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Correlated Multimodal Imaging (CMI) gathers information about the same
specimen with two or more modalities that–combined–create a composite
and complementary view of the sample (including insights into structure,
function, dynamics and molecular composition). CMI allows one to reach
beyond what is possible with a single modality and describe biomedical
processes within their overall spatio-temporal context and gain a mechanistic
understanding of cells, tissues, and organisms in health and disease by untangling
their molecular mechanisms within their native environment. The field of CMI has
grown substantially over the last decade and previously unanswerable biological
questions have been solved by applying novel CMI workflows. To disseminate
these workflows and comprehensively share the scattered knowledge present
within the CMI community, an initiative was started to bring together imaging,
image analysis, and biomedical scientists and work towards an open community
that promotes and disseminates the field of CMI. This community project was
funded for the last 4 years by an EU COST Action called COMULIS (COrrelated
MUltimodal imaging in the LIfe Sciences). In this review we share some of the
showcases and lessons learnt from the action. We also briefly look ahead at how
we anticipate building on this initial initiative.
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1 Introduction

The relentless pace of innovation in biomedical imaging has
provided modern researchers with an unprecedented number of
techniques and tools to choose from when analyzing their sample.
New imaging methods have enabled the characterization of
molecular mechanisms and biophysical properties, both in- and
ex vivo, with a resolution of a few Angstroms (using cryogenic
transmission electron microscopy) and penetration depths in the
range of a centimeters even for light microscopy techniques (using
light sheets or multiphoton excitations). However, no single imaging
modality alone can decipher the inner working of a cell or even
entire organisms. To gain such insights, imaging technologies need
to be combined and, importantly, correlated: CorrelatedMultimodal
Imaging (CMI) creates a composite and zoomable view of exactly
the same specimen and region of interest by (sequentially)
correlating two or more modalities to tackle biomedical research
questions holistically and across multiple scales. CMI integrates the
best features of the combined techniques and overcomes limitations
faced when applying single modalities independently. However, it
requires the design of complex pipelines, including sample
preparation, probes, software and hardware relocation
procedures, and visualization tools. CMI is specifically moving
towards the integration of in vivo with subsequent ex vivo
imaging modalities to bridge the gap between preclinical and
biological imaging. Furthermore, access to CMI equipment is still
limited in different parts of the world and user communities. To
address these challenges and to build novel CMI pipelines which
include cutting-edge technologies, a strong collaborative
interdisciplinary network is essential. COMULIS’ main objective
was to promote Correlated Multimodal Imaging (CMI) in biological
and preclinical research. To achieve this inherently interdisciplinary
goal, COMULIS successfully established a pan-European
collaborative network of scientists across disciplines to foster and
market CMI as a versatile tool in biomedical research. The work plan
and implementation of COMULIS was divided in five Working
Groups (WGs) that were organized accordingly:

• Establishing standards and optimizing CMI approaches in
biological and preclinical settings with a focus on Correlative
Light and Electron Microscopy (CLEM) and Preclinical Hybrid
Imaging (PHI) as the best-established technologies in each area,
and using these implementations as demonstrator technologies to
showcase the wider benefits of CMI to the life science community
(WG1, CLEM and WG 2, PHI);

• Triggering novel CMI implementations of modalities that
have not been correlated before, thereby bridging the gap
between biological and preclinical imaging (WG3);

• Involving all relevant scientific disciplines, and in the first-
place software developers, for input on image data handling
and analysis (WG4);

• Fostering recognition of CMI and promoting its benefits in life
sciences via dissemination, training, and networking (WG5).

With this organization in place, COMULIS fueled urgently
needed collaborations in the field of CMI and paved the way to
become the premier transnational platform for knowledge and
information exchange in CMI. Over the lifespan of COMULIS,

the homepage has been visited more than 50 k times so far - and
is indeed an important transnational platform to learn about
multimodal imaging, related events and job posts:https://www.
comulis.eu. In addition, COMULIS published a bioimaging
compendium that highlights available imaging technologies,
physical principles and biomedical applications with a focus
on CMI and contributed 3 peer-reviewed reviews on the
challenges, limitations, and standardization of CMI (Walter
et al., 2020; Walter et al., 2021a; Walter et al., 2021b; Walter
et al., 2021c; Keuenhof et al., 2021). COMULIS promoted and
disseminated benefits of CMI through showcase pipelines and
3 conferences that were attended by over 500 people, and
fostered its technological advancement and implementation as
a versatile tool in biological and preclinical research through lab
exchanges and 6 workshops (https://www.comulis.eu/schedule).
The lab exchanges resulted in the publications of several
showcase pipelines to tackle specific biomedical research
questions, ranging an improved diagnostic of osteonecrosis or
vascular lesions to novel dyes for correlative Super-Resolution
microscopy or alignment of mass spectrometry and clinical
imaging data (Váradi et al., 2019; Lucidi et al., 2020;
Keuenhofer et al., 2021; Reier et al., 2021; Balluff et al., 2022).
2 additional examples of these novel pipeline showcases
are highlighted below (tattoo removal and skin
characterization). COMULIS has also triggered computational
advancements and big data strategies to correlate and handle
volumetric image data from different modalities (https://www.
comulis.eu/correlation-software). Computer scientists included
in the network have created a ontology for bioimage informatics
(Ison et al., 2013; Kalaš et al., 2020; Lindblad et al., 2020) and
novel approaches for automated image alignment (registration),
segmentation of objects of interest, feature extraction, and
visualization and exploration of complex, time-varying,
multiscale, multimodal data volumes (Balluff et al., 2022;
Cunha et al., 2023; Nešic et al., 2024). This was
successfully achieved through an active dialogue between
computer and life scientists and the full integration of
computer scientists in the complete workflow
(Walter et al., 2020).

COMULIS succeeded, through its activities and virtual
alternatives during the COVID-19 pandemic, in raising
awareness within the community of the relevance and
possibilities, but also limitations of the available multimodal
imaging approaches and software solutions (Walter et al.,
2021a). In addition, it was able to highlight and set directions
for further development within the dynamic and highly
advanced imaging field. COMULIS revealed the so far not
fully exploited potential of CMI towards a practical use in
biomedical research and thereby combined biological and
preclinical imaging–with synergetic benefits for medicine,
including increased diagnostic accuracy (Reier et al., 2021).
Holistic approaches help researchers to discover molecular
interdependencies over a wide range of temporal and spatial
scales and foster the study of cellular and molecular processes
within their native context.

Apart from triggering the implementation of novel CMI
approaches to tackle showcase projects, COMULIS worked
towards optimizing and standardizing existing pipelines via the
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publication of reviews, databases and best practices. In particular,
we aimed to facilitate data curation, as well as information seeking
and identification of software useful for CMI approaches (Walter
et al., 2021c). COMULIS hereby integrated all relevant
stakeholders from academia and industry, instrument
developers and users such as physicists, biologists, clinicians
and computer scientists. Boosting communication across
disciplines through dedicated communication channels and
meeting formats has sped up advancements in CMI and
triggered its recognition in biomedical research. Furthermore,
COMULIS supported many PhD students and early career
investigators (via Conference Grants) affiliated in Inclusiveness
Targeted Countries (ITC) to attend high-level international
conferences related to correlated multimodal imaging, giving
them an opportunity to present and upgrade their scientific
work, and also to establish new contacts for future
collaborations. COMULIS specifically attracted and educated
the next-generation of scientists in CMI approaches through
training schools and short-term scientific missions (STSMs)
and helped to guide the scientific mindset from isolated single
technique approaches towards integrative approaches and
mechanistic analysis of diseases and organisms. One of the
examples from the STSMs was the development and integration
of histology, still one of the cornerstones of clinical analysis, into a
CLEM workflow (Sousa et al., 2021), whereas the other project
aimed at understanding the sequence of molecular events that lead
muscle precursor cells, called myoblasts, to fuse to form skeletal
muscle development during myogenesis, and muscle regeneration
in adults (Khan et al., 2023). This was also achieved by
‘democratizing’ CMI approaches through the organization of
basic introductory courses that allowed attendees to transfer the
skills learned during the course to their home setting and perform
CMI even with limited instrument resources. Encouraging the use
of CMI helped to expand the available spectrum of relevant
methodologies in life sciences, transforming the study of
biomedical processes by providing unprecedented information
content. This was highlighted for WG-specific multimodal
showcase projects, ranging from multi-center studies to tackling
senescence.

