordonii in
complex biofilms (Izui et al., 2016). These models are often used to
observe specific interactions between a limited number of species,
typically involving only two or three microbial species. To better
capture all interactions of microbials species in periodontitis, it is
suggested that the criteria for selection can be based on the
prevalence of these species in periodontal disease sites and their

FIGURE 3
Examples of modelling strategies for periodontitis focusing on
different aspects. (A) A model introduced bacteria from initial, early,
secondary and late stage of biofilm colonisation (Sánchez et al., 2011).
(B) The CDC model introduced dental plaque samples for oral
biofilm culture (Ramachandra et al., 2023a). (C) Hydroxyapatite discs
are used for simulating human teeth (Sánchez et al., 2011). (D) A 3D-
printed silk sponge and collagen, incorporating teeth to mimic soft
and hard tissues for biofilm attachment (Adelfio et al., 2023). (E) A
model using sterile human saliva as the sole culture medium to mimic
an in vivo liquid environment (Nance et al., 2013). (F) A bioreactor
equipped with a gaseous control system for the regulation of gas
components (Diaz et al., 2002). (G) A flow cell system is used to
generate a low shear force environment (Ali Mohammed et al., 2013).
(H) A drip-flow reactor creating a low shear force environment
through inclined channels (Ghesquière et al., 2023). (I) Zurich model
applies biofilm on a disc ring to co-culture with host cells to observe
microbial-host interactions (Guggenheim et al., 2009) (J) A co-
culturing system integrating mammalian cell and biofilm culture to
observe microbial-host interactions (Bao et al., 2015).
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ability to be cultivated and quantified. Guggenheim and colleagues
developed the Zurich model, selecting five bacterial species and
Candida albicans to represent supragingival plaque (Shapiro et al.,
2002). The Zurich model’s key principle involves selecting a broad
range of microbial species in a controlled and quantifiable way to
create a biofilm that is complex yet precisely composed. The species
selected to represent the subgingival microbiome were
Campylobacter rectus (C. rectus), Fusobacterium nucleatum (F.
nucleatum), P. gingivalis, Prevotella intermedia (P. intermedia), T.
forsythia, Veillonella dispar (V. dispar), Actinomyces naeslundii (A.
naeslundii), Staphylococcus intermedius (S. intermedius), and
Streptococcus oralis (S. oralis) (Guggenheim et al., 2009). Sanchez
and team adopted a similar approach but expanded the oral biofilm
species to include different stages of colonisation: initial (S. oralis
andA. naeslundii), early (V. parvula), secondary (F. nucleatum), and
late (P. gingivalis and A. actinomycetemcomitans) stages (Sánchez
et al., 2011). The aim was to encompass the diversity of the
subgingival plaque and the stages of the biofilm formation and
development over time, enabling researchers to replicate and study
this process in a temporal context.

The Zurich model is commonly set up by dipping
hydroxyapatite discs into the mixture of bacterial suspension
containing a defined ratio of each species of bacteria. To facilitate
bacterial adhesion on the surface, an incubation period of 16 h–24 h
is typically required before their subsequent culture and use for
experimentation. However, these models might have limitations in
accurately simulating the intricate nature of an oral biofilm in a
laboratory setting. To address this, researchers have experimented
with using patient samples to create more representative in vitro
models of undefined multispecies biofilms. For instance,
Ramachandra et al. (2023a) introduced subgingival plaque from
patient sources into a CDC bioreactor, a widely recognised device for
biofilm research. This approach more effectively mirrors the
complexity of natural biofilms compared to traditional defined
models. One challenge with this approach is adjusting the culture
broth to support all included bacterial species (Ammann et al.,
2012), supplements like human saliva and blood are commonly used
to facilitate co-culture (Love, 2010). However, while viable, this
strategy introduces batch-to-batch variation due to the variability in
human samples. Additionally, this co-culture strategy does not
readily allow for the spatial-temporal tracking of bacterial
dynamics or individual metabolite release because all species
share the same liquid environment. These limitations can pose
significant challenges in studying the mechanisms underlying
interbacterial relationships in periodontitis.

It is important to note that using this strategy while viable
introduces batch-to-batch variation that results from the human
samples during the culture. Additionally, this co-culture strategy of
the bacterial mixture does not easily allow researchers to spatio-
temporally track the dynamics of all bacterial species during the
culture as well as the metabolite release of individual species due to
sharing a single liquid environment. This can pose challenges to
studying the mechanism of the interbacterial relationship in
periodontitis.

