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ORF1ab codon frequency model
predicts host-pathogen
relationship in
orthocoronavirinae

Phillip E. Davis* and Joseph A. Russell

MRIGlobal, Gaithersburg, MD, United States

Predicting phenotypic properties of a virus directly from its sequence data
is an attractive goal for viral epidemiology. Here, we focus narrowly on
the Orthocoronavirinae clade and demonstrate models that are powerfully
predictive for a human-pathogen phenotype with 76.74% average precision and
85.96% average recall on the withheld test set groups, using only Orf1ab codon
frequencies. We show alternative examples for other viral coding sequences and
feature representations that do not perform well and discuss what distinguishes
themodels that are performant. Thesemodels point to a small subset of features,
specifically 5 codons, that are critical to the success of the models. We discuss
and contextualize how this observation may fit within a larger model for the role
of translation in virus-host agreement.
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Introduction

There are several examples of modeling efforts attempting to assess either the host
range or zoonotic potential of RNA viruses broadly, and Coronaviruses specifically
in the wake of COVID-19 (Babayan et al., 2018; Young et al., 2020; Brierley and
Fowler, 2021; Mollentze et al., 2021; Gonzalez-Isunza et al., 2023). There are many
commonalities between these approaches. Naturally, due to its role in receptor binding,
Spike protein is often the focus of these efforts when analyzing properties such
as nucleotide or amino acid composition. Limitations to focusing on Spike protein
exclusively have been described previously (Brierley and Fowler, 2021; Mollentze et al.,
2022). Other approaches look at compositional biases in the complete viral genome
or proteome. Compositional representations are also usually drawn from a short list
of possibilities such as dinucleotide composition, or a measure of codon bias such as
Relative Synonymous Codon Usage (RSCU). The motivation for these representations
comes from observed compositional biases across a variety of viral families (Gaunt and
Digard, 2022). Especially in the case of codon composition, many computational and
experimental results point to the importance of host-virus agreement in the translational
environment. For example, virus codon compositions are predictive of their tissue
tropism (Hernandez-Alias et al., 2021), and strategies have been discovered in which
both the host and viruses manipulate cellular tRNA abundances to either restrict or
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FIGURE 1
Average performance metrics across each of the one hundred test set splits for each combination of viral CDS and feature representation. Codon
frequency model is top performer, with boosts in average performance across each metric over RSCU. Error bars represent 95% confidence interval.

promote virus replication (Hernandez-Alias et al., 2021;
Valdez et al., 2019; Jitobaom et al., 2023; Guo et al., 2021;
Jungfleisch et al., 2022). However, this phenomenon has not yet been
leveraged for a pathogen-class predictive model to our knowledge.
Here, we present our results applying codon frequencies as the
feature space for amodel capable of distinguishing human-pathogen
Orthocoronavirinae examples from non-human-pathogens.

Results

We report that the highest performing models were fit on
Orf1ab with a simple codon frequency feature representation,
with an average accuracy, recall and precision of 76.74%,
85.96%, and 72.58%, respectively, on sequences from withheld
species groups (Figure 1). This was followed closely by the
nucleocapsid model using an amino acid frequency representation
with 72.99% accuracy and an Orf1ab model using RSCU features
with 70.98% accuracy. Our results point to two interesting findings
— 1) using only codon frequency as the feature representation
results in a modest boost in performance over RSCU (p = 0.024,
Wilcoxon rank test) in average accuracy, and 2) depending on the
feature representation, information content about host-pathogen
potential can vary across the genome with spike protein yielding no
models above no-learner in any of the models. As far as we know,
these are the only modeling results reported that have relied solely
on the Orf1ab or nucleocapsid coding regions.

Since L1-regularization provides feature selection by setting the
coefficient of less informative predictors to zero, depending on the
strength of regularization term, each model will potentially only use
a subset of the total input features. This allows for interpretation of

the model results. By counting the number of times predictor had
a non-zero coefficient, we can compare which features were utilized
most often by themodels. First, we observed that 5 codons have non-
zero coefficients in almost every codon model fit (>94 of 100), no
matter what test set group was withheld. These are ThrACG, SerTCG,
TrpTGG, GlnCAA, and AlaGCT (Figure 2).While there is some overlap
in the codons frequently used in the codon frequency representation
andRSCU, such asThrACG and SerTCG, there are several pronounced
differences.