2 Technological advances: Innovation,
development, implementation, and
dissemination

2.1 Correlated multimodal imaging

2.1.1 Correlative light and electron microscopy
There is still the conception within the larger research community

that correlative microscopy is a technically very challenging technique
that can only be carried out in specialized labs. Although this may be
true for specific correlative workflows, there are a number of very
powerful approaches that are within reach for almost any life science
laboratory. This is especially true for the best established Correlative
Multimodal Imaging approach, Correlative Light Electron
Microscopy (CLEM). One of the major objectives of COMULIS
was to democratize Correlative Multimodal Imaging. We believe
this was achieved very successfully, for example, through the

organization of a dedicated CLEM course at the Institut
Gulbenkian in Portugal where the focus was on a “MacGyver”
approach to CLEM (https://www.merriam-webster.com/words-at-
play/what-does-macgyver-mean-slang-definition). Attendees were
taught that any lab, which has access to a (fluorescence) light
microscopy and a Transmission Electron Microscope (TEM),
would be able to perform CLEM in their own setting. The course
was built around one of the simplest but also most powerful CLEM
approaches available, which was established in 2000. Roman
Polishchuk and coworkers published a seminal paper (Polishchuk
et al., 2000) using a special type of glass-bottom dishes. The coverslip
contains an embossed finder pattern, which allows the exact same cell
to be imaged under a light microscope and subsequently retraced in
the electron microscope. Another part of the course focused on the
data analysis of the sample.Whereas it is easy to say that the same cells
match up in the two modalities, it requires dedicated software tools to
map the exact same organelles on top of each other. This was a very
good example in which working across different COMULIS working
groups was essential, as it was the combined efforts of WG1 (CLEM)
together withWG4, (Correlation software) that ensured the success of
the course. After the course, the students were able to transfer the
acquired skills learned during the course to their home setting and
perform CLEM with limited instrument resources.

One of the major challenges and objectives of the COMULIS
project was to bring together biomedical and (pre)clinical
researchers. The best way to do this is by enabling such
interactions through STSMs and other dedicated projects. Two
showcase examples are highlighted below to present the benefits
and power of CMI across scales, including and combining imaging
techniques from microscopy to preclinical imaging.

2.1.2 Novel multimodal imaging pipelines
These novel CMI pipelines, that were set up to combine in and

ex-vivo imaging approaches, aim at identifying, optimizing,
triggering and evaluating (Walter et al., 2021a) sample
preparation procedures that are compatible with various imaging
modalities without compromising data quality, (Walter et al., 2021b)
correlative probes and fiducial markers that can be visualized in
different imaging technologies, (Keuenhof et al., 2021) hardware and
software solutions to identify and correlate the same region after
relocation between imaging platforms, (Walter et al., 2021c)
software solutions to co-align data from different modalities, and
(Walter et al., 2020) approaches for data handling and storage.
Below, we highlight two showcase projects that succeeded in
combining and correlating a variety of biomedical and (pre)
clinical imaging techniques to gain complementary and holistic
information about the specimen across scales. These two
pipelines allow for identifying regions and volumes of interest
(ROI/VOI) in vivo and subsequently zooming into these ROIs to
visualize them at high (nanometer) resolution. The first showcase
project studied biomarkers for tattoo removal, the second project
studied the role of autophagy in the senescence of the skin.

I. A Multimodal Parameter Space for Tattoo Removals

The rising popularity of tattoos has coincided with a notable
demand for safe tattoo removal procedures. According to a
2019 study (Boardman, 2019), approximately 17% of individuals
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who have tattoos experience some degree of regret. Reasons for
tattoo removal vary, ranging from getting inked at a young age to
concerns about career prospects, social dynamics, religious beliefs,
or personal circumstances (BritishMedical Laser Association, 2023).
Laser-based removal methods, such as intense pulsed light (IPL), are
particularly favored due to their precision and relatively fewer side
effects compared to alternatives like dermabrasion, surgical removal,
or creams. To achieve holistic information on tattoos in the tissue
context, we applied CMI and aimed at showcasing its benefits. It
allows for generating a multidimensional data landscape on tattoos
to establish ways to remove them. In the tattoo removal procedure,
the deciding parameters, such as laser wavelength and fluence, are
based on the depth of the tattoo ink, concentration, and color of the
ink in the tattoo (Rudraiah et al., 2022a). By combining different
optical spectroscopic and imaging modalities, a realistic profile of
tattoos from the macroscopic to microscopic level can be
understood. CMI will provide the necessary quantitative
information that is crucial in a safe tattoo removal procedure
and will further enable the development of detection and
monitoring modalities for quantifying, tracing, and tracking the
ink in the tattoo in vivo. It can be translated to technologies that
assess therapeutic success for tattoo removals. Presently, effective
tattoo removal is possible using lasers without causing damage to the
surrounding skin only if prior knowledge about tattoo size, colors of
the ink, and depth of the tattoo inks in the skin is available
(Evgenakis et al., 2023; Zima et al., 2023). In light-tissue
interactions, the optical properties of the tissues, such as
absorption and scattering, need to be considered. The skin
consists of endogenous chromophores such as water, melanin,
hemoglobin, oxyhemoglobin, lipids, collagen, etc., and each has a
unique absorption characteristic (Steven, 2013). It is crucial to
choose the exact wavelength that targets the tattoo pigments. In
this project at first, the characteristics of the ink such as absorption,
chemical composition, and pigment size were studied using
spectroscopic techniques such as a spectrophotometer, Fourier-
transform infrared spectroscopy (FTIR), Raman spectroscopy,
dynamic light scattering (DLS), electron microscopy, and mass
spectrometry technique (Bocca et al., 2017). The techniques are
listed in Table 1.

The complication arises when working on real skin since the
properties of tissue vary from tissue to tissue, person to person, and
from time to time (Cheong et al., 1990; Bashkatov et al., 2011) For
that, tissue-mimicking optical phantoms were used to study the
tattoos. The phantoms can be made solid or liquid (Sousa et al.,
2021). Solid phantoms have a long shelf life, can be modulated to a
realistic organ shape, have stable optical properties (absorption and
scattering coefficients), and are easy to handle (Rudraiah et al.,
2021). In Figure 1, a solid phantom with different pigment types and
location is presented.

A novel optical fiber-based diffusion reflection (DR) sensing
technique (Rudraiah et al., 2022b) utilizes analytical models in the
big clinical diagnosis picture (Rudraiah et al., 2022c). The DR
intensity was received by scanning the detector fiber on the
surface of the tattooed phantom. The data was plotted as a
logarithm of the product between the collected intensity and
distance vs distance at 650 nm (Figure 2) for the master mike
red pigment with a concentration from 25%–100% (light to dark red
lines). The tattooed 2L was compared with the non-tattooed 2L and

1L phantom (optical properties equal to the top layer of the 2L
phantom). The tattooed 2L phantom with different ink
concentrations exhibits two different slopes compared to the
non-tattooed 2L phantom.

During the COMULIS showcase project the spectroscopic
techniques were complemented by multimodal imaging
techniques, such as diffuse reflectance technique, photoacoustic
tomography (PAT) (Köksal et al., 2022), Raman spectroscopy
(Moseman et al., 2024), FTIR spectroscopy (Bauer et al., 2019),
Optical photothermal infrared (O-PTIR) spectroscopy (Darvin
et al., 2018), multispectral Imaging (Kuzmina et al., 2022)
electron microscopy (Lea and Pawlowski, 1987), and mass
spectroscopy imaging (MALDI, LACIP, SIMS) (Holzlechner
et al., 2018) to detect and confirm the tattoo ink location,
pigment concentration, and type of tattoo ink in the skin
mimicking tattooed phantoms. Table 2 provides an overview of
the various techniques used to analyze tattoo ink properties, ranging
frommacroscopic imaging to high-resolution microscopic methods,
each offering unique insights into ink location, concentration, and
pigment types.

II. The Skin/Epidermal Equivalent Project

The 2nd project focused on a round-robin study to assess
which modalities can be combined to study tissue of the size of a
biopsy of approximately 6 mm in diameter. We provided the
contributing investigators with the identical piece of tissue in
sequential order (compare Figure 3). Figure 3 depicts one of the
eight multi-station workflows, which was set up to combine light
microscopy and mass spectrometry imaging to detect lipids
within their cellular context after UVB irradiation.
Alternatively, investigators were provided with parallel
equivalent and highly comparable samples generated from the
same donor material. We had not only the goal to gain experience
on the technical and analytical feasibility of the experimental
sequence order, but also on gaining insights into the logistics of
shipping, storage, data management, data/image correlation and
communication between the investigators. Equally important
was to answer a basic science question that can be best
addressed by multimodal correlated analysis: Can we identify,
and correlate damages induced by ultraviolet radiation in single
cells within the epidermis using CMI?“. Answering this question
is fundamental, as damage exerted by ultraviolet B radiation
(UVB) can cause cancers, precancerous skin conditions, and skin
aging (Schuch et al., 2017). Humans are exposed to UV radiation
as a result of work exposure, recreational habits or after
therapeutic UV radiation. Furthermore, damage similar to the
one exerted by UV can result from other environmental or
developmental cues. Thus, there is substantial scientific,
clinical, and translational need for technologies that can
differentiate between damaged and undamaged cells within the
tissue context. Correlating information from useful analytic
modalities with the presence and location of damaged cells
will allow a holistic understanding of the causes and
consequences of damage and its prevention.