One engineering approach to enable the study of interbacterial
cross-feeding relationships is through the use of a flow cell system. In
the flow cell system, differently cultured biofilms are linked together
by a fluid conduit. The culture broth is then flowed through from

1 cell to another. In Zainal-Abidin’s study, T. denticola, P. gingivalis
and T. forsythia, classified as red complexes, were inoculated in a
single-channel flow cells system that allowed continuous cultivation
for up to 90 h, enabling visual observation of the biofilm (Zainal-
Abidin et al., 2012). By pairing up the P. gingivalis in series with T.
denticola, and T. forsythia, it was observed that the upregulation of
glycine catabolism in P. gingivalis resulted in a change in the
structure of flagella in T. denticola. This work showcased a
critical benefit in providing mechanical insights between
interacting bacterial species that are otherwise challenging to be
implemented in microplate platforms.

3.2 Surface attachment

Surface adhesion plays an essential role in biofilm development,
marking a key difference from planktonic microbes (Ammann et al.,
2012). In periodontitis, the adhesion of early colonisers plays a
significant role in the formation and maturation of biofilm by
altering the immediate microenvironment and generating
additional adhesion sites for other bacterial species (Love, 2010).
There’s extensive research on how microbes attach at the molecular
biology level which was covered by existing reviews (Kuboniwa and
Lamont, 2000). For the oral microbial and periodontitis model, a
common substrate that enables biofilm adhesion is hydroxyapatite
(Pratten and WillsBarnettWilson, 1998; Shapiro et al., 2002;
Guggenheim et al., 2009) for its similarity in chemical structure
to tooth enamel. In periodontitis, P. gingivalis is known to adhere to
hydroxyapatite through fimbriae (Lee et al., 1992) which can be
altered by the hag genes (Connolly et al., 2017). Jaffar et al.
(2016) created dense and porous HA discs to replicate enamel
and dentin at the microscopic structural level respectively, and
cultured biofilms of Aggregatibacter actinomycetemcomitans (A.
actinomycetemcomitans) and P. gingivalis on the discs. The
advantage of using commercial HA products was easier
standardisation, making them ideal for studying the effects of
surface roughness on biofilm adhesion. Additionally, HA can be
constructed in various form factors, allowing biofilm adhesion and
culture in many culture configurations including microplates
(Kumbar et al., 2021), flow cells (Zainal-Abidin et al., 2012) and
CDC bioreactors (Ramachandra et al., 2023a). Beyond HA, biofilm
adhesion on other material surfaces such as titanium and zirconium
are important in studying biofilm development on dental implants.
Although massive literature suggests titanium and zirconium
provide antimicrobial properties (Siddiqi et al., 2016), exposed
rough surfaces of titanium and zirconium are found to enable P.
gingivalis to form biofilm (Kniha et al., 2021).

Apart from hydroxyapatite, common laboratory materials like
glass and polypropylene are frequently used for their availability and
simplicity (Hamada and Torii, 1978; Saito et al., 2008). However,
they do not closely mimic the hard tissues of the periodontium. Hägi
et al. (2015) processed human teeth into dentin slices and exposed
them to a bacterial culture with various strains (Pratten and
WillsBarnettWilson, 1998). Using human dentin slices, this
material provides an excellent model for dentists to investigate
the impact of biofilm removal techniques including hand
curettes, ultrasonication, and subgingival air-polishing, on the
dentin structure (Hägi et al., 2015). However, the limitations of
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relying on human dentin including limited and variable sources
would impart significant issues for standardised assay development
and scalability.

While hydroxyapatite and dentin have demonstrated good
utilities for researchers to model biofilm on tooth surfaces, they
do not reflect the development of biofilm along the gingival margin
which can result in the formation of periodontal pockets (Haffajee
et al., 2009). In vitro models to capture this phenomenon would
require researchers to use softer substrate that can mimic the gum
tissue stiffness. Recent progress in 3D printing and bioprinting has
proven to be an effective tool to fabricate adhesive surfaces with
tuneable surface stiffness. Ramachandra et al. (2023b) demonstrated
this feasibility by constructing 3D printed polycaprolactone (PCL)
scaffolds, enabling saliva biofilm development. In addition to
selecting the 3D printing material, the surface properties of the
scaffold can also be tuned by mixing biological-derived material
such as collagen, gelatine or alginate. A notable study used silk
proteins and type I collagen, combined with 3D printing techniques,
to replicate the gingival tissue stiffness in vitro (Adelfio et al., 2023).

3.3 Fluid microenvironment

The oral cavity is a complex ecosystem, where elements like
gingival crevices, tooth surfaces, oral epithelium, saliva flow, diet,
and individual habits result in a unique and intricate
microenvironment for each individual. This environment is
crucial for the attachment and survival of oral biofilms. In
periodontitis, disruptions to this microenvironment, often caused
by unhealthy lifestyle choices such as smoking and poor oral
hygiene, play a key role in disturbing the balance of the
subgingival microbiome (Genco, 1996; Janakiram and Dye, 2020).
These disturbances manifest as alterations in fluid composition,
shifts in the partial pressures of different gases, and changes in the
shear forces acting on the oral biofilm. Accordingly, accurately
replicating these chemical and physical aspects of the oral
microenvironment is vital when developing in vitro models for
studying oral biofilms.

