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Membrane permeability is a critical bottleneck in the development of cyclic
peptide drugs. Experimental membrane permeability testing is costly, and
precise in silico prediction tools are scarce. In this study, we developed
CPMP (https://github.com/panda1103/CPMP), a cyclic peptide membrane
permeability prediction model based on the Molecular Attention Transformer
(MAT) frame. Themodel demonstrated robust predictive performance, achieving
determination coefficients (R2) of 0.67 for PAMPA permeability prediction,
and R2 values of 0.75, 0.62, and 0.73 for Caco-2, RRCK, and MDCK cell
permeability predictions, respectively. Its performance outperforms traditional
machine learning methods and graph-based neural network models. In ablation
experiments, we validated the effectiveness of each component in the MAT
architecture. Additionally, we analyzed the impact of data pre-training and cyclic
peptide conformation optimization on model performance.
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1 Introduction

Cyclic peptides have emerged as promising therapeutic candidates owing to their
favorable pharmacological properties, including low metabolic toxicity, enhanced stability,
high binding affinities, and remarkable efficacy in disrupting protein-protein interactions
(Zhang and Chen, 2022; Muttenthaler et al., 2021). Recent advancements in artificial
intelligence have significantly enhanced computer-aided design of cyclic peptide drugs,
enabling high-throughput screening of cyclic peptides (Kosugi andOhue, 2023; Rettie et al.,
2023). Among the critical factors in cyclic peptide drug development, membrane
permeability plays a pivotal role as it directly influences oral bioavailability and intracellular
target accessibility (Bockus et al., 2015; Bhardwaj et al., 2022; Hewitt et al., 2015). Traditional
experimental approaches for assessingmembrane permeability, such as the parallel artificial
membrane permeability assay (PAMPA) (Ottaviani et al., 2006), colon epithelial cancer cell
(Caco-2) assay (van Breemen and Li, 2005), Ralph Russ canine kidney cell (RRCK) assay
(Di et al., 2011), and Madin-Darby canine kidney cell (MDCK) assay (Irvine et al., 1999),
are often limited by their time-consuming nature and substantial costs. In response to these
challenges, several computational methods have been developed, including MultiCycGT
(Cao et al., 2024), PharmPapp (Tan et al., 2024) and CycPeptMP (Li et al., 2024). However,
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these approaches present notable limitations.MultiCycGT simplifies
the prediction of continuous permeability values into a binary
classification task, providing only a rough determination of
whether cyclic peptides are permeable. The PharmPapp analysis
pipeline is specifically designed for the KNIME platform and
lacks the flexibility to be extended to mainstream analysis
environments. Moreover, its performance is unsatisfactory, with
R2 values ranging from 0.484 to 0.708 for the Caco-2 and RRCK
permeability predictions. CycPeptMP, a multi-level molecular
feature fusion model, requires specific molecular features as
input, which can only be generated using the commercial
software MOE.

In this study, we propose the Cyclic Peptide Membrane
Permeability prediction model (CPMP), an accessible and
open-source solution designed for seamless integration into
high-throughput cyclic peptide screening pipelines. Built upon
the Molecular Attention Transformer (MAT) neural network
(Maziarka et al., 2020), a specialized variant of the Transformer
architecture (Vaswani et al., 2017), CPMP leverages interatomic
distances and molecular graph structures to enhance its
attention mechanism. The MAT framework has previously
demonstrated exceptional performance in predicting diverse
molecular properties (Maziarka et al., 2020). To predict cyclic
peptide permeability, the CPMP model was trained from
scratch or fine-tuned using four distinct datasets: PAMPA,
Caco-2, RRCK and MDCK. Our results demonstrate that
CPMP achieves robust predictive performance, significantly
surpassing traditional machine learning methods and other
deep learning models across key metrics, including Mean
Squared Error (MSE), Mean Absolute Error (MAE), and R2.
This work introduces a powerful computational tool for cyclic
peptide membrane permeability prediction, offering substantial
potential to accelerate the development of cyclic peptide-based
therapeutics.