Organotypic models containing epidermal keratinocytes
cultured on a dermal equivalent composed of bovine collagen
and dermal fibroblasts were prepared and mounted on a tissue
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culture support. This established model yields a stratified and
functional epidermis (Mildner et al., 2010). We introduced 6% of
ultraviolet B (UVB) irradiated and fluorescence-labeled
keratinocytes into the epidermal compartment. This
experimental treatment allowed the investigation of UV-
induced changes to cells within their tissue environment and
validating the results using the fluorescent label within the
irradiated cells, which also serves as a fiducial marker, as
demonstrated recently with a limited set of modalities
(Kremslehner et al., 2020).

The initial steps upon completion of stratification and
differentiation of the skin equivalents were performed either
with multiphoton microscopy as in (Jain et al., 2023) before
further treatment or immediately after 1) embedding in OCT
(optimal cutting temperature) medium, 2) fixing the epidermal
equivalents in 4% paraformaldehyde, or 3) fixing the epidermal
equivalents in 4% formaldehyde and 0.5% glutaraldehyde. Part of
the fixed samples were embedded in paraffin prior to distribution
to the contributing investigators.

Eight sequential multi-station protocols were initiated to cover
the various aspects of this project:

(1) The initial sample underwent chemical fixation without
embedding and was examined using Correlative Array
Tomography (CAT) in Sweden before proceeding to
micro-Computed Tomography (CT) analysis in
Southampton. Further elaboration on CAT is provided
later in this manuscript (Mannheim et al., 2019).
Through this integrated workflow, we anticipate
obtaining insights into the interdependencies of density,
morphology, subcellular phenotypes, cell types, and
organelles.

(2) Another sample was first studied by CAT (Göteborg), before
Large Scale immune EM (Groningen) andMass Spectrometry
Imaging (MSI) (Vienna) were performed. Besides the 3D
information from CAT, large-scale EM provides
ultrastructural information. Although the tissue is fixed
and treated for EM, there is nevertheless the chance to
assess information of post-translational modifications of
proteins, like glycosylations, using MSI. The whole tissue
block is cut into sections and every section is treated
enzymatically for glycan release. MALDI mass

TABLE 1 Available techniques used for tattoo ink characterization.

Used techniques Information Unit

Spectrophotometer Absorbance a.u

Raman spectroscopy Chemical composition cm-1 (Moseman et al., 2024)

FTIR spectroscopy Chemical composition cm-1 (Bauer et al., 2019)

Mass spectrometry Chemical composition m/z

Dynamic light scattering (DLS) Particle size nm

Electron microscopy Chemical composition and particle size keV

FIGURE 1
Tattooed skin tissue-mimicking optical silicone-
Polydimethylsiloxane (PDMS) phantom. Thickness of the epidermis
layer was 200 µm and optical properties: µs’ = 0.158 mm-1, and µa =
2.41 mm-1 at 650 nm. The tattoos were made at the junction
between the dermis-epidermis layer using master mike red, dynamic
black, green CONC, blue CONC, and rainbow blue with
concentrations from 100%, 75%, 50%, and 25%.

FIGURE 2
DR intensity profile from the tattooed phantoms with different
pigment concentrations at 650 nm illumination. The top layer and 2L
(black and blue lines) are without tattoo pigments. The red lines from
lighter to darker are the increased pigment concentrations from
25% to 100%. The error bar indicates the standard deviations with
respective shaded color thickness.
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spectrometry is then used to visualize the distribution of such
glycans to add untargeted molecular information.

(3) We established a workflow for a chemically fixed sample,
sequentially employing Multiphoton Microscopy (Athens),
followed by CAT (combination of LM and EM, Göteborg),
and µCT (Southampton) analysis. This methodology
facilitates the acquisition of structural and insights ranging
from the subcellular and single-cell level to the entire tissue,
all from a single sample. While Multiphoton Microscopy
excelled in identifying various cell types within precisely
delineated tissue regions at high resolution, µCT provided
a comprehensive morphological overview and general cell
localization. Meanwhile, CAT afforded us detailed views of
single-cell and subcellular ultrastructures.

(4) The power of Multiphoton Microscopy (Florence) was also
combined with High Resolution Episcopic Microscopy
(Vienna) and MSI (Vienna). Single cell localization
gathered from autofluorescence, and the cell tracker red
label was combined with the 3D information after volume
rendering (data processing) of single tissue sections prepared
during High-resolution episcopic microscopy (HREM)
analysis (Keuenhof et al., 2021). 3D images of single cells
in the skin equivalents were generated. Molecular information
based on MSI analysis is hampered due to the embedding
medium used for HREM.

(5) A 3D scan of chemically fixed, non-embedded tissue by
Multiphoton Microscopy (Florence) was also combined
with immunofluorescence (IF), immunohistochemistry
(IHC), Stimulated Emission Depletion microscopy (STED)
(Vienna) and molecular barcoding based on
Immunofluorescence (Nantes) or MSI. Data analyses
visualized the localization of cell-tracker red-labelled cells,
the autofluorescence of collagen and the 2nd and 3rd harmonic
images distinguished the different layers of the skin
equivalents. Implementing immunology (IHC, and

molecular barcoding) introduced a targeted molecular
analysis to localize protein markers of the different cell
types. The parallel workflow of MALDI MSI allowed for
untargeted molecular analysis of lipids. This workflow was
especially designed for high resolution information in
combination with general tissue structure analysis.

(6) In this imaging setup, µCT analysis (Southampton) provided
histologically relevant videos of the tissue structure in x, y and
z-direction. After conventional formalin fixing, and paraffin
embedding confocal fluorescence imaging and STED (Kosice),
the Golgi apparatus and basal mitochondria localization was
co-localized with cell tracker red and Hoechst staining of the
nuclei. Detailed cell information can be gathered.

(7) Optical Coherence Tomography (Paris) of snap-frozen, non-
embedded samples provided 3D information on keratinocyte
localization after careful data interpretation. An average
volume of nuclei was determined together with their
average compactness and density. Subsequent Fluorescence
Lifetime Imaging Microscopy (FLIM) (Genova) of 4 different
color channels showed targeted nuclear and cell tracker red
information to correlate UV exposed cells with nuclei and
OCT information. Image segmentation after FLIM can be
correlated with OCT info for more comprehensive
information of cell shapes. Implementing molecular
barcoding (Nantes) allows for targeted analysis, which is
then combined with the cellular features to identify cell
structures characteristic for UV exposed cells.

(8) Finally, a multiphoton microscopy approach (Vienna) was
combined with superresolution microscopy (Genova), MSI
(Vienna) and IF (Kosice) to showcase the power of
combining targeted and untargeted imaging technologies.
This workflow allowed for the correlation of cell
morphology and localization with the distributions of small
molecules like lipids as measured by MSI and proteins
characteristic for certain cell types and cellular structures

TABLE 2 A summary of the techniques that were applied to detect the tattoo ink location, concentration, and pigment types from the tattooed samples.

Name of the
technique

Sample (whole/
cross-section)

Type of data/information
generated

Measurement Resolution of
image

Diffuse reflectance Location and
concentration

Absorption or scattering coefficient
(spectrum)

Macro 100 µm

Photoacoustic Imaging Location and
concentration

Absorption Macro 200 µm

Multispectral imaging Concentration Absorption Macro 200 µm

Raman Microscopy and IR Location, Concentration,
Pigment composition

Intensity (Raman or Absorbance) as
function of wavenumber (vibrational
spectrum)

Micro 0.5 µm for selected
areas <100 μm2

Mass spectrometry
imaging (MSI)

Location
Pigment composition

Molecular and elemental ID (name of the
compound)

Molecules, elements 10–500 µm

Electron Microscopy Location
Pigment composition

Images, elemental maps Nanoscale secondary electrons
transmission, elemental SIMS

<1 nm

Synchrotron X-ray
fluorescence (XRF)

Location
Pigment composition

Images, elemental maps Molecules, elements <50 nm

High-resolution Episcopic
Microscopy (HREM)

Location
Concentration

Stacks of images Morphology based on unspecific
contrast of dye (eosin)

Depending on VOI, typical
voxel size 1–3 microns
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(compare Figure 3). This dataset was partially used to test the
joint effort to further develop a collaborative software platform
to share and analyze multimodal datasets (for details see
Section 2.5 on data handling).