3.3.1 Liquid components
Saliva is a key component in the oral fluid environment,

providing essential nutrients, unique fluid dynamics, and a
specific chemical and electrochemical milieu for oral biofilms
(Kolenbrander, 2011). One early study used saliva as the sole
nutritional source for culturing randomly isolated oral bacteria
(De Jong and Van der Hoeven, 1987). In this setup, subgingival
microbial strains were enriched and then cultured in sterile saliva,
requiring daily replenishment of 25 mL for static growth (De Jong
and Van der Hoeven, 1987). The study highlighted the critical
interactions between the oral microbiome and saliva, particularly
in the binding and degradation of salivary glycoproteins,
underscoring saliva’s indispensable role in the survival of oral
microbiome (De Jong and Van der Hoeven, 1987). A more
common technique involves using sterile saliva to mimic the oral
environment for bacterial adhesion on surfaces like HA discs, before
moving them to culture media for growth (Guggenheim et al., 2001;
Guggenheim et al., 2009; Sánchez et al., 2011). However, natural
saliva’s variability and unknown components limit experiment

reproducibility. To overcome this, artificial saliva has been
developed, replicating natural saliva’s viscosity and buffering
properties using ingredients like inorganic salts (e.g., potassium
chloride, ammonium chloride, calcium chloride, and magnesium
chloride), cellular metabolites (e.g., creatinine and choline), amino
acids, microorganisms, and significant amount of glycoproteins as
the source of saliva viscosity and electrochemical properties and
primary nutritional source for oral bacteria (Shellis, 1978). This has
subsequently been used in the cultivation of many in vitro oral
biofilmmodels and has been continuously improved to meet various
requirements (Weyell et al., 2019). For instance, Blanc used hog
gastric mucin to mimic salivary glycoproteins due to their similar
oligosaccharide structures (Blanc et al., 2014). In Wong’s study, two
artificial saliva bacterial culture media, defined medium mucin
(DMM) and designed basal medium mucin (BMM), were
compared in subgingival biofilm cultivation (Wong and Sissions,
2001). BMM, which has long been widely used for oral biofilm
cultivation, is composed of yeast extract, proteose (meat
hydrolysate), and trypticase, containing much of unknown
components (Wong and Sissions, 2001). In the two liquid
environments, the inoculated subgingival plaque showed similar
growth rates, but there were subtle differences in specific
metabolism. The biofilm grown in BMM, as opposed to DMM,
had four more enzymes detected, which may be attributed to the
abundant unknown peptides from yeast extract and protease in
BMM (Wong and Sissions, 2001).

Microfluidic platforms partially resolve the limitation of human
saliva, leveraging on the microlitre scale culture chambers requiring
significantly low volume of saliva for biofilm cultures. For instance,
Nance et al. used the BioFlux microfluidic system, inoculating
human saliva and then culturing biofilms in sterilised saliva, to
assess antibacterial effects (Nance et al., 2013). This system’s small
dimensions (48 wells, each 70 μm deep and 370 μmwide) reduce the
saliva volume needed, though it introduces challenges like high
equipment costs and complexity (Nance et al., 2013).

Biochemical contents introduced through external factors such
as diet, smoking and oral hygiene habits are known to influence
microbial behaviour contributing to periodontitis. Huang et al.
(2014) explored the connection between smoking and oral
biofilms by cultivating S. gordonii, an early coloniser of dental
biofilms (commonly found in subgingival and supragingival
biofilms), in a nicotine-infused culture medium. This study
revealed that S. gordonii enhanced biofilm growth and formation
in the presence of nicotine, suggesting a direct link between smoking
and increased oral biofilm accumulation (Huang et al., 2014). Zilm
and Rogers (2007) used a more sophisticated chemostat-based
biofilm culture system with a pH controller to study F.
nucleatum, a significant pathogen in oral biofilms mimicking
dietary induced pH changes on the biofilm. By maintaining the
culture medium’s pH between 7.8 and 8.2 through the gradual
addition of potassium hydroxide (KOH), the biofilm production of
F. nucleatum in different pH conditions could be observed (Zilm
and Rogers, 2007). The study found that an increase in pH led to
changes in cell morphology and intracellular polyglucose levels, with
bacterial flocculation and biofilm growth peaking at pH 8.2. This
aligns with the alkaline environment reported in the gingival sulcus
(Marsh and Martin, 1992), thus demonstrating the influence of
pH on F. nucleatum biofilm production (Zilm and Rogers, 2007).
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Dynamic cultivation systems that continuously control the liquid
environment during biofilm growth offer a more realistic
simulation. Bradshaw et al. (1996a) developed an oral biofilm
model using a chemostat, where a community of up to ten oral
microorganisms formed biofilms on HA discs. In this system, the
medium, supplied continuously by a 75 mL chemostat for several
days, included glucose pulsing and pH control to study their effects
on the biofilm (Bradshaw et al., 1996a). The use of a chemostat not
only introduced liquid shear forces, mimicking saliva flow, but also
provided a stable and adjustable liquid composition for more precise
control over the biofilm growth environment.

