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Background: The rising prevalence of cancer cells exhibits uncontrolled growth
and invasive and aggressive properties, leading to metastasis, which poses
a significant challenge for global health. Central to cancer development are
proteins such as NF-kB, p53, VEGF, and BAX/Bcl-2, which play important roles
in angiogenesis, cell apoptosis regulation, and tumor growth.

Methodology: This in silico study evaluates the activity of six different
natural as well as novel therapeutic strategies against cancer. Using a
computational approach, i.e., virtual screening, molecular docking, and
molecular dynamics (MD) simulations, the binding affinities and interactions
of selected phytochemicals with cancer-specific proteins were analyzed.
Key criteria for selection included binding affinity, molecular stability, and
pharmacokinetic and toxicological properties. Post-selection, dynamics of
ligand–protein interactions were further examined through MD simulations
conducted using Desmond-Maestro 2020-4 on a Linux-based HP Z2
workstation, providing an insight into the conformational changes in the
stability of the inhibitor–protein complexes. This was complemented by ADMET
predictions to assess pharmacokinetics and toxicological profiles.

Results: Our findings reveal that out of six phytochemicals, baicalin exhibited
the most promising results, with docking scores of −9.2 kcal/mol and
−9.0 kcal/mol against Bcl-2 and VEGF receptors, respectively. The MD
simulation (100 ns) confirmed the stability of baicalin–protein interactions,
supported by hydrophobic interactions and intermolecular hydrogen bonds.
The RMSD and RMSF values of baicalin exhibit an acceptable global minimum
(3.5–6 Å) for p53, VEGF, and BAX/Bcl-2.

Conclusion: This study highlights the potential of baicalin, a phytochemical
known for anti-cancerous, anti-apoptotic, and anti-proliferative properties, as
a promising candidate for cancer treatment. Further exploration and validation
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of its inhibitory mechanisms could open a promising avenue for therapeutic
approaches in oncology.
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cancer, phyto-analogs, baicalin, VEGF, anticancer

1 Introduction

Cancer is characterized by uncontrolled and abnormal
proliferation of cells, which can invade and metastasize to different
body organs (Shuvalov et al., 2023). There are different hallmarks
for the development of the cancer, which includes increased cellular
proliferation and growth regulators, decreased apoptosis, induced
angiogenesis, replicative immortality, and metastasis (Ardies, 2003;
Hanahan andWeinberg, 2011; Krishnamurthy and Kurzrock, 2018).

Cancer is a leading cause of death worldwide, and the
number of patients continues to increase (Clark, 1991). As per
the classification of Global Cancer Observatory (GCO) and World
Health Organization (WHO), cancer which affects healthy human
beings can be classified into 100 different types (Siegel et al., 2024).
Bronchiole and lung cancer exhibits a higher rate of mortality,
followed by breast and stomach cancer (Sharma et al., 2024). Over
1.9 million new cases of cancer have been diagnosed so far in
the United States, where prostate cancer is prevalent in the male
population (29%) and breast cancer is prevalent in the female
population (31%) of the United States (Hu et al., 2013; Siegel et al.,
2020). According to international organizations such as the WHO

and GCO, global cancer burden is staggering, with over 19 million
individuals currently battling the disease. Alarmingly, this number
is projected to surge to over 28 million by 2040, highlighting the
urgent need for innovative treatments and preventive measures
to combat this growing health crisis (Sung et al., 2021). It is
expected that over 9.5 million new cases per year in Asia might
increase by 59% and the highest increase of approximately 89.1% is
expected in the African continent by 2040 (Dizon and Kamal, 2024;
Mathur et al., 2020; Spagnuolo et al., 2015).

Despite significant efforts, cancer exhibits high mortality
worldwide (Ai et al., 2017). Different conventional methods like
allopathic medications, surgery, chemotherapy, and radiotherapy are
used for treatment andmanagement of cancer (Safarzadeh et al., 2014;
Ullrich et al., 2019). Despite their benefits, current cancer therapies
are hindered by significant limitations and drawbacks. A substantial
number of patients are diagnosed at an advanced stage, making
surgical intervention no longer viable due to delayed diagnosis and
other contributing factors. Furthermore, conventional treatments like
chemotherapy and radiotherapy often lead to debilitating side effects,
including fatigue, pain, gastrointestinal distress, nausea, vomiting, and
alopecia, significantly impacting patients’ quality of life (Pereira et al.,
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TABLE 1 PubChem IDs of selected phyto-analogs.