2 Methods

2.1 Dataset

The cyclic peptide structures and membrane permeability
data were obtained from CycPeptMPDB (Li et al., 2023). Peptide
structures were recorded using SMILES notation, and permeability
was represented as the log-scaled value, LogPexp. Samples with
LogPexp < −10.0 were excluded. The permeability data were
categorized into four types based on experimental methods:
PAMPA, Caco-2, RRCK, and MDCK, with sample counts of
6,701, 1,310, 185, and 64, respectively. For the PAMPA and Caco-
2 datasets, we split the data into training, validation, and test
sets in a ratio of 8:1:1 (Supplementary Figures S1A, B). For the
RRCK and MDCK datasets, the data were divided into training
and test sets in a ratio of 7:3 (Supplementary Figures S1C, D).
We also analyzed the distribution of six molecular properties,
including molecular weight, TPSA (Topological Polar Surface
Area), LogP (lipophilicity), ratio of modified amino acids,
monomer length in the main chain, and ring count (Supplementary
 Figures S2–S7).

2.2 Architecture

The architecture of the CPMPmodel is shown in Figure 1A.The
core of the CPMPmodel is MAT (Molecule Attention Transformer)
(Maziarka et al., 2020). MAT is a deep learning framework
designed for predicting molecular properties. It is based on the
Transformer architecture and augmented with molecular graph
structure and inter-atomic distances. The framework consists of
an embedding layer, multiple Molecule Multi-Head Self-Attention
layers, position-wise feed-forward layers, a global pooling layer, and
a fully-connected layer for prediction. The attention mechanism in
MAT is enhanced by incorporating distance and graph structure
information, making it more effective in capturing the complex
relationships within molecules. In MAT, the attention scores are
computed using three weighted components: the atomic self-
attention, distance (D), and adjacency (A)matrices, with weights λa,
λd, and λg summing to 1 (Equation 1).

A = (λaρ(
QiKT

i

√dk
)+ λdg(D) + λgA)Vi, (1)

g is the softmax normalization.The optimal λ values are determined
via grid search. We use MSE (Equation 2) to calculate the loss
between the actual ( y) and predicted (ŷ) permeability:

Loss = 1
n

n

∑
i=1
(yi − ̂yi)

2, (2)

2.3 Training and testing

The training process is illustrated in Figure 1B.The PAMPA and
Caco-2 permeability prediction models are initially trained on the
training set, followed by parameter optimization using the validation
set, and evaluated on the test set. For the RRCK and MDCK
permeability prediction models, the pre-trained Caco-2 model is
fine-tuned on the training set, and performance is then evaluated
using the test set.

2.4 Baseline methods

Wevalidated the performance ofCPMPby comparing it with the
RFR, SVR andMGNNmodels.TheRandomForest Regressor (RFR)
and Support Vector Regression (SVR) models were implemented
using scikit-learn (Pedregosa et al., 2011) and utilized 1024-bit
Morgan fingerprints generated by RDKit (Landrum et al., 2024)
as input features. For the RFR model, the number of trees was set
to 100. A series of tree depths, including [5, 10, 15, 20, 25, 30,
35, 40], were tested, and ultimately, 20 was selected as the optimal
depth. For the SVR model, we used a Radial Basis Function (RBF)
kernel and determined the optimal regularization parameter (C) and
tolerance (epsilon) via grid search. Specifically, the search range for
C was [0.1, 1, 10, 100], and for epsilon, it was [0.01, 0.1, 0.5, 1].
Themodel was trained and evaluated using cross-validation for each
combination of C and epsilon. The combination that yielded the
best performance on the validation set was selected as the optimal
set. For the MGNN model, we select its regression task mode.
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FIGURE 1
The architecture, training process and testing results of the CPMP model. (A) CPMP architecture for predicting cyclic peptide membrane permeability.
The CPMP model predicts cyclic peptide membrane permeability from SMILES strings. It processes 3D molecular conformations, bond information,
and atom features to construct distance, adjacency, and atom feature matrices. By integrating a molecular attention transformer with position wise
feed forward networks, the model generates a permeability value as its output. (B) The CPMP model was trained on four different datasets: PAMPA,
Caco-2, RRCK, and MDCK. (C–F) The testing results of the PAMPA, Caco-2, RRCK, and MDCK membrane permeability prediction model. The number
of samples in the testing set are 671, 131, 56, and 20, respectively.
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TABLE 1 Performance comparison between three baseline methods and CPMP for PAMPA and Caco-2 permeability prediction. The metrics are the
average values of three repeated runs; the best result for each metric is indicated in bold.

