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1 Introduction

MicroRNAs (miRNAs) are small, non-coding RNA molecules, approximately 22
nucleotides in length, that play crucial roles in the regulation of gene expression.They function
primarily by binding to complementary sequences in the 3′ untranslated regions (UTRs) of
target messenger RNAs (mRNAs), leading to mRNA degradation or translational repression
(Bartel, 2004; Bushati and Cohen, 2007). Through this mechanism, miRNAs are involved
in various biological processes, including development, differentiation, proliferation, and
apoptosis (Ambros, 2004).The importance of miRNAs as regulatory elements is furthermore
emphasized by their involvement in various diseases, particularly cancer, where they can act
as either oncogenes or tumor suppressors (Budakoti et al., 2021; Hussen et al., 2021).

MicroRNAs are transcribed as primary miRNAs (pri-miRNAs) and processed into
precursor miRNAs (pre-miRNAs), which are typically around 70 nucleotides long and form
hairpin structures (Bartel, 2004). The miRNA duplex is generated from this precursor,
consisting of a guide strand (mature miRNA) and a passenger strand (mature∗).Themature
miRNA is incorporated into the RNA-induced silencing complex (RISC) to guide gene
silencing, while the mature∗strand is usually degraded, although in some cases, it may also
be functional (Bartel, 2004; Okamura et al., 2007).

Despite their critical functions, there is a significant discrepancy in the annotation
of miRNAs between different model species, notably between rat (Rattus norvegicus) and
mouse (Mus musculus). This discrepancy arises due to differences in sequencing efforts and
annotation strategies but also through lineage-specific retroposons playing an essential role
in the birth of new miRNA genes (Lehnert et al., 2011). Addressing this gap is essential
for leveraging the rat as a model organism in biomedical research, particularly given its
widespread use in pharmacology and toxicology studies (Jacob and Kwitek, 2002).

In this study, we corrected several incorrect homology assignments and identified and
annotatednovel ratmiRNAs. Expanding themiRNArepertoire of this crucialmodel organism
will enhance its utility, particularly for toxicological applications, where precise regulatory
networks are critical for understanding the molecular basis of toxicity and drug responses.

2 Methods

To identify novel rat miRNAs, we utilized MIRfix curated whole precursor miRNA
family covariance models as described previously (Yazbeck et al., 2019). We focused on
miRNA families that contained at least one mammalian miRNA sequence. The model
building was based on miRBase version 21 (Kozomara and Griffiths-Jones, 2014).
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We employed infernal v1.1.3 (Nawrocki and Eddy, 2013) to
scan the rat genome (Rnor_6.0; Ensembl Release 102, accession
number GCA_000001895.4) for potential miRNA candidates
using default parameters. We chose Rnor_6.0 as reference since
miRBase relies on this assembly for miRNA annotations, ensuring
comparability with existing datasets. The candidate miRNAs were
then subjected to a series of stringent filtering steps to ensure the
accuracy and relevance of the identified sequences: (1) Candidates
were filtered based on an e-value cutoff of 0.01 and a bit score
threshold of 33, following the recommendations in the infernal
tutorial [log2 (2∗genome size)]. (2) Duplicated candidates located
on unfinished chromosomes were eliminated. (3) Candidates
overlapping with repeats annotated by RepeatMasker

were excluded (Smit et al., 2015). (4) Candidates that were reverse
complements of candidates with smaller e-value were also excluded.

The remaining candidate miRNAs were curated using MIRfix
on whole family alignments, which included the newly identified
rat candidates. This was followed by an additional manual curation
of the alignments involving a check for sequence conservation of
mature and/or mature∗regions and the assessment of the ability of
novel sequences to fold into a hairpin secondary structure.

Potential miRNA candidates were manually assigned names
in accordance with their homologous mouse miRNAs. Finally,
the novel miRNA sequences were again blasted against the rat
genome (Rnor_6.0) to extract the precise genomic coordinates using
blastn1. To ensure compatibility with the newer mRatBN7.2
assembly (de Jong et al., 2024) we mapped the coordinates using
CrossMap (Zhao et al., 2014).

3 Data analysis

For our infernal scan, we utilized 781 mammalian miRNA
families (excluding singletons), which included 435 already
annotated rat miRNA sequences distributed across 247 miRNA
families.This scan resulted in a total of 449 417 significant candidates
scattered over 459 miRNA families.

Following a stringent filtering procedure to eliminate duplicates
on unfinished chromosomes, overlaps with annotated miRNAs,
repeats, and reverse complements, we identified 3521 potential
novel miRNAs within 186 families. The three families with the
most candidates accounted for nearly 2500 of those potential
sequences. These families contain large numbers of annotated
mouse sequences (up to 59 in MIPF0000316), hence introducing
substantial variability. This circumstance leads to the detection of a
high number of candidate sequences. For each of the 186 miRNA
families with at least one candidate sequence, we conducted a
MIRfix analysis and correction. Additionally, wemanually curated
the whole family alignments to further refine this set. The final set
of new miRNAs in R. norvegicus contained 55 novel sequences, that
have been uploaded to the European Nucleotide Archive (ENA)
at EMBL-EBI with the accession numbers OZ078105–OZ0781602.
Notably, this included 39 families where no miRNA had previously
been annotated in rat.