The appearance of the tryptophan codon as a top predictor in
the codon frequency model (which is not a feature of RSCU models
as there is only a single codon for tryptophan) indicates a source
of the performance gain. In contrast, while tryptophan amino acid
frequency is available to the amino acidmodels, thesemodels did not
perform well on withheld data (56.2% accuracy). This performance
advantage is only realized when modeling the interaction between
codon frequency features. To illustrate the importance of the
tryptophan codon feature, Table 1 shows the non-zero-coefficient
predictors in the codon frequency and RSCU models. Several
predictors overlap between the two, with the strongest predictor in
the codon frequency model being TrpTGG.

Another interesting feature of the top three performing models
is that they struggle with different subsets of the data. The
nucleocapsid model using amino acid frequency features has its
performance limited mostly by human coronavirus 229E, where it
never successfully recalled the positive class when this virus family
was in the test set (N = 12). Meanwhile, the improvement of the
codon frequency representation over RSCU in the Orf1ab model
is driven primarily by its recall advantage for human coronavirus
OC43, where it achieves higher recall in all 22 test splits that contain
OC43 as the positive class.
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FIGURE 2
Number of Non-Zero (NNZ) coefficients for the top 15 codons in the codon frequency model across all one hundred models fit on Orf1ab for codon
frequency and RSCU features. The TrpTGG codon is used in 96 of 100 codon frequency models but is not available as a feature in the RSCU models.

TABLE 1 Predictors and coefficients for model fit without SARS and
Alphacoronavirus SC-2013 in both the codon frequency and RSCU
representation.

Codon frequency RSCU

ACG −1.0915 TCG −0.8045

TCG −0.3325 ACG −0.4013

GCA −0.2828 GCA −0.2395

CTT −0.0639 CAA 0.1214

AGG −0.0339

TTG 0.0809

AGT 0.1138

GCT 0.3324

ACT 0.8509

CAA 0.9689

TGG 1.2288

Methods

Data collection

Sequence data for this study was gathered from the NCBI
Virus database for sequences submitted before September 2018.
For SARS-CoV-2, sequences were downloaded and subsampled
to include 10 records from each variant of concern (VOCs) as
of August 2021: Alpha, Beta, Gamma, and Delta. Viral coding
sequences (CDS) were categorized by gene name. For genomes
where a full length sequence was available, but no Orf1ab

annotation was present, annotations were applied using VAPiD
v1.6.7 (Shean et al., 2019) resulting in 215 additional Orf1ab
sequences. The sequences that this method was applied to are
specified in Supplementary Table S2. This resulted in final datasets
for Orf1ab (N = 2,270), Spike (N = 2,198), and Nucleocapsid (N
= 2,201). These sequences are available in Supplementary Material
(https://doi.org/10.5281/zenodo.14851561).

Pathogen classification

Sequences were labeled as human-pathogenic if they were
associated with known disease in humans, and this label was
the “positive class” with respect to the models. This classification
included seven positive human-pathogen groups: Human CoV
229E, Human CoV HKU1, MERS-CoV, Human CoV NL63,
Human CoV OC43, SARS-CoV-1, and SARS-CoV-2. Non-human-
pathogenic representatives included various Alphacoronaviruses,
Betacoronaviruses, Gammacoronaviruses, and Deltacoronaviruses.
These sequences were labeled as non-human-pathogens unless they
caused disease in humans. For example, SARS-CoV-1 isolates from
civets and MERS isolates from camels were classified as human
pathogens, while all other isolates remained non-human-pathogens
(negative class label with respect to the models).

