AUTHOR=Kim Youjoung , Druschel Lindsey N. , Mueller Natalie , Sarno Danielle , Gisser Kaela , Hess-Dunning Allison , Capadona Jeffrey R. TITLE=In vivo validation of a mechanically adaptive microfluidic intracortical device as a platform for sustained local drug delivery JOURNAL=Frontiers in Biomaterials Science VOLUME=2 YEAR=2023 URL=https://www.frontiersin.org/journals/biomaterials-science/articles/10.3389/fbiom.2023.1279367 DOI=10.3389/fbiom.2023.1279367 ISSN=2813-3749 ABSTRACT=

Introduction: Intracortical microelectrodes (IME) are vital to properly functioning brain-computer interfacing (BCI). However, the recording electrodes have shown a steady decline in performance after implantation, mainly due to chronic inflammation. Compliant materials have been explored to decrease differential strain resulting in lower neural inflammation. We have previously developed a fabrication method for creating mechanically adaptive microfluidic probes made of a cellulose nanocrystal (CNC) polymer nanocomposite material that can become compliant after implantation. Here, we hypothesized that our device, would have a similar tissue response to the industry standard, allowing drug delivery therapeutics to improve neural inflammation in the future.

Methods: RNA expression analysis was performed to determine the extent of neural inflammation and oxidative stress in response to the device compared to controls and to naïve shame tissue.

Results: Results presented for both four- and eight-weeks post-implantations suggest that our device offers a promising platform technology that can be used to deliver therapeutic strategies to improve IME performance.