In the following, we focus on Correlative Array Tomography
(CAT) and highlight this technique as an example of how the
technique can be used in a multimodal workflow in terms of
technical and computational aspects:

2.1.2.1 Method
CAT encompasses a range of techniques where multiple ribbons

of serial ultrathin sections of tissues or cells are collected on a solid
substrate such as glass, silicon, or tapes, from which images can be
acquired using both light and electrons. This technique offers
unparalleled opportunities to explore three-dimensional cellular
architectures of large samples in extremely fine structural and
molecular detail; it is hence particularly suited to tackle the

intricate questions arising in biological and biomedical research
as the skin/epidermal equivalent project. From a practical point of
view, CAT combines scanning electron microscopy methods of
sample preparation with fluorescence, and then applies image
registration and volume rendering software tools to visualize the
results. The sequential combination and application of techniques to
the same specimen and region of interest also allow to validate and
evaluate single-modality conclusions since each technique can
provide unique information based on fundamentally different
contrast mechanisms. The CAT approach also offers other
important advantages for correlative microscopy: 1) it can
provide very-high-content information at the light microscopy
level, including markers as the fluorescence-labeled keratinocytes
used in this project; 2) it enables robust registration between the light
and electron microscopy channels, because the same array of
ultrathin sections is imaged with the two modalities; 3) CAT, as
a nondestructive technique, subsequently enables that, upon
completion of the electron microscopy imaging, the samples can
be revisited again at a later time and reimaged at the scanning
electron microscope at a different magnification, or in a
different region.

2.1.2.2 Sample Preparation
Before the initial treatments, at end of the tissue culture period,

samples 1 and 5 were imaged using multiphoton microscopy,
sample 3 using arrayscan microscopy.

• Initial treatment/fixation:

Samples 1,2 and 3 were fixed in a special fixative (4%FA and 0.5%
GA in 0.1M PB pH 7.4). Samples 4,5,6 and 7b were fixed in formalin
(7,5%) samples 7a and 8 were snap frozen.

• Secondary treatment/post fixation

Samples 2 and 3 were post-fixed in 1% GA + 1% Tannic Acid
(TA) in 0.1M PIPES for 4 h at 4°C, followed by 5x washing in 0.1M
PIPES. These samples were post-incubated in 1% TA in PBS for
15 min. Fluorescence was checked in the widefield microscope and
was still present.

• Embedding

Samples 1b, 2b, 5b and 6 were embedded in paraffin for
sectioning. Samples 1a, 2a and 3 were further dissected and
incubated for additional 10 min in TA, and then transferred to a
free-substitution machine for dehydration with ethanol and for
embedding with HM20 and R221 acrylate resins that preserve
the fluorescence signals (curing with UV: 40 h at −30°C, 5 h at
2 °C/h, 5 h at −20°C, 4 h at 10 °C/h, 5 h at 20°C). Samples 7a and
8 were embedded in OCT resin and stored at −20°C Samples 4 and
5a were not embedded.

• Sectioning

Samples 1b, 2b, 5b and 6 were sectioned with microtomes at
room temperature. Samples 7a and 8 were sectioned with
cryomicrotomes. Samples 1a, 2a and 3 were sectioned with the
ultramicrotome RMC PowerTomePC and placed on gelatine-
Chromium slide +0.5 nm Platinum (sampel 1); on a silicon-wafer

FIGURE 3
Schematic outline for image co-registration using three markers
across all images (red lines) of a tissue section. The tissue section,
approx. 6 × 3 mm2, was analysed by bright field (grey) and
fluorescence microscopy (cell tracker red is highlighting UV
exposed cells), MALDI mass spectrometry (lipid analysis showing the
intensity heatmap of the 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphocholine distribution with blue representing low and yellow
high signal intensities) and nuclei distributions visualized by DAPI
staining after mass spectrometric analysis. Advanced image analysis
allow for cell segmentations based on the fluorescence data. The
generated “cell mask” serves as guide for the in-depth interpretation of
the molecular data within particular cells and areas (red rectangle).
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glow-discharged for 20 s at 10 mA just before use (samples 2 & 3).
For CAT, short ribbons of 300 nm thickness were lifted with an eye
lash and placed on a drop of water on the wafer. Sections were then
dried out on a plate heater for several minutes at a heat of around
50°C. Note that neither Osmium, nor any other heavy metal, was
usedmto preserve the fluorescence. Samples 4 and 5b were
not sectioned.

2.1.2.3 Microscopy
Light microscopy images from the sections were acquired with a

widefield microscope, upright Zeiss AxioImager.Z2. Transmission
or reflection microscopy were used for general morphological
characterizations, depending on the transparency of the substrate
used. While several transparent substrates were tested, the best
performance was obtained with sections on Si wafers, using
reflection microscopy for morphological characterization, and
fluorescence for locating irradiated cells (positive cells Figure 4).
The microscope is equipped with an EC Epiplan 50x/0.75 H air
objective, reflection was acquired using 653 nm light source and
exposure times of 10 ms, while fluorescence was measured by
548 nm Excitation, 570–640 nm Emission and exposure times of
2–4 s depending on the sample. The imaging pixel size was 182 nm/
pixel. After acquiring the images, the sections underwent a baking
process on a hotplate for 1 h at approximately 70°C to enhance
adhesion before proceeding with heavy metal contrasting. Then the
sections were subjected to a contrasting procedure, involving a
10 min treatment with 4% OsO4, followed by a subsequent
10 min immersion in 2% UA, and then a further 10 min
exposure to Raynold’s Pb-citrate before they were positioned into
the chamber of the field emission scanning electron microscope.

Scanning Electron Microscopy images were acquired with a
Zeiss Gemini 450 equipped with a Backscatter Detector (BSD). The
electron beam was set to 2.0 kV and 100 pA and a working distance
of 4 mm. As a compromise between charging effects, resolution and
speed, the sample was scanned with a 6.4 µs dwell time, line average
of 5, and an imaging pixel size of 10 nm. The Atlas 5 software was
used for automated acquisition of large areas via tiles. Previously

acquired light microscopy images were superimposed on low
resolution SEM overviews to facilitate the targeted acquisition of
the areas of interest.

2.1.2.4 Image data properties
Light microscopy–Lateral resolution 300–400 nm, axial

resolution depends on section thickness. Data size of about
80 MB per section with 10M pixels covering a FOV of 300 ×
1200 microns, 2 color channels and 12 bit encoding. Electron
microscopy–Lateral resolution down to 10 nm. Data size up to
12 Gb per section covering a FOV of 100 × 1000 microns. A full data
set can consist of hundreds of sections but for this proof of concept
we acquired around 10 sections per ROI. SEM raw data is 16 bit,
however, in the majority of cases exports after stitching and 3D
alignment (see next section for processing) are done at 8 bit.

2.1.2.5 Image processing
Light microscopy images were processed for shading correction

and stitching via ZEN blue (ZEN 3.2 - Carl Zeiss GmbH, Figure 5A).
Axial alignment of the data for 3D reconstruction was performed in
FIJI (Schindelin et al., 2012) by using BigWarp (Bogovic et al., 2016).
For this purpose the Reflected Light (RL) modality was used to
define off-target landmarks (Figure 5B). By matching landmarks
from consecutive sections a transformation map (Thin Plate Spline)
is defined. Registration was done in a semi-automated way, with one
step of computer assisted segmentation of nucleolus, followed by
manual curation and definition of other landmarks in areas of poor
registration. Registration accuracy was judged by a human using the
RLmodality. No information from the Fluorescent (FL) channel was
used to avoid bias (Figure 5C).

Electron microscopy images were processed for shading
correction, stitching and 3D alignment using Zeiss ATLAS
5 (Figure 5D).

CAT Registration of the LM and EM datasets was performed in
FIJI, using BigWarp. In a similar fashion to the LM dataset, off-
target landmarks were defined in the SEM image and matched to the
RL channel. No information from FL was used to avoid bias. The

FIGURE 4
Sample preparation–Samples were prepared with the aim of preserving fluorescence during the generation of the arrays on a solid substrate. Two
substrates were tested (A,B) gelatine-Chromium slide +0.5 nm Platinum and (C,D) silicon-wafer. The latter displayed excellent morphological landmarks
in the light microscope using reflection of a 653 nm light source, and better contrast in the SEM due to increased conductivity. The improved preparation
protocol of samples 2 and 3 (C,D) post fixationwith Tannic Acid incubation removed unspecific fluorescent signals present in Sample 1 (A,B) located,
for example, around the nucleus compare panels (B,D). Scale bars are 50 (A,C) and 10 (B,D) microns.
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Thin Plate Spline transformation was then performed to register the
FL channel onto the SEM image. Figure 5D shows an example of an
irradiated cell (fluorescently stained) versus a non-irradiated cell
(non-fluorescent).