PubChem IDs Active phyto-analog

64982 Baicalin

65064 EGCG

5280489 β-Carotene

5281614 Fisetin

5154 Sanguinarine

442793 6-Gingerol

2012). Moreover, cancer cells can gradually develop resistance to
chemotherapy and radiotherapy (Desai et al., 2008).

Cancer prevention is highly important, and herbal remedies can
play a significant role in this regard. Herbal drugs such as fisetin,
berberis, bloodroot, EGCG, and sanguinarine have shown potential
in fighting cancer (Kumar, 2007; Sharma et al., 2018). Ayurvedic
superfoods like amla and garlic are known for their anti-cancer
properties. These herbs not only have the potential to minimize the
cancer reoccurrence and chances of development of various cancer
types but also enhance overall health (Bose et al., 2020). Although
herbal supplements have served as adjunctive therapies, they should
not supplant conventional cancer treatments. Regular screenings and
self-examinations remain essential for early detection and effective
management (Fujiki et al., 2018; Schabath and Cote, 2019). Thus,
integrating herbal remedies into a healthy lifestyle can contribute
to cancer prevention and improve the quality of life for individuals
and communities (Lim and Wang, 2020; Singh et al., 2022). In this
study,wehave selected sixdifferentphytochemicals basedon literature
reviews. Phytochemicals, including baicalin, EGCG, β-carotene,
fisetin, sanguinarine, and 6-gingerol, have demonstrated in vitro anti-
cancer activities. Specifically, two phytochemicals (e.g., 6- gingerol
and fisetin) have been reported to target cancer cell proliferation
(Farombi et al., 2020; Suh et al., 2009), two (e.g., sanguinarine and
β-carotene) have been shown to induce apoptosis (Kavalappa et al.,
2019; Kuttikrishnan et al., 2019), and two (e.g., baicalin and EGCG)
have been found to inhibit angiogenesis (Shehatta et al., 2022; Wang
et al., 2018). These phytochemicals were selected based on their
reported potency, minimal effective doses, and distinct mechanisms
of action within each category. Consequently, they were chosen
for in silico analysis to further investigate their potential in cancer
prevention and treatment.

2 Materials and methods

2.1 Preparation of the target protein and
library construction

Signaling molecules involved in cancer progression (NF-kB,
p53, VEGF, and Bcl-2) are selected for in silico studies that are
proactively involved in cancer developmentmechanisms (Baek et al.,
2016; Chiarugi et al., 1999; Chouhan et al., 2024). The three-
dimensional (3D) protein structures were downloaded using

the RCSB PDB directory (Research Collaboratory for Structural
Bioinformatics Protein Data Bank (Burley et al., 2023). PDB IDs of
targeted proteins are 7EAL, 3LGF, 3QTK, and 2W3L (Hong et al.,
2021; Roy et al., 2010; Mandal and Kent, 2011; Porter et al.,
2009) for NF-kB, p53, VEGF, and Bcl-2, respectively. Protein
structures were prepared in UCSF Chimera for the screening of
compounds (Pettersen et al., 2004).

2.2 Ligand preparation

A comprehensive literature review on herbal anti-cancer
phytomolecules was conducted using databases, including Google
Scholar, ScienceDirect, and PubChem (Kim et al., 2024; Vélez-
Vargasetal., 2023).The3Dstructuresof thecompoundswereretrieved
fromthePubChemdatabase inStandardDataFile (SDF) format.These
structures were then converted to Protein Data Bank (PDB) format
using Progenesis SDF Studio software (Nguyen Thi Thu et al., 2023).
The prepared ligands were then docked against selected targets using
AutoDock Vina 1.5.6 program (Chen et al., 2024).

2.3 Active site detection

We have identified active sites using the Computed Atlas
of Surface Topography of proteins (CASTp) webserver for
identifying active and binding pockets of any receptor accessible
at (Nguyen Thi Thu et al., 2023; Tian et al., 2018; Tian et al., 2018).
These active sites identified by CASTp have been added into the
active site of the macromolecule section of PyRx (Dallakyan and
Olson, 2015; Hossain et al., 2023).