Cross-validation and test set design

Theprimary goal was to evaluate themodel’s ability to generalize
to novel species within the Orthocoronavirinae clade. To achieve
this, a group-based, nested-cross-validation strategy was employed.
Each sequence was assigned a group label based on its species-
level taxonomy ID and pathogen class (human or non-human). For
instance, Human CoV OC43 was labeled as “1_694003”(human
pathogen representative of Betacoronavirus 1), while Bovine
CoV and Porcine Hemagglutinating Encephalomyelitis Virus
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(PHEV) were labeled as “0_694003” (non-human-pathogen
representatives of Betacoronavirus 1). One hundred test-group-
splits were performed where each split would include one group
randomly selected from each pathogenicity class. All models
for each combination of viral CDS and feature type were fit
using the same test splits. The groups used for each split are
included in Supplementary Table S1.

Data balancing and supersampling

For each test set split, the remaining sequences were divided
into training and validation sets. The sequence data used for
modeling had a modest class imbalance of approximately 43%
positive class membership. However, due to large imbalances in
species representation, such as MERS which represented 435 of
the 973 Orf1ab positive class members, some test splits could
modulate this imbalance to as low as 29%. Therefore, training
data were supersampled to ensure balance between human and
non-human-pathogen classes. A two-tiered randomization process
first determined whether to sample from the positive or negative
class, then uniformly sampled sequences from the corresponding
groups.Therefore, each training and test split should be roughly class
balanced at 50/50 within each pathogen class and the representatives
from each species group uniformly distributed. Training data were
super sampled to 4,000 records, while test sets were resampled to
200 records.

Feature representations

Three feature extraction methods were tested

1. Amino acid frequency: Counts of each amino acid in the CDS.
2. Relative Synonymous Codon Usage (RSCU): Codon counts

normalized by the number of synonymous codons for each
amino acid.

3. Codon frequency: Raw counts of each codon, independent of
synonymous grouping.

Model training and selection

Allmodels were trained using L1-regularized logistic regression.
To prevent data leakage, preprocessing steps (e.g., standard scaling)
were applied within a scikit-learn pipeline (Pedregosa et al., 2011).
Cross-validation was performed using a leave-two-groups-out
strategy, where one positive and one negative group were withheld
for validation. Hyperparameters, including the regularization term
and model tolerance, were optimized using randomized cross-
validation with 1,000 parameter combinations sampled.

Model evaluation

Model performance was assessed for the training and test
splits using metrics such as accuracy, precision, recall. Model
selection in cross validation was guided by negative Brier score.

We averaged the performance statistics across each of the one
hundred test and training set splits for each combination of
viral CDS and feature representation. Persistent model objects for
the selected model, a cross-validation report, a list of training
set and test set misclassified records, a summary of model
parameters, and a table of the non-zero coefficient predictor
variables and their coefficients were saved with each model fit
for each test set split and are available in Supplementary Material
(https://doi.org/10.5281/zenodo.14851561). Code used to produce
the models is available in the github repository (https://github.
com/mriglobal/codon_amino_cov/tree/main).

Discussion

These results provide new insights into assumptions underlying
viral genotype-to-phenotypemodeling.While the specific biological
phenomena driving the performance of codon-based models and in
the specific context of Orf1ab remain uncertain, the interpretation
of these models offers potentially valuable context. In logistic
regression models, the coefficients for each predictor reflect the
increase or decrease in the log likelihood of the positive class for each
unit of the predictor variable. Predictors with positive coefficients
are enriched in the positive class (in this case, human pathogens),
whereas those with negative coefficients are depleted. Notably,
ThrACG and SerTCG consistently exhibited negative coefficients
across both the codon frequency and RSCU models. These codons
are the rarest for their respective amino acids and are among the
rarest codons in the human genome, which may be related to
their significance in the models. The role of translation-controls
in virus-host interactions has been a growing target of research
because of virus reliance on host translational machinery to make
their proteins (Hoang et al., 2021). We hypothesize that the results
presented here are a signature of these translation controls that are
host specific. Numerous theoretical factors have been identified to
contribute to codon usage bias in viruses, including CpG avoidance
for Zinc finger antiviral protein binding (Meagher et al., 2019), RNA
secondary structure requirements (Belalov and Lukashev, 2013),
and alignment with host translational preferences (Jitobaom et al.,
2020). While these models cannot directly elucidate underlying
mechanisms, they provide hypotheses for the observed patterns.
Relative synonymous codon usage (RSCU) is commonly employed
to model translation-influenced systems, such as gene expression
(Bahiri-Elitzur and Tuller, 2021). However, in a tRNA supply-and-
demand framework, RSCU is insensitive to codon compositional
features, such as tryptophan codon frequency, that may influence
translation efficiency. Evidence suggests that viruses can manipulate
host tRNA pools to enhance replication. For example, Flaviviruses
counteract Schlafen-family viral restriction genes (Valdez et al.,
2019), HIV alters tRNA abundances to improve translation
efficiency (van Weringh et al., 2011), and Influenza A and Vaccinia
viruses modulate translationally active tRNA pools at the polysome
(Pavon-Eternod et al., 2013). Whether Schlafen-family genes
are activated during coronavirus infections or whether TRMT-1
cleavage by the main protease (Zhang et al., 2024) affects cellular
tRNA abundances remains unknown. However, data indicate
that both tRNA levels and 5-methoxycarbonylmethyl-2-thiouridine
modifications of certain position-34-U tRNA isoacceptors are
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enriched in SARS-CoV-2-infected cells (Eldin et al., 2024), including
the GlnCAA codon identified in our models as a significant
predictor.