2.1.2.6 Image visualization
Aligned datasets were exported in different file formats to test

the performance of Cytomine (Marée et al., 2016). This evaluation
enabled the identification of several technical issues in the software,
which were reported to the Cytomine team. In addition, several new
features in the user interface were requested to facilitate the
exploration of, and collaboration on, multimodal datasets.
Cytomine was identified as a promising platform for correlation
and correlative analysis of multimodal image data, however further
development is needed before it reaches its full potential of this type
of data and tasks.

Aligned datasets were also imported into MoBIE (Pape et al.,
2023), a FIJI plugin for sharing, exploration, and visualization of
large multi-modal datasets. During the project we have been in
communication with MoBIE’s developers and provided
feedback to contribute to its further improvement, in
particular tools for project generation using both FIJI’s
macro language and Python.

2.2 Standardization

Due to the complexity of multimodal imaging approaches
involving various (in vivo) imaging techniques, there is a
considerable demand for standardization/harmonization of (pre-)
clinical imaging methods and analysis software to assess and
determine correlation precision. Specifically, reproducibility,
reliability, and also transferability of preclinical imaging data
towards clinical research/diagnosis (from bench to bedside) has
been intensively discussed over the last decade(s) (Peers et al., 2012;
Lieu et al., 2013; Begley and Ioannidis, 2015; Mannheim et al., 2019).
Multiple studies have demonstrated that reproducibility and
standardization might be well advanced in single preclinical
institutions but is limited and challenging on a multicenter level,
thereby pointing out that multiple factors play a crucial role in
preclinical in vivo imaging (see Figure 6 as an example for preclinical
positron emission tomography (PET) imaging), potentially
significantly affecting the comparability of (multicenter)
preclinical studies, such as animal handling and scanner quality
control/performance (Fueger et al., 2006; Osborne et al., 2017;
McDougald et al., 2019; Herfert et al., 2020). Performing
preclinical studies in a multi–center approach might, however,
mimic the situation in the clinics more closely, potentially

FIGURE 5
Image processing–(A) Light Microscopy (LM) images of the sections were processed for stitching and shading correction. From these images
sections are detected and (B) the process of z-alignment carried out by using off-target landmarks (mostly the nucleolus) between the reflected (RL:
general morphology) and fluorescence (FL: cells of interest) channels. (D) After post staining, the sample was imaged in the SEM and the acquisition
targeted towards the regions of interest based on the LM results. Off-target landmarks were used between the SEM and RL for CAT registration. (E)
CAT results for a fluorescently positive (+) and negative (−) cell. (E) Magenta segmentation shows areas of high fluorescence intensity while green
segmentation shows the nucleolus. Scale bars are: (A) 100, (C,D) 20 and (E) 10 microns.
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leading to fewer biases and increased reliability of results (Bath
et al., 2009).

One factor that up-to-now has not been investigated in depth is
the comparability of image analysis techniques on a multicenter
level. Especially in preclinical in vivo imaging, the analysis of
imaging data is strongly user-dependent, and no standard
guidelines are available or agreed on at this point. This is also
reflected by the fact that many preclinical researchers develop their
own software packages to accommodate specific research/
analyzing tasks that are not yet available in preclinical or
clinical image analysis software toolboxes, hence potentially
introducing biases in the reproducibility of image analysis
techniques if not evaluated in depth. Furthermore, fully
automatic and standardized segmentation methods are not
yet available.

To investigate the interobserver variability of preclinical
quantitative image analysis, WG2 of COMULIS has initiated a
multicenter study in which 12 observers (4 beginners, 8 experts)
from 8 different European institutions were asked to analyze/
segment multiple organs (brain, tumor, heart, liver, kidneys,
muscle and bladder) on the same set of 2-deoxy-2-[18F]fluoro-D-
glucose ([18F]FDG) PET(/CT)-images. The study was divided in
3 separate work packages:

1. Analyze [18F]FDG PET-only data with default image analysis
protocol of each institution

2. Analyze [18F]FDG PET/CT data with default image analysis
protocol of each institution with the option of performing the
segmentation on the CT-image

3. Analyze [18F]FDG PET/CT data following a standardized
analysis protocol

For work package 1 and 2, the observers were asked to perform
the PET/(CT) analysis according to their institutional standard
procedure (standard used image analysis software, delineation of
regions or volumes of interest (ROI, VOI) using e.g., fixed objects,
manual delineation, or thresholding). On the other hand, the
standardized analysis protocol for work package 3 comprised
detailed segmentation instructions for each investigated organ,
including whether the segmentation must be performed on the
CT or PET images, shapes and volumes of individual VOIs (e.g., box
or ellipsoid), and contrast thresholds if analyses were performed on
the PET images.

Preliminary analysis of the 12 observer analyses revealed
significant interobserver variability for work packages 1 and 2,
both in the quantitative PET results and in the VOI sizes in
general. Especially the muscle region showed significant
differences between observers. As this region typically serves as a
reference tissue region in [18F]FDG tumor imaging due to unspecific
binding, significant changes in uptake for this region hamper
comparability on a multicenter level significantly. Using a CT
image for co-registration and segmentation of VOIs decreased

FIGURE 6
Chemical, technical, methodological, and biological factors that can play a crucial role in preclinical in vivo imaging potentially significantly affecting
the comparability of preclinical PET data. Figure adapted from [7] with reprint permission from Springer according to their creative common license
http://creativecommons.org/licenses/by/4.0/.
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the variability for some organs (e.g., tumor and brain) only. For
work package 3, in which a standardized segmentation was
performed as described above, the reproducibility in image
analysis was further enhanced for some organs (e.g., liver and
kidneys). In contrast, there was no reproducibility improvement
for other organs (e.g., urinary bladder and muscle). As expected,
VOI sizes were comparable in work package 3, as these were
pre-defined.

These findings clearly support the fact that there is a high
demand for the harmonization of preclinical image analysis on a
multicenter level to increase the reliability of preclinical imaging
results. Performing this multicenter image analysis study,
COMULIS aimed at improving the reproducibility and reliability
of preclinical imaging data and worked towards higher throughput
of preclinical findings into clinical research and practice (from
bench to bedside translation).

2.3 Correlation software

To enable correlated analysis and fusion of the heterogeneous
information captured by different devices, the first requirement is to
establish precise geometric correspondence between the acquired
images–to find a spatial transformation that brings, and best aligns
the data in the same coordinate system. Depending on the
application scenario, different types of transformations (rigid,
affine, deformable) are used. This process, known as image
registration, is still often performed semi-automatically today,
where a user identifies and marks salient features visible in the
images to align. A successful tool for this task is eC-CLEM (Paul-
Gilloteaux et al., 2017) relying on user-interaction, it has
demonstrated applicability to registration tasks involving a wide
range of modality combinations. However, reliance on manual
interaction makes alignment a tedious and difficult process. As
acquired data grows in size and dimensionality, manual alignment is
less and less a feasible option. Although many software tools for
automated image registration are available, the vast majority are
only able to handle registration of monomodal images. The large
variation in information content, dimensionality and scale of images
acquired by different techniques used in CMI make automated
multimodal image registration a very challenging problem.

Most registration methods for life science data rely on iterative
optimization to find the transformation which maximizes a
similarity measure between the images to align. The optimization
is typically highly non-convex, which makes the process
complicated and time consuming, while still often only delivering
suboptimal solutions (e.g., a local maximum of the similarity
measure). A dialog between software developers and end-users
(life scientists) has been stimulated at COMULIS conferences and
special sessions (e.g., at the special session “Holistic approach to
correlative microscopies: From sample preparation to data
integration” organized at the IEEE 2021 International symposium
on Biomedical Imaging (IEEE ISBI 2021)), where the properties of
novel proposed approaches were evaluated against the expressed
needs. Throughout the COMULIS Action, several state-of-the-art
methods for multimodal image registration have been presented and
discussed within the COMULIS community. They have included
both model-based and the most recent deep learning-based

approaches proposed to solve, or circumvent, the problems
observed with the iterative methods (Pielawski et al., 2020;
Fourcade et al., 2022; Lu et al., 2022).

While data-driven deep-learning approaches typically
outperform traditional model-based methods on image analysis
tasks such as segmentation and classification, it has been
observed that non-learning methods may still provide state-of-
the-art performance for image registration (O’Mahony et al.,
2019; Öfverstedt et al., 2022). At the same time, deep learning
may deliver means to speed up the process, which is of a high
relevance for contemporary imaging and image analysis contexts.
Recent advancements, however, have led to highly accurate and time
efficient non-learning approaches (Lu et al., 2022), as well as
successful combinations of representation learning and
monomodal iterative methods as described in following
publications (O’Mahony et al., 2019; Pielawski et al., 2020; Paul-
Gilloteaux et al., 2021; Öfverstedt et al., 2022; Nordling et al., 2023).