2.4 Ligand–target interaction

We have used PyRx software for molecular docking studies,
which follows algorithms of AutoDock 4, AutoDock Vina, and
Python (Dallakyan and Olson, 2015; Manoharan et al., 2023). The
identified active sites were used for grid generation in the target
protein (Parihar et al., 2023). PyRx employed AutoDock Vina to
generate multiple ligand-binding poses, ranked based on their
binding affinities. A threshold binding energy of −6 kcal/mol is
considered indicative of active drugs (Manoharan et al., 2023).

The resultant files were analyzed using BIOVIA Discovery
Studio to elucidate the binding interactions, orientations, and energy
levels of various ligands with target proteins (Ghelichkhani et al.,
2023; Parihar et al., 2024). Notably, hydrogen bonding significantly
influencesdocking scores, thereby impacting structural characteristics
of novel drugdiscovery and their development (Chen et al., 2022).The
selected compounds were further analyzed by molecular dynamics
simulation (MDS) to assess the flexibility and stability of complexes of
different ligands and proteins (S. Kumar et al., 2023).

2.5 Molecular dynamics simulation

Molecular dynamics simulations (MDS) were performed on the
complexes (phytochemical and proteins, NF-kB, p53, VEGF, and Bcl-
2) with the best docking score Bcl-2 to examine their intermolecular
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TABLE 2 Docking scores of selected natural phytomolecules with NF-kb, p53, BCl-2, and VEGF targets of cancer development and progression.

NPs/receptor PubChem ID Docking score (Kcal/mol)

NF-κB p53 Bcl2 VEGF

Fisetin 5281614 −6.4 −6.3 −7.7 −7.8

β-Carotene 5280489 −6.3 −6.9 −8.2 −8.4

EGCG 65064 −5.5 −7.2 −8.0 −7.7

6-Gingerol 442793 −4.9 −6.6 −5.7 −6.0

Sanguinarine 5154 −6.7 −7.7 −8.8 −9.0

Baicalin 64982 −6.1 −7.6 −9.2 −9.0

FIGURE 1
Two-dimensional interactions of baicalin with cancer progression targets (A) Bcl-2, (B) p53, (C) VEGF, and (D) NF-kB. The creation of H-bonds in
docked poses is indicated by pink arrows; correspondingly negative residues in red, green, and blue; hydrophobic interactions in green; polar residues
in blue; gray residues indicate glycine; and salt bridge interactions have been notified in red and blue.

interactions and stability. The simulations were conducted using the
Desmond-maestro 2020-4 academic package on aLinux-basedHPZ2
workstation (Bowers, K. J. et al., 2006; Dai et al., 2016).The complexes
formed between the leadmolecules andNF-kB, p53, VEGF, and Bcl-2
targets were set up in all directions (20 Å × 20 Å x 20 Å) to allow
sufficient space for fluctuations (Shah et al., 2023). The system was
thenneutralizedusingoptimal sodium+1/chloride−1 counterparticles,
and the TIP4P (transferable intermolecular potential with 4 points)

model was used to achieve optimum solvation properties for the
MDS process (Dwivedi et al., 2020). MDS was performed using a
combination of advanced algorithms, including the Nose–Hoover
thermostatandMartyna–Tobias–Kleinmethod,tomimicthebehavior
of the entire system across a temperature range of 100 K–300 K
and a constant pressure of 1.0 atm (Abdallah et al., 2018; Fu et al.,
2012; Li et al., 2021; Toma et al., 1995) The velocities were measured
using the Berendsen algorithm, and a 9 Å cutoff radius was applied
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FIGURE 2
Three-dimensional docked complex pose of selected phytomolecule baicalin with cancer progression targets (A) Bcl-2, (B) p53, (C) VEGF, and
(D) NF-kB.

TABLE 3 Molecular interaction profiling of the selected phytomolecule baicalin with cancer progression targets A) BCl-2, B) p53, C) VEGF, and D) NF-kB.