Task Metrics RFR SVR MGNN CPMP (MAT)

PAMPA permeability prediction

MSE 0.590 ± 0.003 0.580 ± 0.005 0.542 ± 0.006 0.169 ± 0.004

MAE 0.485 ± 0.001 0.436 ± 0.004 0.466 ± 0.006 0.308 ± 0.005

R2 0.388 ± 0.003 0.390 ± 0.005 0.546 ± 0.005 0.671 ± 0.008

Caco-2 permeability prediction

MSE 0.218 ± 0.005 0.182 ± 0.006 0.178 ± 0.001 0.151 ± 0.006

MAE 0.349 ± 0.004 0.322 ± 0.010 0.305 ± 0.005 0.286 ± 0.005

R2 0.643 ± 0.008 0.694 ± 0.011 0.702 ± 0.001 0.746 ± 0.010

Similarly, the hyperparameters for this model were also determined
through grid search, including the dimension of hidden layers in the
GNN network, the number of linear layers for fingerprint feature
processing, batch size, and learning rate.

2.5 Y-randomization test

To assess the risk of chance correlations, we conducted
a y-scrambling validation by randomly permuting the cyclic
peptides’ permeability labels (Y-values) across the dataset. Following
the identical training protocol as our primary models, we
retrained 20 scrambled models with distinct label permutations.
Performance metrics from these randomized models were then
systematically compared with those of the original models to
assess whether the observed correlations arose from chance
associations.

3 Results

3.1 Performance of CPMP for PAMPA and
Caco-2 permeability prediction

The PAMPA and Caco-2 cell assays are widely used to measure
cyclic peptide membrane permeability, providing sufficient data
for model training and evaluation (Supplementary Figures S1A, B)
(Li et al., 2023). Therefore, we first evaluated the performance of
CPMP using PAMPA and Caco-2 data. We compared CPMP with
twomachine learningmodels: RFR and SVR (Pedregosa et al., 2011),
as well as a deep learning model based on Molecular Graph Neural
Networks (MGNN) (Tsubaki et al., 2019).

As shown in Table 1; Figures 1C, D, CPMP outperforms the
baseline methods across all evaluation metrics. Specifically, CPMP
achieves the lowest MSE of 0.169, significantly better than RFR
(0.590), SVR (0.582), and MGNN (0.542). Similarly, the MAE of
CPMP (0.308) is lower than those of RFR (0.485), SVR (0.436),
andMGNN (0.466), demonstrating its higher accuracy in predicting
membrane permeability. Furthermore, CPMP achieves the highest
R2 value of 0.671, indicating stronger explanatory power than RFR
(0.388), SVR (0.396), and MGNN (0.546). For Caco-2 permeability

prediction, CPMP also shows superior performance. It achieves the
lowest MSE of 0.151, better than RFR (0.218), SVR (0.182), and
MGNN (0.178).TheMAE of CPMP (0.286) is also the lowest among
the comparedmethods, withRFR at 0.349, SVRat 0.322, andMGNN
at 0.305. Additionally, CPMP obtains the highest R2 value of 0.746,
indicating a stronger predictive capability compared to RFR (0.643),
SVR (0.694), and MGNN (0.702).

To assess the model’s generalizability, we analyzed its
performance across a diverse range of molecular properties,
including molecular weight, TPSA, LogP, ratio of modified
amino acids, monomer length in the main chain, and ring
count. For the PAMPA model (Figure 2), CPMP exhibits robust
performance for mid-range molecular weights (800–900 Da:
MSE = 0.114, MAE = 0.258, R2 = 0.71) and achieves the
highest R2 (0.76) for larger molecules (>1,100 Da). However,
MSE increases slightly for very large (>1,100 Da: MSE = 0.22)
or small (≤700 Da: MSE = 0.174) molecules, suggesting room
for refinement in extreme size categories. Notably, the model
excels for cyclic peptides with moderate TPSA (100–150 Å2:
R2 = 0.775) and high LogP (>4.0: R2 = 0.798), while showing
reduced accuracy for highly polar molecules (TPSA 350–400 Å2:
R2 = 0.148). For the Caco-2 model (Supplementary Figure S8),
CPMP demonstrates strong predictive capability across broad
molecular weight ranges (>1,400 Da: MSE = 0.0508, R2 =
0.821) and maintains high R2 values for peptides with low-to-
moderate TPSA (≤300 Å2: R2 ≥ 0.703). Performance improves
significantly for modified amino acid ratios >0.6 (R2 = 0.772–0.890),
indicating particular strength in modeling heavily modified
peptides. While monomer lengths ≥10 show excellent R2 (0.784),
shorter chains (7–9 units: R2 = 0.602) exhibit slightly reduced
performance, potentially reflecting imbalanced distribution of
training data.