2.4 Findability and performance evaluation
of software and other resources

Now that a wide variety of software for correlated imaging data
analysis is available, how do the researchers who need it actually find
it (Table 3)?

To ensure the reusable research objects - such as software tools,
workflows, and learning materials - are findable, two layers of
infrastructure are required:

1. An ontology for defining the appropriate search terms and
concepts (categories)

2. A registry where the tools’ and other research objects’
functionality, application domains, and other details are
stored, curated, and searchable.

2.4.1 An ontology - EDAM Bioimaging
The COMULIS project has ensured that all the concepts and

search terms for finding software and other resources for analyzing
correlative and multimodal imaging data, are added to the EDAM
Bioimaging ontology (Kalaš et al., 2020). EDAM-bioimaging is an
extension of the EDAM ontology (Ison et al., 2013; Lindblad et al.,
2020) dedicated to bioimage analysis, bioimage informatics, and
bioimaging. EDAM-bioimaging contains an inter-related hierarchy
of concepts including bioimage analysis and related operations,
bioimaging topics and technologies, and bioimage data and their
formats. The modeled concepts enable interoperable descriptions of
software, publications, data, and workflows, fostering reliable,
transparent and “reproducible” bioimage analysis. EDAM-
bioimaging is under active development, with a couple of alpha
releases publicly available. It is developed by a large crowd-sourced
effort in a welcoming collaboration between bioimaging experts
from COMULIS and ontology developers. It is used in BIII,
(BioImage Informatics Index, http://biii.eu/, more details follow
below), to describe the applications of these tools, by describing
the operations performed (such as segmentation, visualization, or
lower level operation) and the field of applications of these tools such
as the imagingmodalities to which it can be applied, http://bioportal.
bioontoly.org/ontologies/EDAM-BIOIMAGING.
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TABLE 3 Available software tools (visualization, exploration, annotation, and sharing) and repositories for CMI.

Name Type Links Modalities

Apeer web Software https://www.apeer.com/

Biaflows Repository http://biaflows.neubias.org multimodal but side-by-side visualization

BioImage Archive Repository https://www.ebi.ac.uk/bioimage-archive/ several modalities but one by one, not
multimodal

Bossdb bossdb.org/projects EM

BrainTrawler web Software https://doi.org/10.1016/j.cag.2019.05.032 brain 3D imaging

caMicroscope web Software https://wolf.cci.emory.edu//camic_org/apps/landing/landing.
html

histology

Cancer imaging archive cancerimagingarchive.net multimodal

catmaid web Software https://catmaid.readthedocs.io/en/stable/

Cell-IDR Repository https://idr.openmicroscopy.org/cell/ several modalities but one by one, not
multimodal

CellImageRepository Repository http://www.cellimagelibrary.org/home

CXIDB Repository http://www.cxidb.org/ coherent x-ray

Cytomine open collection Repository https://cytomine.coop/collection Digital histology, multimodal but side-by-side
visualization

Cytomine V2 web Software https://uliege.cytomine.org/ Many, multimodal but side-by-side visualization

EMPIAR Repository https://www.ebi.ac.uk/pdbe/emdb/empiar/ EM

EOSC-Life https://ec.europa.eu/research/openscience/index.cfm?pg=open-
science-cloud

FAIRSharing Repository
links

https://fairsharing.org/collection/EuroBioImaging

Grand-Challenges Repository https://grand-challenge.org/challenges/ Various

histoCAT web software https://github.com/BodenmillerGroup/histoCAT mass cytometry tissue

IDR Repository https://idr.openmicroscopy.org

IKOSA https://www.kmlvision.com/ikosa/

Microdraw web Software http://microdraw.pasteur.fr/ histology

MOBIE

Nanotomy Repository http://www.nanotomy.org EM

NeuroDataCloud Repository https://neurodata.io/ndcloud/ EM

neuroglancer web Software https://github.com/google/neuroglancer volumetric data

Oasis: open access series of brain
imaging

www.oasis-brains.org/ multimodal

OMERO web Software https://www.openmicroscopy.org/omero/

OpenImadis https://github.com/strandls/openimadis

OpenIRIS https://openiris.io/landing/?ReturnUrl=%2f

OpenNeuro (old name: openmri) Repository https://openneuro.org/

Orthanc web Software https://www.orthanc-server.com/ dicom

SMIR Sicas Medical Repository https://www.smir.ch/

Tefor https://zebrafish.tefor.net/ zebrafish/fruitfly

Tissue-IDR Repository https://idr.openmicroscopy.org/tissue/ several modalities but one by one, not
multimodal

(Continued on following page)
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In addition to findability, COMULIS contributed to information
seeking, identification, collection and/or data curation.

2.4.2 A registry - BIII
Throughout the Action, we have collected and shared

information about available software tools for CMI, enhanced
with the information about their properties and relevance
acquired directly through communication with the users. This
has been possible due to intensive collaboration in the
multidisciplinary context. Within WG4, we have created a web
interface (https://www.comulis.eu/correlation-software) connecting
the COMULIS community and the BIII (BioImage Informatics
Index) database (https://www.biii.eu) originally developed by
bioimage analyst from NEUBIAS (https://www.neubias.org), to
further facilitate compilation of this valuable information and to
make it accessible to any interested user. COMULIS WG4 has
initiated discussions with COMULIS members across working
groups to identify popular software in use for three categories of
tasks: segmentation, registration and visualization. The entries of
these tools were then edited, or created if not existing, in BIII by
adding the multimodal imaging tag, in order to be indexed on the
COMULIS webpage. This is now an automatic process such that any
software tools existing in BIII and tagged with one of the three tasks
identified and with “multimodal imaging” will appear in the curated
list on the COMULIS website. WG4 also identified publicly available
datasets as well as data sharing platforms, relevant for both the
biological and medical communities, that were collected in BIII. As
an example, datasets are listed in BIII at https://biii.eu/dataset. The
dataset gathering is a starting point to select and further develop
fully automatic correlation software as it was described in the
previous section.

2.4.3 Performance assessment
Indeed, to enable selection of the most suitable software in any

concrete context, it is of high importance to provide not only access
to the available methods, but also a possibility to compare and
evaluate them qualitatively and quantitatively. Furthermore,
evaluation is essential for further development of these tools.
Evaluation of novel methods, as well as training of deep learning
models, require high quality annotated (ground truth) data. To
facilitate the critically important step of assembling ground truth
data, we have initiated collection of annotated multimodal
datasets–the diverse expertise and access to a broad variety of
imaging techniques, including those supporting integrated
(simultaneous) imaging, available within COMULIS community
provided a unique opportunity to ensure quality control and
reproducibility of the involved processes. The collected curated
datasets will be made publicly available, as a precious resource
for a broad and diverse community of users. Another important

aspect that we have discussed is selection of the most suitable set of
evaluation metrics, with awareness of the diverse interests of users.,
COMULIS community is currently preparing a registration
challenge–a public evaluation and benchmarking of available
software–which will further improve our understanding of the
needs and directions for advancement.

All these initiatives fit into coordination efforts which are
ongoing in the direction of the findability, accessibility,
interoperability, and reusability (FAIR principles) of workflows,
but also the ease to access high performance computing (HPC)
resources to run them (Walter et al., 2021b). They are led by
European Research Infrastructures and consortiums, such as
ELIXIR and EOSC-Life.

2.5 Data handling

As a result of these technological evolutions, it is becoming
routine to collect raw images of hundreds of gigabytes per
imaging session. Recent advances in cryo-EM, including those
in detector technology with faster frame rates, have substantially
increased data generation, with a typical single particle imaging
session acquiring data in the gigabyte range. Light-sheet
microscopy allows integrating super-resolution modules with
Lattice Light-Sheet Microscopy acquiring data in the range of
terabytes for a single 4D data set, and the volume of data of
complex features and broad dimensions acquired in biomedical
imaging, including µMagnetic Resonance Imaging (MRI) and
µCT, is growing exponentially. In combination with dynamic
CMI approaches, the sheer size of the bioimaging data truly
enters the big data regime. Indeed, the biggest bottleneck of CMI
is currently data handling and storage due to the plethora of
complex, multimodal, time-varying, and diverse volumetric
imaging data. Further increases in throughput and automation
will generate even more data and raise the pivotal question of how
to handle these huge amounts of data. Below we highlight three
showcases that drafted solutions to i) share, ii) segment, and iii)
reduce these big multimodal image datasets.