Sr No. Baicalin complex
with

Hydrogen bond Hydrophobic
interaction

Polar Negative

1 7EAL LYS111, GLU134 LEU108, ILE113, ILE136,
PRO137, LEU171, VAL170,

and LEU169

GLU134 GLU134

2 3LGF - LEU1547, ALA1585, MET1584,
TYR1502, PHE1519, TYR1523,

and TRP1495

GLU1549, GLU1551, and
ASP1521

-

3 3QTK - CYS53, CYS54, LEU59, and
CYS61

ASP56, GLU57, and GLU60 LYS100

4 2W3L LYS22, ARG26, and ARG68 VAL118 ASP61 and GLU111 LYS22, ARG26, ARG65, and
ARG68

to the Lennard–Jones potential to efficiently model van der Waals
interactions (Desai et al., 2008; Parihar et al., 2024; Rabaan et al., 2024;
Zhaoetal.,2023).Thissimulationframeworkenabledacomprehensive
investigation of the system’s thermodynamic properties, structural
dynamics, and molecular interactions under various temperature
conditions,providingvaluable insights into itsbehavior andproperties
(Fei, 2023; Kusakabe et al., 2023; Shah et al., 2023; Xiang et al., 2022;
Yang et al., 2022).

All data calculations were performed using the OPLS2005
force field for all atoms (Verma et al., 2021). The conformations
or trajectories were obtained from MDS outcomes for each
potential docked ligand complexed with NF-kB, p53, VEGF, and

Bcl-2 proteins and were analyzed to measure the root mean
square deviation and root mean square fluctuation and to outline
different relatable interactions between the ligand and the targeted
protein/receptor (Singh et al., 2021).

2.6 ADMET analysis of baicalin

TheADMETanalysisofBaicalinwasperformedusingADMETlab
3.0, which evaluated its absorption, distribution, metabolism,
excretion, and toxicity properties (Nguyen Thi Thu et al., 2023). The
analysis includedpredictionsofCaco-2permeability,humanintestinal
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TABLE 4 Toxicological and safety profile of baicalin.

A/D/M/E/T Property Value Comment

Absorption

Caco-2 permeability −6.76 Optimal: higher than −5.15 Log unit

MDCK 0.0 ■ low permeability: <2 × 10−6 cm/s

Permeability ■ medium permeability: 2–20 × 10−6 cm/s

PAMPA +++

Distribution

PPB 90.1% ■ Drugs with high protein-bound may have a low therapeutic index

VDss 0.603 ■ Volume distribution

BBB 0.012 Blood–brain barrier penetration

Fu 6.9% ■ The fraction unbound in plasms

Metabolism

CYP1A2 inhibitor 1 ■ Category 1: inhibitor; Category 0: non-inhibitor

CYP1A2 substrate 1 ■ Category 1: substrate; Category 0: non-substrate

CYP2C19 inhibitor 1 ■ Category 1: inhibitor; Category 0: non-inhibitor

CYP2C19 substrate 1 ■ Category 1: substrate; Category 0: non-substrate

CYP3A4 inhibitor 1 ■ Category 1: inhibitor; Category 0: non-inhibitor

CYP2C8 inhibitor 1 ■ Category 1: inhibitor; Category 0: non-inhibitor

HLM 0.212 ■ human liver microsomal (HLM) stability

Excretion

CL plasma 1.736 ■ The unit of predicted CL plasma penetration is mL/min/kg. >15 mL/min/kg: high clearance; 5–15 mL/min/kg:
moderate clearance; <5 mL/min/kg: low clearance

T1/2 3.397 ■ The unit of predicted T1/2 is hours

Toxicity

Hepatotoxicity NO

Genotoxicity NO

Skin sensitization NO

Eye irritation NO

Ototoxicity NO

absorption, bioavailability, plasma protein binding, blood–brain
barrier penetration, volumeof distribution,CYP enzyme interactions,
plasma clearance, and half-life (Nguyen Thi Thu et al., 2023).
Additionally, the analysis assessed the compound’s toxicity risks,
including hERG blockers, carcinogenicity, Ames mutagenicity, skin
sensitization, and drug-induced liver injury (Soukaina et al., 2023).