Compositional representations of viral sequences likely reflect
aggregated effects from these biological factors. However, assuming
uniform selective pressures of these potential sources across viral
genomes might be too limiting when modeling their contribution
to a phenotype. For example, Influenza A PB1 might have
signatures of host codon adaptation that are otherwise absent
from the remaining virus segments. A codon adaptation index
study on the PB1 gene for seasonal H3N2 Influenza found that
the coding region adapted over time to tRNA availabilities in
interferon-treated cells (Smith et al., 2018). Coronaviruses are
well known for their highly-conserved genomic organization
(Fehr and Perlman, 2015). The reason the Orf1ab codon-based
representations perform better than those same features in other
coronavirus CDSs could be that Orf1ab is particularly sensitive
to host translational disagreement in a way that other coding
regions are not because it is the initially translated reading frame
upon infection. Given knowledge of eukaryotic translational
controls such as No-Go mRNA decay (Veltri et al., 2022), it is
not difficult to imagine the consequences of engaging premature
mRNA decay for a single-stranded positive sense RNA virus.
Additionally, if coronaviruses are modifying the host translational
environment to be pro-viral, proteins such as the polyprotein
that need to be translated before these modified conditions can
be achieved might represent an early selection bottleneck in
the infection cycle. While there may be general compositional
similarities among human-infecting viruses, these results suggest
that predictive power in genotype-to-phenotype models can be
achieved through feature engineering. The models presented here
demonstrate substantial information content regarding human-
pathogenic potential in specific genomic contexts. However,
they remain incomplete, as many known barriers to zoonosis in
coronaviruses are not addressed.These barriers include, for example,
cross-reactivity to endogenous human coronaviruses in the case
of AlphaCoV1 (Tortorici et al., 2022) and 229E-related Camel
alphacoronaviruses (Corman et al., 2016), as well as host-receptor
binding
compatibility.

Limitations of the approach described in this study primarily
stem from the assumption of the labeling scheme. The results
presented are under the assumptions described in Methods about
human pathogenicity in the observed sequence data. However,
the model labels employed here encompass both the ability to
cause disease in humans and consequently be observed. There
may be various other categories that are not modeled by the
response variable here including the ability to infect and not
cause disease, or spill over and cause disease but not result in
forward transmission (and therefore not observed). Additionally,
as previously mentioned, we sought to identify a model that
applied across all of the Orthocoronvirinae family. One advantage
the codon frequency approach may benefit from in this situation
is that all of the known human coronaviruses are respiratory
viruses. Depending on the virus family, this approach might fail,
given the identified connection between codon composition and
tissue tropism (Hernandez-Alias et al., 2021). Thus, an expectation
of similarities in codon frequencies to be observable in the

genes of, for instance, all Flaviviruses that infect humans, might
not be valid, since virus species in this family can infect many
different human tissues. Nevertheless, the findings here suggest that
ensemble models incorporating these approaches could improve
predictive power in coronaviruses. More broadly, general genotype-
to-phenotype modeling efforts in viruses could benefit from similar
strategies.
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