III. A collaborative software platform to share and analyze
multimodal datasets - Cytomine:

User requirements and feedback for a multimodal imaging
sharing platform were collected through workgroup meetings (at
COMULIS conferences, or on-line through virtual workshops).
Important features include efficient remote visualization of large
images, collaborative semantic annotation of regions of interest
within images, and various analysis tools (from image registration
to training of deep learning models). To meet these requirements,

TABLE 3 (Continued) Available software tools (visualization, exploration, annotation, and sharing) and repositories for CMI.

Name Type Links Modalities

Virtual Pathology at Leeds Repository https://www.virtualpathology.leeds.ac.uk/ Histology

VMD Repository http://virtualmicroscopydatabase.org/ LM, Histology

webknossos web Software https://webknossos.org/ 3D light- and electron-microscopy
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the Cytomine open-source tool (originally developed for digital
pathology (Marée et al., 2016) was further extended during the
COMULIS project to support multiple imaging modalities
(including x + y + c + z + t fluorescent images, mass
spectrometry imaging, . . . ) through the complete rewrite of
PIMS, its image management system (https://github.com/
cytomine/pims). A Cytomine server was setup to host
multimodal imaging data from the skin/epidermal equivalent
project and 25 members from the COMULIS project were
granted access to remotely visualize and collaboratively
annotate their datasets. The tool includes the organization of
datasets into “projects” with user access controls, a visualization
module to split the screen to jointly visualize multiple images, new
annotation concepts to link annotations across imaging modalities
(as illustrated by Figure 7 and documented here: https://doc.uliege.
cytomine.org/user-guide/image-groups-annotation-links), and
preliminary data analysis packages that exploit multimodal
sources. Cytomine’s architecture allows further extension
through PIMS plug-ins (to support additional image formats)
and “Apps” using Cytomine REST API and packaged as
containers (e.g., to add image registration or deep learning
algorithms and visualize their results in the web user interface).

2.6 Data curation and accessibility

While performing CMI experiments a wealth of data is acquired
whereas only a fraction is generally used and properly analyzed. This
“other” data should not go to waste and could be very useful for
other research questions. This has led to a push to deposit data in
repositories so they can be verified, further analyzed (refined), or re-
analyzed for a complete new research question. This has been
common practice in the structural biology field. For example,
high resolution protein structures derived from cryo electron
microscopy (largely single particle analysis, SPA, but also cryo
Electron Tomography, cryo ET) have been deposited in the
EMDB for over 20 years.

3 Discussion & outlook

In COMULIS, the main challenge was to bring together
communities with different expertise, skill sets, and interests so
that they find benefits in combining them and understand and
appreciate each other’s strengths. We used different tools to reach
this goal. The process was first to improve understanding of each

FIGURE 7
Screenshot of the Cytomine web viewer with multimodal imaging data (A): fluorescent imaging, (B): bright-field microscopy, and right: imaging
mass spectrometry data) from the Skin/epidermal equivalent project. The viewer is split into four views where annotations are displayed to link similar
regions across modalities. In each view, it is possible to use various drawing tools (top horizontal bar) to delineate regions of interest, copy-paste
annotations from one view to another (with automatic scaling based on each image resolution), and link annotations. In the top-left view, a specific
annotation is selected and the annotation panel shows basic annotation information (e.g., area, ontology term associated to the annotation) and to which
other annotations the selected annotation is linked (“Linked annotations”). In each view, the right vertical panel allows to (un)select user annotation layers,
filter annotations based on ontology terms, and to apply image processing to adapt channel contrast/brightness. The pink mesh-like structure overlaying
the microscopy image outlines cell areas imported from advanced image analysis (TissueFAXS, TissueGnostics). The (B) shows an enlarged area of the
sample with annotations. The top-right view displays MALDI imaging data on top of the bright field image, again annotated with areas of interest. In the
presented example, MALDI data of one specific lipid, PLPC, were imported as heatmaps from MALDI MSI software (SCiLS, Bruker), representing the
intensity distribution in the sample.
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single modality and its possibilities. As a starting point to enhance
the combination of modalities, in addition to presentation of
different techniques at the COMULIS conferences, a
compendium of imaging modalities was prepared and published
(Walter et al., 2021a; Walter et al., 2021b).

The second step was to identify existing multimodal workflows,
by gathering the knowledge of the different experts in the network,
and to identify the tools and techniques used. From these two steps,
showcase project were defined based on initial proposals by
members of the network, in order to conceive new correlative
workflows mixing modalities never used before, thereby
enhancing the methodological difficulties and pushing discussions
between expert of every modality about, e.g., the input and output
state of the sample, or to arrange ideal multimodal workflows. Image
processing experts were also in the loop during these processes,
allowing for them to better understand the challenges, but also to
define some requirements to help the image analysis (as, e.g.,
requirement to add nuclei staining or other overlapping to help
the registration). Another way to push new workflows was via
exchange between labs that was promoted on the strict criteria of
multimodal acquisition, and was encouraged by a joint participation
in the construction of these workflows. In the context of the
showcase on skin damage, the CMI approach offered several
advantages: For example, by employing a fluorescent cell mask,
light microscopy was used to assess overall skin morphology, locate
cells of interest, and evaluate spatial relationships between cells at
the scale of microns to millimeters. Subsequently, the same sample
was imaged in a targeted manner using SEM, which provided a high
spatial resolution (10–5 nm) for investigating ultrastructure,
imperceptible at the light microscopy level. Furthermore, by
implementing 3D-EM techniques like serial-section AT, this
high-resolution volume was correlated with the broader
mesoscopic view obtained from light microscopy or other
techniques such as X-ray volumetric imaging. The CMI workflow
enabled researchers to segment and compare organelles and
structures among different scales and cell types, including but
not limited to single cells, nuclei, nucleoli, interstitial spaces,
mitochondria, desmosomes, and keratohyalin granules. In
addition, each modality contributed complementary and
quantitative measurements associated with UVB damage, as for
example, the shape and integrity of cell nuclei using
immunofluorescence microscopy, EM, or CLEM–since sun burnt
cells have pyknotic, condensed nuclei. Direct or indirect
photoproducts resulting from UV damage were quantitatively
screened using immunofluorescence microscopy. DNA
photoproducts can be assessed using mass spectrometry (O’Neil
and Deane, 2021). Cellular responses to UV damage can also be
quantified using CLEM, including adaptive stress responses,
inflammation, autophagosomal/lysosomal responses,
mitochondrial swelling and cell death induction. Changes in
metabolism resulting from UV damage can be quantitatively
assessed with metabolic activity imaging (Kremslehner et al.,
2020) in brightfield or fluorescent microscopy, whereas the
corresponding metabolites can be quantified with MSI. One
immediate goal will be to determine whether these quantitative
measurements of damage can be correlated with non-invasive
techniques like multiphoton imaging or OCT to assess cellular
UV damage.

One of the objectives of the COMULIS project was also to
engage and strengthen the link with industrial partners. To reach
this goal dedicated discussion sessions (round table discussions)
with industry representatives were initiated to explore how we can
benefit from each other and together build a stronger community.
Although the objectives of academia and industry do not always
match completely, it was clear there is a lot of common interest from
both sides to explore opportunities together. This was taken to the
practical level through the award of a dedicated follow-on grant for
COMULIS - a COST Innovators Grant (CIG). The CIG aims to
develop an early-stage idea into a practical solution with the
potential for commercialisation. The COMULIS CIG will focus
on the development of new tools to facilitate the acquisition of
cryo Electron Tomography data for in situ structural cell biology, the
next level of cryo EM, critically dependent on correlative
approaches.

At the other end of the EM spectrum, the interest in volumeEM
(vEM, (Peddie et al., 2022; Collinson et al., 2023), has been sparked
substantially. vEM was highlighted as one of the technologies to
watch for 2023 (Eisenstein, 2023). Importantly, a large number of
the vEM workflows are critically dependent on the incorporation of
a correlative element to aid with retracing of the proverbial “needle
in the haystack” in such a large volume (Lees et al., 2017; Hoffman
et al., 2020; Yoshida et al., 2020). Strong interactions between the
CMI and vEM communities are essential to drive the field further.
Not by coincidence, many researchers in the vEM community are
also heavily involved in the CMI community.

The COMULIS project was funded for 4 years (October 2018 -
October 2022) through an EU COST action (https://www.cost.eu)
which is specifically designed to build up communities. The action
allowed us to organize conferences, focused WG meetings, and
courses. Through Short Term Scientific Missions (STSM), it also
funded lab exchanges to train scientists to use CMI technology and
apply this knowledge to address their biological question. With the
end of the grant looming, and thus the loss of the resources and
opportunities provided by the action, a strategy was required to
make this community initiative sustainable through further funding
mechanisms and the establishment of the COMULIS community as
a recognised legal entity. We are proud to announce that we have
been successful in securing continued funding for another 2 years
through a Chan Zuckerberg Initiative (CZI) grant dedicated to
community building. Our ambitions have grown over these last
4 years and whereas the COST action was limited to European
countries, we are now, via the CZI initiative, reaching out to the
whole world: COMULISglobe community will be relying on, and
further developing, the same tools, conferences, training, STSMs,
etc., that we have used so successfully before.