3 Results

3.1 Structure-based virtual screening

Molecular docking was performed for different ligands against
the identified target proteins including NF-kB, p53, VEGF, and Bcl-2.
The docking score for the interactions ranged from −9.2 kcal/mol to

−4.9 kcal/mol.Baicalin(64982)showedthebestdockingscoresagainst
all the four targets compared to other phytochemicals (specifically, in
targets of proliferation/metastasis). It exhibited a docking score of
−9.2 Kcal and −9.0 Kcal with Bcl-2 and VEGF receptor, respectively
(Table 2;Figure 1).Thebindingposesofbaicalinwithits targets,NF-kB
(64982-7EAL), p53 (64982-3LGF), VEGF (64982-3QTK), and Bcl-2
(64982-2W3L), were evaluated based on the maximum free binding
energyvalues,andthemostfavorableposeswerechosenforsubsequent
investigation and analysis (Table 1).

3.2 Docked pose interactions

To elucidate complex stability, an in-depth analysis of molecular
interactions was performed for each docked complex. The docked
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FIGURE 3
RMSD plot for backbone elements of the targeted proteins that was chosen, baicalin as the ligand molecule, and the atoms of (A) Bcl-2, (B) p53, (C)
VEGF, and (D) NF-kB. The trajectories of multiple docked complexes have been developed from 100.0 nanoseconds of the molecular dynamics
simulation study duration.

FIGURE 4
RMSF plot generated for baicalin with cancer targets (A) Bcl-2, (B) p53, (C) VEGF, and (D) NF-kB, during the 100-ns molecular dynamics simulation
interval. Regions shaded in red denote areas of elevated RMSF values, signifying enhanced flexibility or increased fluctuation dynamics within those
specific regions.
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FIGURE 5
Illustrates the average root mean square fluctuation (RMSF) values of every atom/residue with protein and ligand molecules, calculated over a 100-ns
molecular dynamics (MD) simulation for the following cancer targets: (A) Bcl-2, (B) p53, (C) VEGF, and (D) NF-kB.

complex of 64982-2W3L (baicalin-Bcl-2) exhibited formation of
three hydrogen bonds with LYS22, ARG26, and ARG68, as depicted
in Figures 1A, 2A. It is responsible for increasing the strength and
stability of ligand–receptor binding. Studies indicate that higher
the number of hydrogen bonds, higher will be the interaction
strength between the ligand and target. The complex also showed
one Bcl-2 hydrophobic interaction at VAL118. Another complex
64982-3LGF (baicalin-p53) showed seven hydrophobic interactions
at LEU1547, ALA1585, MET1584, TYR1502, PHE1519, TYR1523, and
TRP1495 (Figures 1B, 2B), and the docked complex of 64982-3QTK
(baicalin-VEGF) showed four hydrophobic interactions at CYS53,
CYS54, LEU59, and CYS61 (Figures 1C, 2C). Furthermore, 64982-
7EAL (baicalin-NF-kB) exhibited two hydrogen bonds at LYS111

and GLU134 (Figures 1D, 2D) and seven hydrophobic interactions
at LEU108, ILE113, ILE136, PRO137, LEU171, VAL170, and LEU169

(Figures 1D, 2D). No hydrogen bonds were observed for the docked
complex 64982-3LGF (baicalin-p53) and 64982-3QTK (baicalin-
VEGF) (Figures 1C, 2C). In addition to the primary interactions,
residues sharing similar characteristics and engaging in secondary
interactions, including hydrophobic, polar, and negatively charged
interactions, are highlighted in Figure 1 and detailed in Table 3.
These supplementary interactions contribute significantly to the
overall stability and specificity of the complex.

3.3 MD simulation analysis

The stability ofmolecularly docked poses and the outline of their
intermolecular interactions can be examined through MDS. In this
study, we conducted a 100-ns explicit solvent MDS to evaluate the
stability and intermolecular interaction between the baicalin docked
with NF-kB, p53, VEGF, and Bcl-2. MDS enables a comprehensive

understanding of the molecular recognition and binding affinity
between the ligand and the target protein.