3.3.2 Gas environment
A diverse range of anaerobic bacterial species exists in the

subgingival plaque. In conditions where inflammatory responses
intensify and periodontal pockets deepen, a low-oxygen
environment emerges, ideal for the growth of anaerobic bacteria
linked to periodontal diseases like P. gingivalis, T. forsythia, and T.
denticola (Celik and Kantarci, 2021). This necessitates the creation
of suitable anaerobic conditions for in vitro simulation of biofilms
associated with periodontitis. Commonly, subgingival microbiome
studies use anaerobic cultivation settings, placing culture plates or
flow cells in an anaerobic chamber with a typical gas mix (10% H2,
10% CO2, and balanced N2) (Sánchez et al., 2011; Blanc et al., 2014;
Sánchez et al., 2019). However, these chambers offer a uniform gas
environment, which may not always suffice for multi-species
bacteria co-culture and host-bacteria co-culture when differential
oxygen environments are necessary to support the co-cultures.

The culture of obligate anaerobes will necessitate the use of
anaerobic chambers which are not always accessible to all research
groups. To resolve this limitation, many groups have employed the
use of physically purging oxygen from the culture broth with
nitrogen (N2). This setup depends on constant gas and liquid
flow to ensure purging of the oxygen from the broth effectively
before delivery to the cultivation setup. In Bradshaw’s study, the
team linked two chemostats with the first chamber exposed to
anaerobic media (aerated with CO2 and N2) and the second
chamber received the oxygen-rich air supplementation to
investigate the impact of oxygen on oral microbes like Neisseria
subflava (N. subflava) and streptococci (Bradshaw et al., 1996b).
Even after transferring the culture of ten mixed microorganisms
from the first to the second chemostat, anaerobic species continued
to grow, suggesting some degree of oxygen tolerance among these
bacteria (Bradshaw et al., 1996b). In another study, chemostat was
used for the co-culture of P. gingivalis and F. nucleatum (Diaz et al.,
2002). The chemostat provided a controlled medium and gaseous
environment over an extended period. This experiment exposed P.
gingivalis and F. nucleatum to increasing oxygen levels (from 0% to
10%–20%), observing the oxygen tolerance of P. gingivalis in the
presence of F. nucleatum (Diaz et al., 2002). It was noted that while
P. gingivalis has lower oxygen tolerance in a single-species culture,
its survival is supported by F. nucleatum in oxygen-rich
environments (Diaz et al., 2002). The chemostat serves as the
basis for this dynamic culture model, providing longer sustained
biofilm growth as well as stable and controllable gas
environmental control.

Microfluidic platforms have demonstrated the potential to
facilitate the spatial distribution of oxygen through their

microchannel networks (Whitesides, 2006). Many microfluidic
devices also demonstrate their high-throughput bacteria culture
with multiple microscale chambers while enabling sophisticated
control of the bacterial microenvironment. An artificial device
containing up to 128 incubation chambers based on a
microfluidic device has been developed for biofilm culture and
enables the control of various microenvironmental parameters
such as culture solution composition and growth factors (Lam
et al., 2016). Equipped with liquid flow channels and gas flow
channels, 128 individual chambers with a diameter of 1 mm and
a height of 210 μm were set up to achieve independent nutrient and
gas supply to each chamber. The dissolved oxygen concentration in
the chambers was regulated through the microvalves (Lam et al.,
2016). This setup has been used to study both single-species and
multi-species oral biofilms, including F. nucleatum, Streptococci, and
samples of undefined oral plaque, under dynamically controlled
oxygen conditions (Lam et al., 2016). This system replicates the
impact of daily fluctuations in oxygen levels within the oral
environment (aerobic during the day and microaerobic to
anaerobic during the night) on oral biofilm growth and
composition (Lam et al., 2016). It is important to note however,
that due to the small footprint of the microfluidic device, the
assembly of microfluidic devices with functioning valves and
tubing assembly is technically demanding, making their adoption
among microbiologists challenging.