Future challenges for CMI will include integrating preclinical in
vivo imaging and biological (ex vivo) microscopy to zoom in from a
living sample to individual close-to-native ultrastructure and adding
localized spectroscopic or chemical information to the acquired
structural and functional parameters. Clinical or diagnostic imaging
today is very much already both a multiparametric, as well as
multimodal approach–but for the most part it is all not done
simultaneously. In a typical example a cancer patient undergoes
an annual surveillance CT scan and a small lesion in the liver is
found, which is too small to characterize. Therefore, typically
another modality with different features is added next and the
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patient undergoes either an ultrasound or MRI scan. MRI provides
enhanced soft tissue contrast and in particular makes detecting
hemangiomas, fat and cysts quite easy. It can also be used to
characterize the blood flow. Ultrasound can be used to evaluate
any possible associated vascularity (and also fluid content), but is
very user dependent. Let us assume in our example that the lesion
was not well seen on ultrasound and the MRI remained still
equivocal, whether it is a benign lesion or also potentially a
metastasis. Next, the patient could undergo a PET scan for
metabolic imaging to explore if that lesion has high glucose
metabolism, indicative of a tumor. However, few scanners are
geared towards multimodal imaging. PET scanners are usually
combined with a CT or even MR scanner to combine anatomical
(CT and MR) and/or functional imaging (MRI) with molecular
information from a PET scanner (or a SPECT scanner). While most
expensive, a PET/MRI scanner has found use in mostly oncologic
and neurologic imaging over the last 10 years, particularly for
locoregional staging of diseases for which MR is the anatomical
imaging modality of choice, e.g., brain tumors, head and neck,
gynecologic and prostate cancers. PET can e.g., detect presence of
prostate-specific membrane antigen, combined with anatomic and
parametric MR imaging such as diffusion and perfusion imaging,
providing an overall multiparametric information on the tumor and
therefore a much better insight in the primary disease than any
standard scan could do (Weber, 2020) It is important to note though
that most of these studies are still experimental and require larger
studies to determine the real clinical impact (Riola-Parada
et al., 2016).

To achieve meaningful statistics, throughput and quantitative
imaging are crucial to biomedical research. Considering that the
amount of imaging data acquired has increased massively,
automation of microscopy will be crucial for mainstream
biomedical research and quantitative conclusions. Automation
will be accompanied by an additional boost in imaging data. Big
data in bioimaging will hence be a substantial future challenge for
the community. It is already becoming routine to collect raw images
of hundreds of gigabytes per imaging session. Recent advances in
cryo-EM, including the advances in detector technology with faster
frame rates, have substantially increased data generation with a
typical single particle imaging session acquiring data in the gigabyte
range, and lattice light-sheet microscopy, for example, acquires data
in the range of terabytes for a single 4D data set. Additionally, the
biggest bottleneck of CMI is currently data handling and storage due
to the plethora of complex, multimodal, time-varying and diverse
volumetric imaging data (Paul-Gilloteaux et al., 2017). As
throughput and automation increase, the challenge of managing
vast amounts of data intensifies. Compounding this issue, there are
currently no established guidelines for data handling or plans for
data retention and management. Even submission to public archives
like EMPIAR or Cell-IDR can only accommodate a fraction of the
acquired data. Furthermore, the inclusion of diverse image
modalities in multimodal workflows complicates data
management and analysis. One strategy to address this challenge
is data compression. Since many quantitative analyses of image
datasets focus on specific macro-structures unaffected by
compression artifacts, even lossy compression methods may offer
a versatile approach to managing the extensive data volumes in
bioimaging. Deposition in public repositories will also drive

increased standardization of acquiring, processing and storing
complex, multidimensional, time-varying, multiscale and
complementary data from various disciplines, and foster their
correlation and discovery of interdependencies. There exist high-
quality dedicated repositories for microscopy data produced in the
context of large research projects such as the Allen Brain Map
(https://portal.brain-map.org). More “general-purpose” data
emanating from CLEM or Correlative Light and X-Ray
Microscopy (CLXM) experiments can be deposited in two
archives with a global scope and operated by EMBL-EBI:
EMPIAR (Iudin, Korir, Salavert-Torres, Kleywegt and
Patwardhan, 2016; https://empiar.org) for the electron or X-ray
microscopy (XM) data and BioImage Archive (https://www.ebi.
ac.uk/bioimage-archive) for the light-microscopy data. New
formats such as those based on ZARR (Moore et al., 2021) are
also exploring the representation of data in file formats which allow
to optimize the handling of data, mainly using lazy processing,
i.e., load only the part of the data (at a suitable scale) only when one
needs it. This also comes with strategies of superimposition of data
for visualisation, avoiding duplication of transformed data, with on-
the-fly display of the relative positioning of two raw datasets.

The increasing diversity of imaging modalities and the
growing scale and dimensionality of acquired data urgently
call for efficient approaches for their automated correlated
analysis. The rapid increase of both computing power and the
amount of available data have brought into focus data-driven,
learning-based image analysis methods. Their successful
application requires addressing several challenges. Deep
learning excels when trained on large and reasonably
homogeneous data; CMI in life sciences, on the other hand,
typically results in few heterogeneous images, due to
complexity of the acquisition, combined with exploratory aims
of the research. In combination with the great difficulty to collect
reliable annotations of biomedical data, this becomes a major
hurdle for the adoption of learning-based methods. Few-shot and
un/self-supervised methods may reduce the need for training
data, but this often comes at a cost reduced performance. It
should be emphasized that annotated data is required not only for
model training, but also for evaluation of novel methods. It is
therefore of critical importance to continue efforts to assemble
and publish high quality datasets, enabling method development,
quality control and reproducibility.

Most popular methods used in practice for multimodal image
analysis still rely on semi-automatic approaches; this is imposed by a
high heterogeneity, complexity, and high dimensionality of the data
that needs to be analyzed. At the same time, modern imaging
scenarios easily result in terabytes of image data, which prohibits
manual analysis, but also puts high demands on performance and
efficiency of automated approaches. The COMULIS community has
made great progress in establishing collaborative multidisciplinary
efforts towards increased awareness and assessment of the available
software solutions. However, novel CMI pipelines require further
development effort, since generality of the existing automatic tools,
and their applicability to new, or additional modalities, is still very
limited. Our aim towards modality-agnostic, generally applicable,
but still powerful, fast, and easy to use techniques and tools, to
advance CMI, and life sciences, remains a long-term challenge for
the community.
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Glossary

BIII BioImage Informatics Index

BSD Backscatter Detector

CAGR Compound Annual Growth Rate

CAT Correlative Array Tomography

CIG COST Innovators Grant

CLEM Correlative Light and Electron Microscopy

CMI Correlated Multimodal Imaging

COMULIS Correlated Multimodal imaging in the LIfe Sciences

CT Computed Tomography

CZI Chan-Zuckerberg-Initiative

DLS Dynamic Light Scattering

DR Diffusion Reflection

EDAM European Data Format for Raw Microscopy Data

ELIXIR European Research Infrastructure for Biological Information

EM Electron Microscopy

EOSC Life European Open Science Cloud for Sesearch in the Life Sciences

FA Formaldehyde

FL Fluorescent Light

FLIM Fluorescence Lifetime Imaging Microscopy

FOV Field of View

FTIR Fourier-transform Infrared Spectroscopy

HPC High Performance Computing

HREM High-resolution Episcopic Microscopy

IF Immunofluorescence

IHC Immunohistochemistry

IPL Intense Pulsed Light

ITC Inclusiveness Targeted Countries

LACIP Laser Capture Microdissection

LM Light Microscopy

MALDI Matrix-Assisted Laser Desorption/Ionization

MoBIE Multi-modal Big Image Data Exploration

MRI Magnetic Resonance Imaging

MSI Mass Spectrometry Imaging

OCT Optimal Cutting Temperature

O-PTIR Optical Photothermal Infrared

PET Positron Emission Tomography

PHI Preclinical Hybrid Imaging

RL Reflected Light

ROI Regions of Interest

SEM Scanning Electron Microscopy

SIMS Secondary Ion Mass Spectrometry

SPECT Single Photon Emission Computed Tomography

STED Stimulated Emission Depletion Microscopy

STSMs Short-Term Scientific Missions

TA Tannic Acid

TEM Transmission Electron Microscope

UV Ultraviolet

UVB Ultraviolet B

vEM volumeEM

VOI Volumes of Interest

WGs Working Groups
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