These findings demonstrate that the CPMP model, based on
the MAT neural network, performs exceptionally well in delivering
accurate and reliable predictions for both PAMPA and Caco-2
permeability. However, there are areas where further improvement
is needed, particularly for very large or very small molecules, as
well as highly polar molecules. Despite these limitations, the overall
performance of CPMP remains superior compared to existing
models, highlighting its potential in advancing cyclic peptide drug
discovery.
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FIGURE 2
Prediction performance of the PAMPA model across diverse cyclic peptide properties. Peptides were categorized based on molecular weight (A–C),
TPSA (D–F), LogP (G–I), the ratio of modified amino acids (J–L), monomer length in main chain (M–O), and ring count (P–R), with each category
comprising over 20 samples to ensure robust statistical analysis.
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TABLE 2 Comparison of performance between the CPMP model without pre-training and with pre-training for RRCK and MDCK permeability
prediction. The metrics are the average values of three repeated runs; the best result for each metric is indicated in bold.

Task Metrics CPMP CPMP with pre-training

RRCK permeability prediction

MSE 0.181 ± 0.004 0.129 ± 0.005

MAE 0.328 ± 0.009 0.288 ± 0.005

R2 0.470 ± 0.012 0.623 ± 0.014

MDCK permeability prediction

MSE 0.354 ± 0.003 0.165 ± 0.030

MAE 0.477 ± 0.023 0.305 ± 0.036

R2 0.412 ± 0.005 0.727 ± 0.050

3.2 Pre-training enhances performance for
RRCK and MDCK permeability prediction

The RRCK and MDCK cell assays are used to study
cyclic peptide transmembrane transport in the kidneys.
However, the data for RRCK and MDCK are relatively
limited (Supplementary Figures S1C, D), which may lead
to underfitting during model training. Considering that
cyclic peptides from RRCK and MDCK show no significant
differences in chemical space compared to those from the Caco-
2 dataset (Supplementary Figure S9), we first pre-train the model
using Caco-2 data and then fine-tune it with RRCK and MDCK
data to enhance its predictive accuracy.

As shown in Table 2; Figures 1E, F, pre-training significantly
enhances the predictive capabilities of the CPMP model for RRCK
and MDCK permeability predictions. Specifically, for RRCK, the
MSEdecreases from0.181 to 0.129, theMAEdecreases from0.328 to
0.288, and the R2 value increases from 0.470 to 0.623. For MDCK,
the MSE decreases from 0.354 to 0.165, the MAE decreases from
0.477 to 0.305, and the R2 value increases from 0.412 to 0.727.

3.3 Ablation study and Y-randomization
test

In the CPMA model, three key components—the distance
matrix, adjacency matrix, and dummy node—are used to
characterize molecular features. To assess the impact of each
component, we conducted a series of ablation experiments.
As shown in Supplementary Table S1, all three components have
a significant impact on the model’s performance. In the baseline
model, the R2 values for PAMPA and Caco-2 permeability
predictions are 0.671 and 0.746, respectively. Removing the distance
matrix results in the largest performance drop, with R2 decreasing
to 0.554 (PAMPA) and 0.556 (Caco-2). MSE andMAE also increase
noticeably. Removing the adjacency matrix decreases R2 to 0.642
(PAMPA) and 0.700 (Caco-2), whileMSE andMAE increase slightly.
Removing the dummy node decreases R2 values to 0.628 (PAMPA)
and 0.629 (Caco-2), with smaller increases in MSE and MAE.
Overall, the distance matrix has the greatest impact, followed by the
dummy node, with the adjacency matrix being the least influential
but still important.