3.4 Shear force

Due to dietary activity, the movement of saliva within the oral
cavity imparts liquid shear forces that can influence the biofilm
development, including spatial structuring, nutrient uptake, and
surface area expansion. Evidence of the importance of mimicking
liquid shear stress in oral biofilm has been demonstrated by
Maezono’s team where it was observed that under liquid shear
stress, P. gingivalis biofilms showed resistance to erythromycin
compared to the non-shear stress counterpart (Maezono et al.,
2011). Given that modelling liquid shear stress requires the setup
to integrate external pumps, well plate cultures are usually not
suitable (Christensen et al., 1985). Maezono’s team achieved a
controlled shear stress model using a Modified Robbin’s Device
(MRD) connected to an external peristaltic pump (Maezono
et al., 2011).

There are also existing platforms where an impeller is
integrated within the bioreactor to generate liquid flow and
their shear stress (Song et al., 2017; Ramachandra et al., 2023a).
Zilm’s group has showcased the use of a chemostat-based model
for F. nucleatum biofilms, with a precise flow rate of 27.5 mL/h−1,
tailored to the growth and generation rate of dental plaque (Zilm
and Rogers, 2007). Song et al. (2017), demonstrated the use of CDC
bioreactors to control the liquid shear stress exposed to biofilms of
P. gingivalis and F. nucleatum grown on HA discs. In these models,
the shear stress of the liquid is tuned by controlling the rotation
rate of the impeller rotating within the bioreactors. While these
models provide good liquid shear stress, the position of the
impellers and the size of the bioreactor should be taken into
consideration as improper setup tend to generate local dead
volumes with low shear stress.
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Apart from integrating impellers to generate flow, other
platforms rely on external pumps or flow system to enable liquid
flow on the biofilm culture. Flow cell bioreactors which offer a
distinct advantage over larger bioreactors by facilitating controlled
liquid flow through small-volume chambers, more stable and precise
fluid dynamics. Zainal-Abidin utilised a flow cell setup in their study
on the synergistic effects of the red complex bacteria, employing
cylindrical growth tubes with a flow rate of 3 mL/h. This design was
intended to more accurately mimic saliva flow and allow for clear
observation of biofilm development on the walls of glass tubes
(Zainal-Abidin et al., 2012). Unlike an impeller-based bioreactors,
flow cells enable sequential feeding of the culture broth from one
unit to another. This setup provides a clear-cut method for
researchers to investigate the dynamics of biofilm development.
Foster’s team linked two flow cells with different inoculated bacterial
biofilms [S. gordonii, A. naeslundii, Veillonella atypica (V. atypica),
and F. nucleatum] to identify the primary and late colonisers by
tracking the population changes at the biofilm downstream of the
first bioreactors (Foster and Kolenbrander, 2004). In this study, the
flow rate was set at 200 μL per minute (Foster and Kolenbrander,
2004), determined based on previous calculations of saliva flow rates
in various parts of the oral cavity (Dawes et al., 1989). Similarly, Ali
Mohammed et al. (2013) constructed flow chambers measuring 1 ×
4 × 40 mm and cultivated biofilms of F. nucleatum and P. gingivalis
within. A peristaltic pump was employed to deliver a stable
cultivation medium at a rate of 3.3 mL/h through the system (Ali
Mohammed et al., 2013). Modified flow cell reactors such as the
drip-flow reactors offer a low-shear setting more representative of
the oral environment (Ghesquière et al., 2023). Here, biofilms of key
periodontitis-asociated bacterial species are formed under a gentle,
continuous flow in inclined channels (Ghesquière et al., 2023)
enabling the spatial-temporal formation of biofilms along the
direction of liquid flow.

The small and uniform structure of the flow cell ensures precise
control over the liquid medium’s flow over the biofilm surface,
minimising flow disturbances. This level of control is a significant
advantage, often difficult to attain with other models like MRD or
chemostat devices.

Using the same strategy of mounting bioreactors to fluid pumps,
microfluidics have also been recently used to investigate in vitro
biofilm models. Compared to the flow cells, microfluidic platforms
typically consist of microscale chamber arrays (<500 µm in size),
enabling the simultaneous cultivation of large numbers of biofilms
under precise control (Eun and Weibel, 2009; Janakiraman et al.,
2009). Leveraging on the flexible assembly and customisation of
these platforms, microfluidics devices can be modified to mimic
multiple aspects of biofilm microenvironments. Makkar et al. (2023)
leveraged microfluidic techniques to accurately mimic the fluid
dynamics of the human gingival crevice, including specific
parameters like liquid pressure and flow velocity. In their
experiment, gingival fibroblasts encapsulated in a human fibrin-
based 3D matrix, along with S. oralis biofilms, were placed in a
microfluidic channel designed to simulate the gingival sulcus. These
channels were 400 µm wide and 100 µm high, facilitating the study
of dental plaque adherence to gingival tissues (Makkar et al., 2023).
The flow of simulated gingival crevicular fluid (s-GCF) through
these channels was then meticulously adjusted. Under conditions of
high flow rates and shear forces, the researchers observed that

biofilm clearance was facilitated, growth was constrained, and a
stable co-culture of host tissue and symbiotic microorganisms was
sustained (Makkar et al., 2023). This study highlights the utility of
microfluidics in replicating complex oral environments for the study
of the dynamics between oral tissues and microbial communities.