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi

2 http://www.ebi.ac.uk/ena/data/view/OZ078105-OZ078160

TABLE 1 Corrected miRNA names and their respective families.
Previously annotated miRNAs in miRBase that need to be renamed due
to wrong homology assignments.

Previous miRNA
name

Updated miRNA
name

miRNA family ID

rno-mir-16 rno-mir-16–2 MIPF0000006

rno-mir-365 rno-mir-365–2 MIPF0000061

rno-mir-883 rno-mir-883a MIPF0000389

rno-mir-17–1 rno-mir-17 MIPF0000001

rno-mir-17–2 rno-mir-106a MIPF0000001

rno-mir-135a rno-mir-135a-2 MIPF0000028

rno-mir-199a rno-mir-199a-2 MIPF0000040

rno-mir-26a rno-mir-26a-1 MIPF0000043

rno-mir-486 rno-mir-486b MIPF0000220

rno-mir-3074 rno-mir-3074–1 MIPF0001103

With these discoveries, the updated miRNA repertoire in rats
now contains 548 sequences distributed across 341miRNA families.
The complete dataset generated for this study has been deposited
at Zenodo3 and GitLab4 , including sequence files and curated
alignments of families with novel miRNA candidates. Additionally,
we identified 10 previously annotated rat miRNAs that require
renaming due to incorrect homology assignments, as detailed in
Table 1. An example of an interesting family requiring the renaming
of an existing miRNA and featuring an additional new candidate is
illustrated in Figures 1A, B.

3.1 Omics support of new miRNA
candidates

Initially, the extended rat miRNA repertoire was generated to
provide a more comprehensive miRNA layer for a case study aiming
to demonstrate the benefits ofmulti-omics data integration as part of
the CEFIC LRI C5 - XomeTox project5. As part of this larger project,
we generated short RNA-Seq libraries from 75 rats, examining both
thyroid and liver tissues6. A detailed description of themethods used
is published elsewhere (Canzler et al., 2024).

Using the extended miRNA repertoire, we analyzed the short
RNA-Seq data to identify support for these sequences across all
distinct samples. We discovered 37 miRNAs with overlapping reads
in either or both tissues. Specifically, 35 miRNAs had read support

3 https://doi.org/10.5281/zenodo.12626180

4 https://codebase.helmholtz.cloud/department-computational-

biology/xometox/extended_rat_mirna_repertoire

5 https://cefic-lri.org/projects/c5-xometox-evaluating-multi-omics-

integration-for-assessing-rodent-thyroid-toxicity/

6 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA695243/
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FIGURE 1
(A) MiroRNA sequences of selected model organisms for both subtypes of the miR-365 family. Sequences belonging to subtype ‘a’ or ‘-1’ are shown at
the top, while sequences belonging to subtype ‘b’ or ‘-2’ are shown at the bottom. The rat miRNA rno-mir-365-1 is a new candidate (shown in red).
The miRNA rno-mir-365-2 is already listed in miRBase as rno-mir-365 and needs to be renamed. Distinct nucleotide differences in the stem region
between the two subtypes are indicated above each respective column, numbered from 1 to 6. (B) Consensus structure of the miR-365 family
containing all 48 sequences of both subtypes. Nucleotide differences are again highlighted with digits from 1 to 6. The secondary structure was
visualized using the R2R tool (Weinberg and Breaker, 2011). (C) Support for novel miRNA candidates from short RNA-Seq reads. During the XomeTox
project, 75 short RNA sequencing libraries were generated from two specific tissues: thyroid and liver (Canzler et al., 2024). Each boxplot summarizes
the read counts for individual miRNAs in thyroid and liver tissues on a log scale.

in the thyroid and 32 miRNAs in the liver samples. The read
counts for individual miRNA varied significantly, ranging from a
few to several thousand per sample, as illustrated in Figure 1C.
When miRNAs were detected in both tissues, the read counts were
generally comparable.

In summary, this study expands the known miRNA repertoire
in R. norvegicus by identifying 55 novel miRNAs and correcting

misannotated sequences. By bridging the gap between rat and
mouse miRNA annotations, this enhanced dataset, which now
includes 341 miRNA families, improves the utility of the rat model.
These advancements facilitate more comprehensive transcriptomic
analyses, particularly in studies where understanding miRNA-
regulated pathways is crucial for assessingmolecular responses, such
as after exposure to toxins and drugs.
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