The Y-randomization test results show that both the PAMPA
and Caco-2 models perform significantly better on real data than
on scrambled data (Supplementary Figure S10), indicating that the
models are reliable and effective. The PAMPAmodel has an average
R2 value of about 0.67 for real data and 0.10 for scrambled data, while
the Caco-2 model has an average R2 value of about 0.75 for real data
and 0.09 for scrambled data.

3.4 Comparative analysis of force fields
used for conformational optimization

During the passive membrane permeation process, the
conformation of cyclic peptides changes from “open” to “close”
and then back to “open” (Linker et al., 2023; Noonan et al.,
2022). Molecular dynamics simulations indicate that the “close”
conformation is the main permeable species (Dougherty et al.,
2019). In MAT, distance matrices, which are important input
features, are derived from molecular conformations that were
optimized using force fields (Maziarka et al., 2020). Ideally, we
should find an appropriate molecular force field to optimize and
generate the “close” conformation of cyclic peptides. However,
the force fields required for molecular dynamics simulations
demand high computational resources, making it impractical to
simulate nearly ten thousand cyclic peptide molecules. In order
to quickly generate the conformation, we tested the two built-in
force fields in RDKit (Landrum et al., 2024), the Universal Force
Field (UFF) and the Merck Molecular Force Field (MMFF), both
with options to consider or ignore non-bonded interactions within
the molecule.

As shown in Supplementary Table S1, for PAMPA
permeability prediction, UFF-NB achieves the best performance
with the highest R2 value of 0.673. The difference in
MSE between the best and worst is approximately 0.006
(UFF-NB vs. UFF + NB), and the difference in MAE is
approximately 0.009 (UFF-NB vs. UFF + NB). In contrast, for
Caco-2 permeability prediction, MMFF-NB shows the best
performance with the highest R2 value of 0.751. The difference in
MSE between the best and worst is approximately 0.004 (MMFF-NB
vs. UFF + NB), and the difference in MAE is approximately 0.007
(MMFF-NB vs. UFF-NB). These differences are small relative to the
inherent variability in the model’s repeated runs, indicating that the
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choice of force field parameters has a relatively minor impact on
model performance.

4 Conclusion

TheCPMPmodel, based on theMAT, shows strong performance
in predicting the membrane permeability of cyclic peptides. It
achieves high R2 values of 0.67 for PAMPA, 0.75 for Caco-2, 0.62
for RRCK, and 0.73 for MDCK, outperforming traditional machine
learning and other deep learning models. The pre-training on the
Caco-2 dataset and fine-tuning on RRCK and MDCK datasets
partially alleviates the issue of limited data, improving performance
across these datasets and demonstrating the model’s adaptability to
different cell lines. Overall, the CPMP model is a promising tool
formembrane permeability prediction, aiding in cyclic peptide drug
development.

However, the model also has some limitations. Firstly, the
PAMPA and Caco-2 models show reduced prediction accuracy for
certain molecular properties (Figure 2; Supplementary Figure S9).
Both models struggle with larger molecules, as evidenced by higher
MSE and MAE values for molecular weights >1,100 in PAMPA
and >1,400 in Caco-2. Additionally, the models perform poorly
for molecules with high TPSA (>350 for PAMPA and >320 for
Caco-2) and extreme LogP values (≤2.0 or >4.0). The PAMPA
model also exhibits decreased accuracy for molecules with a
high ratio of modified amino acids (>0.8) and longer monomer
chains in the main chain (≥10). Secondly, the limited size and
imbalance of the RRCK and MDCK datasets may lead to model
underfitting, which could undermine its generalizability. Future
efforts should focus on data augmentation to enhance model’s
generalizability (Chandrasekar et al., 2022; Mone et al., 2023;
Dhage et al., 2021). In addition to the challenges mentioned above,
the computational resources required for training and predicting
with Transformer models also pose a problem. How to utilize
parallel computation to address this issue in the future may be
an important research direction. Given the increasing demand for
efficient and scalable models in various applications, exploring
the potential of parallel computation to optimize the training and
prediction processes of Transformers could significantly enhance
their practicality and broaden their applicability (Zhai et al., 2020;
Esfahani et al., 2020; Zhai et al., 2019).
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