Beyond modelling liquid shear stress, the ability of modelling
physical shear stress can be important to allow researchers to study
biofilm retention and removal from various physical activities. The
constant depth film fermentor (CDFF) incorporates a scraping
mechanism to maintain a consistent biofilm thickness, simulating
the mechanical disturbances experienced in the oral cavity from
actions like brushing or tongue movement (Pratten and
WillsBarnettWilson, 1998).

3.5 Microbiome-host cell interaction

The abundance of microorganisms colonising the oral
environment poses a long-term risk of microbial invasion to host
oral tissues, underscoring the importance of maintining host-microbe
homeostasis for overall host health (Cai et al., 2023). Disruption of
the homeostasis between the host and microorganisms is a
key factor in the development of periodontitis. Therefore, the
interplay between subgingival biofilms and host cells, the two
most important participants in periodontitis, is the key to the
pathological study of periodontal disease. The most convenient
and common practice is to simultaneously culture target bacteria
in cell culture media. One study conducted co-culturing wild-type
P. gingivalis with its fimbriae-deficient mutant and a monolayer of
gingival epithelial cells (GECs) to obtain P. gingivalis-infected cells
(Yilmaz et al., 2003). GECs were cultured as a monolayer, and
the P. gingivalis strain was added to culture media to observe P.
gingivalis’ invasion capability on GECs (Yilmaz et al., 2003). This
simple and easy-to-operate model has therefore widely adopted
(Takeuchi et al., 2021b; Zhang et al., 2022).

However, this experimental setup inaeduqately capture the in
vivo survival patterns at both the microbial and host cell levels.
Firstly, host cells do not grow as monolayers physiologically but exist
within the complex 3D structure of periodontal tissues. To address
this, a series of experiments have attempted to improve this method.
For example, the introduction of 3D culture with materials like
collagen allows cells to be in a spatial environment more similar to
physiological conditions. One such study layered multiple strata of
oral epithelial cells over rat-tail type I collagen-embedded fibroblasts
to create a 3D soft tissue model (Pinnock et al., 2014). This was
compared with a traditional 2D monolayer cell culture. In both
models, P. gingivaliswas introduced into the same culture media and
incubated for specific durations to observe bacterial invasion into
mammalian cells (Pinnock et al., 2014). The outcomes, including
staining and chemokine array analysis, revealed notable differences
between the 3D and 2D cultures. The 3D model more closely
resembled in vivo conditions in aspects like bacterial invasion,
intracellular viability, bacterial release, and cytokine production
(Pinnock et al., 2014). Similar methods involving 3D culturing
with collagen or collagen-like materials are widely used to
simulate environments such as oral mucosa or periodontal soft
tissues, providing cells with a 3D spatial structure similar to these
tissues (Bao et al., 2015; Adelfio et al., 2023).
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Microorganisms do not simply float in liquid; instead, they
attach to the surfaces of periodontal tissues in the form of
biofilms, a characteristic not accurately depicted in previous
models. To tackle this issue, a common approach involves
introducing biofilms into the co-culture system by first
cultivating mature biofilms on surfaces such as HA discs or
coverslips, before co-culturing them with cells. Guggenheim et al.
(2009) developed such a coculture model using a ten-strain biofilm
cultured on HA discs. Mature biofilms on HA discs were introduced
into a well plate containing human gingival epithelial cells,
positioned closely but not in direct contact, to simulate
subgingival conditions. This setup enabled the study of biofilm-
induced apoptosis and the enhanced expression of virulence factors
by the microorganisms in a biofilm state compared to planktonic
forms (Guggenheim et al., 2009). This result also confirms the
limitations of previous models, highlighting that planktonic
bacterium, due to their phenotypic differences, cannot effectively
replicate the virulence characteristics of biofilms in vitro. Therefore,
this method has subsequently been adopted in various pathological
investigations (Thurnheer et al., 2014) and expanded to diverse
fields, including drug screening research (Millhouse et al., 2014). In a
similar manner, Lang et al. (2022) developed a periodontal pocket
model by dipping and culturing 12-strain bacterial biofilm on dentin
discs and epithelial cells on glass slides in pockets with cell culture
media, assessing the therapeutic efficacy of ultrasonics and hand
instruments on root surface treatment. In addition to more
accurately reproducing bacterial survival patterns and
phenotypes, another advantage of introducing mature biofilms
into the culture system is the ability to better quantify and
visualise the microorganisms before and after the experiment.
For instance, Millhouse et al. set up a co-culture model with a
composite biofilm including P. gingivalis, F. nucleatum, A.
actinomycetemcomitans, and S. mitis on coverslips, alongside
immortalised human oral keratinocyte cell lines, to test the
antimicrobial and anti-inflammatory effects of naturally derived
polyphenol resveratrol and chlorhexidine (Millhouse et al., 2014).
The untreated and drug-treated biofilms, as well as host cells, were
quantified not only for biomass and cell viability using the
AlamarBlue assay and absorbance measurements, but also
visualised through SEM imaging, which revealed morphological
differences and aggregation patterns between different bacterial
species at the microscopic level (Millhouse et al., 2014).