3.4 Root mean square deviation analysis

The root mean square deviation (RMSD) was calculated to
assess the conformational alterations in both the protein and
ligand upon complex formation. In Figure 3, we observe the
RMSD values for proteins and ligands in the docked molecules.
Remarkably, the RMSD value of the Cα atom present in the
protein remains consistently below 3 Å across all complexes. This
stability implies that the protein experiences minimal fluctuation
upon ligand binding, maintaining a consistent conformation.
Furthermore, it suggests robust binding between the ligand and
the protein, preventing significant structural changes. Overall, the
protein–ligand complex exhibits remarkable stability. The ligand
RMSD was determined by aligning the different Cα atom present
in structures of proteins. The stability of the atoms in the docked
proteins Bcl-2, p53, VEGF, NF-kB, and baicalin was evaluated in
a 100-ns simulation using RMSD and RMSF. The RMSD for the
alpha-carbon atom in Bcl-2, p53, and VEGF proteins demonstrated
satisfactory stability (less than 3 Å) all over the period of the
simulation experiment, as shown in Figures 3A–C, and p53 and
VEGF showed a state of equilibrium (<2 Å) from 0 to 100 ns. RMSD
for the alpha-carbon atom in the NF-kB protein showed fluctuations
>10 Å, as depicted in Figure 3D. These data were further supported
by the RMSF values.

Additionally, a detailed analysis was performed on the RMSD
values for the ligand-fit protein in each docked complex, examining
them individually to assess the accuracy and reliability of the
docking results. The RMSD analysis of the baicalin–Bcl-2 complex
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FIGURE 6
Interaction of ligand–protein mapping of selected phytomolecule
baicalin with cancer progression targets (A) Bcl-2, (B) p53, (C) VEGF,
and (D) NF-kB, as the data outcomes from the MD simulation study for
100 nano seconds.

showed an acceptable global minimum (3.5–6 Å) and was found
to maintain equilibrium (Figure 3A). The RMSD analysis of the
baicalin–p53 complex showed a comparatively minor deviation
(6 Å) and eventually reached a significant equilibrium (started with
3 Å up to 10 ns, then increased to 7 Å up to 2 0 ns, and thereafter
from 20 ns to 100 ns showed stability at approximately 5 Å) as
shown in Figure 3B. The RMSD analysis of the VEGF–baicalin
complex displayed a stable equilibrium (4 Å) with minor deviations
at 16 and 22 ns (Figure 3C). The complex of baicalin with NF-
kB has not shown significant ligand fit protein interactions,
as depicted in Figure 3D, and thus concluded to be a less
stable complex.

3.5 Root mean square fluctuation analysis

TheRMSF plot exhibits deviation of the protein backbone atoms
in MDS, which provides important information flexibility and the
stability of the protein structures, along with the binding behavior
of small molecules or ligands. The RMSD plot of baicalin with
p53, VEGF, and Bcl-2 exhibits stability of the docked complexes.
This finding was further corroborated by the RMSF analysis of
each of the selected complexes, which highlighted the significance
of RMSF values in quantifying local oscillations between protein
chains and ligand molecules, providing valuable insights into their
dynamic interactions. A low RMSF value indicates a more stable
protein structure, while a high RMSF value indicates a more flexible
structure. To determine local structure fluctuations, amino acid
residues of the p53, VEGF, Bcl-2, and NF-kB proteins, as well as
the atoms of the docked compound, were examined. The RMSF
value of less than 4 Å was observed across all simulations, except
for NF-kB (Figure 5). Remarkably, the protein residues in all the
complexes exhibited acceptable RMSF values, with the exception of
the C- and N-terminal regions. From the protein RMSF analysis,
it can be inferred that the receptor proteins (p53, VEGF, and Bcl-
2) remain in a stable state without any conformational changes
during the binding of the natural compound, baicalinwithin theMD
simulation time frame.

Interestingly, all amino acid residues of p53, VEGF, and Bcl-
2 protein complexes (Figures 4A–C, 5A–C) provided permissible
RMSF values, with the exception of NF-kB (Figures 4D, 5D). The
RMSF analysis of the ligand molecule revealed stable binding with
minimal residual fluctuations (less than 4.5 Å) across all complexes,
except for NF-kB (Figures 4A–D). When combined with the RMSD
data of all the docked complexes, these findings support the potential
integration of baicalin with anti-cancer targets p53, VEGF, and Bcl-
2.