It can be envisioned that in attempting to simulate the spatial
distribution of host cells and the microbial colonisation in biofilm,
these efforts are being integrated to obtain a faithful reflection of the
microbial-host cell crosstalk. Integrating collagen-based 3D cell
culture with oral biofilms adhered to hard surfaces in the same
culture system is a straightforward approach. Bao et al. (2015)
further enhanced this model by incorporating 3D cell culture
techniques, combining biofilm-host cell coculture with a 3D
periodontal pocket tissue model to better mimic the spatial
organisation of cells. A bioreactor system, composed of gingival
fibroblast cells supported by 3D collagen sponge scaffolds, along
with gingival epithelial cells on the scaffold surface and monocytes
flowing through, simulated the tissue structure of the periodontal
pocket. Subsequently, biofilms composed of 11 oral microbial
species grown on HA discs were introduced to mimic conditions
of periodontal inflammation (Bao et al., 2015). In addition to

biofilm, this periodontal pocket model also incorporates the 3D
structure of periodontal soft tissues and immune cells interacting
with the external environment through GCF flow. At the level of
bothmicroorganism and host tissue, it further accurately reproduces
the participants of periodontitis and their spatial distribution within
the periodontal pocket.

One could argue that the current approach to constructing co-
culture models entails the continual refinement of basic host cell-
microbe models in standard well plates. This effort aims to align the
survival patterns of both host cells and microorganisms more closely
with those observed in the physiological environment. However,
some challenges persist in such models. For example, these co-
cultures can only provide a uniform oxygen environment for both
host cells and microorganisms, while in reality, pathogenic
microorganisms thrive in gingival pockets where oxygen
concentration gradually decreases due to the unique anatomical
structure. Previous studies have reported that oxygen-sensitive
microorganisms such as P. gingivalis and T. forsythia struggle to
maintain stable colonisation in normoxic environments
(Guggenheim et al., 2009). The emergence of 3D printing
technology enables not only the replication of cell spatial
distribution, but also the construction of macroscopic anatomical
structures of the periodontium for in vitro models (Adelfio et al.,
2023). Adelfio et al. (2023) utilised 3D printing technology and silk
biopolymer material to create a replica mold of the adult human
mandibular gingiva, providing a spatial environment consistent with
physiological conditions for host cells and microorganisms cultured
within it. This allows for precise replication of gas diffusion and
nutrient distribution in the oral environment. Built on high-fidelity
anatomical molds, this model addresses challenges encountered in
previous studies, such as reproducing oxygen gradients generated
with increased depth of gingival pockets.

4 Challenges and perspectives

Until today, simulating periodontal biofilm formation and its
interactions with host tissues perfectly from various aspects in vitro
still faces many unresolved challenges.

The ability of in vitro models to mimic a microenvironment
similar to human physiology is important for accurately
understanding the progression of periodontitis, posing an
ongoing engineering challenge. Apart from mimicking the
microenvironment of the oral cavity, the engineering of in vitro
biofilm models should also consider the potential scale-up of the
platforms to enable parallel experiments and enhance repeatability.
This wishlist has driven various engineering developments of in vitro
models to enable periodontal biofilm cultures (Table 2).

4.1 Challenge 1–Tuning the biochemical
environment for multiple bacteria and/or
mammalian cell culture in co-cultures

Modelling of the inter-bacterial and bacterial-host tissue
interactions in many cases requires a culture setup where the
spatial distribution of culture nutrients is required. This is
particular the case in bacteria-host tissue co-cultures where the
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culture media composition can vary significantly (Mountcastle et al.,
2020). While mixing culture media at various ratio has been the
common strategies implemented by many groups, this approach can
be particularly challenging for co-culture of more than 2 types of
bacteria and/or cells. Furthermore, co-cultures that leverage on
mixing of culture media limit mechanistically investigation that
involves cross-feeding of bacteria due to the metabolite generation
diffused to the bulk liquid.

4.2 Challenge 2–Tuning for the
physicochemical environment

As the periodontitis-associated biofilm develops, there is a
significant change to the local pH and oxygen concentration
which enables further maturation of the biofilm. While
hypoxic chambers are effective platforms for obligate
anaerobes in vitro, the uniform low oxygen level throughout
the culture volume can be limited to model for early stages of
periodontitis requiring aerobic colonisers, as well as the
modelling for host tissue interaction due to the lack of oxygen
supporting cell growth and metabolism.

4.3 Challenge 3–Competitive inhibition on
mammalian cells growth bymicroorganisms

The growth rate of the bacteria cultures is significantly higher
than mammalian culture resulting in the short-term co-cultures of
bacteria and mammalian cells due to the accumulation of
endotoxins released by the bacteria. The swift increase in
microbial biomass in vitro can induce a level of cell toxicity that
surpasses what is typically observed from oral microbiomes in
conditions of chronic inflammation, such as periodontitis. To
manage bacterial population levels, manual interventions such as
physical removal or the application of fluid flow are often used.
However, these methods considerably heighten the technical
complexity involved in managing the experimental setups.

4.4 Challenge 4–Complex setup for
integrating different culture modalities

In the context of complex periodontal disease models, different
microbial species and mammalian cells require distinct mimicking
strategies and culture modalities. The integration of these diverse
culture modalities is essential to meet the demands of multi-species
co-cultures in periodontal disease models. While microfluidic
platforms can be a suitable alternative platform to emulate
multispecies culture interactions, the reliance of auxiliary
equipment, tubing connections and sensitivity to microscale
bubbles are among the well-known technical barriers limiting
their adoption among the microbiologist to adopt this platform.

4.5 Challenge 5–Patterning of multiple
species of bacteria

For the cultivation of multispecies bacteria, accurately
replicating complex and diverse microenvironments is vital to
cater to the survival needs of various microorganisms. Microbial
patterning emerges as a key technique in establishing distinct
microenvironments within a model, with 3D bioprinting
presenting substantial promise for such applications. At present,
there are only a few examples conducted the bioprinting of multiple
periodontitis-related bacterial colonies that effectively illustrate
cross-feeding interactions and biofilm development.

Challenges in regulating biochemical and physicochemical
microenvironments is leading researchers to the use of new
materials and technologies for improved microenvironment
control, including managing biomacromolecule distribution,
regulating liquids and gases gradients and even shear force
control. These advancements will not only solve existing
problems but also expand the models’ capabilities, such as
supporting diverse culture modes for different microbial or
mammalian cells.

As research progresses, periodontitis biofilm models will surely
becomemore complex and integrated, incorporating and innovating

TABLE 2 Characteristics of an ideal in vitro model for periodontitis. It is widely acknowledged that achieving the “perfect” in vitro biofilm model is
challenging, as it is fundamentally an emulation of the physiological environment rather than a replica.

Engineering features for biofilm models Application

Controllable microenvironment: such as shear stress, mechanical stress, surface stiffness,
biochemical content, physicochemical microenvironment

Enable the recreation of microenvironment specific to different stages of periodontal
biofilm developments

Enable a mechanistic understanding of how microenvironment factors impact on the
development and disruption of the biofilm model

Multispecies bacteria culture Enable the culture of bacteria, such as P.gingivalis, which is sustained by F.nucleatum
through cross-feeding and is vital for the development of periodontal biofilms

Enable replication of the bacteria community dynamics during the development of
periodontal biofilms

Co-culture with mammalian host cells Enable the modelling of host responses to alternations in the subgingival plaque

Enable the assessment of host tissue reactions during periodontitis

Long term culture Enable the capture of various stages of periodontitis pathogenesis within the culture
model

High throughput Enable parallel experiments and increase the models’ repeatability
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technologies to simulate a broader range of physiological conditions
and variables. This includes introducing diverse nutritional
environments and using 3D printing for precise spatial
arrangements, enhancing the understanding of periodontitis from
multiple angles. Such comprehensive systems are increasingly
crucial in periodontitis research, highlighting the significance of
such technologies in enhancing our grasp of the disease and its
underlying mechanisms.

Meanwhile, the applications of periodontal disease models can
also be expanded. There have been reports regarding the potential of
treating periodontitis through the transplantation of oral
microbiome (Nath et al., 2021). It can be seen that the use of
in vitro microbial models in new areas such as pathological
examinations and even disease treatments hold great promise in
the near future.
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