3.6 Protein–ligand interaction mapping

The complexes of NF-kB, p53, VEGF, and Bcl-2 proteins with
baicalin can be further analyzed to elucidate the protein–ligand
binding interaction landscape, encompassing the dynamics of
hydrogen bonding, hydrophobic interactions, water-mediated
bridges, and ionic contacts over the course of a 100-ns MD
simulation. Docked complex baicalin-Bcl-2 shows hydrogen bond
formation at GLY60, ASP61, ARG65, LEU78, LYS 22, GLN25, TYR 21,
and GLN25 along with water bridges (Figure 6A). In protein–ligand
interaction mapping, the baicalin–2W3L docked complex has
shown strong hydrogen bonding at TYR21, LYS22, GLN25, GLY60,
ASP61, ARG65, andGLU111. Additionally, independentwater bridges
have been mapped at TYR18, PHE71, ALA72, and GLU111. It also
shows the presence of hydrophobic interactions at GLY114, VAL115,
and ARG69. A hydrophobic interaction also has been found at
GLN25 along with hydrogen bonds and water bridges. An ionic
interactionwas found at SER64 alongwithwater bridges (Figures 6A,
7A). Baicalin–p53 docked complex exhibited strong hydrophobic
interactions at TRP1495, TYR1502, PHE1519, TYR1523, PHE1533, and
MET1584. Water bridges along with hydrogen bonds were formed
at TRP1495, TYR1502, TYR1500, PHE1519, and TYR1523, whereas
independent water bridges were observed at ASP1521, GLY1522, and
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FIGURE 7
The schematic diagram provides a detailed view of the atomic interactions between baicalin and various cancer target receptors, namely (A) 2W3L
(Bcl-2), (B) 3LGF (p53), and (C) 3QTK (VEGF), and (D) 7EAL (NF-kB). The diagram focuses on a trajectory for 100 nanoseconds and has shown molecular
interactions which were present for over 30% of the overall period of the simulation.

TYR1500. Hydrogen bonds were mapped in this complex at ASN1498,
SER1497, and GLU1551 (Figures 6B, 7B).

The protein–ligand docked complex of baicalin–VEGF showed
hydrogen bonding at ASP27, GLN30, PRO33, ILE36, PHE40, and
SER43 in chain A, while ASN55 and GLU57 in chain D of protein
(along with water bridges). Fewer distinct water bridges have also
been observed at TYR32, GLU35, GLU37, TYR38, and LYS41 in
chain A of the protein, while CYS54, ASP56, LEU59, HIS79, and
LYS100 in chain D of 3QTK protein. This interaction has also shown
hydrophobic interactions at PHE79, ILE36, and ILE39 in chain A of
the VEGF protein. Ionic interactions weremapped at ASP27, GLN30,
ASN55, and GLU57 (Figures 6C, 7C). The baicalin–NF-kB docked
complex has also beenmapped for drug–protein interactions, which
showed hydrogen bond formation at PHE145, ALA146, GLY147,
ASP158, ASN160, GLN162, SER165, and THR166 in chain A along
with water bridges and hydrophobic interactions, while chain D
of protein showed strong hydrogen bond formations at LYS111,
ASP139, and ARG140. Hydrophobic interactions in the baicalin–NF-
kB docked complex have been mapped at PHE 145, LYS148, TYR159,
ILE161, LEU108, ILE136, LEU171, and ARG172 along with water
bridges (Figures 6D, 7D). Ionic interaction was observed at GLU134.

3.7 ADMET outcomes

The ADMET analysis of baicalin revealed concerns regarding
its absorption, distribution, and toxicity properties. Specifically,
baicalin showed low Caco-2 permeability (−6.76) and moderate
MDCK permeability (0.0), indicating potential absorption issues.
Distribution analysis revealed high protein binding (90.1% PPB)
and a relatively low volume of distribution (0.603 VDss). Baicalin
was also predicted to be a substrate and inhibitor of various
CYP enzymes, including CYP1A2, CYP2C19, and CYP3A4.
Additionally, baicalin’s human liver microsomal stability was
moderate (0.212), and its clearance was predicted to be moderate
(1.736 mL/min/kg). However, baicalin was not predicted to exhibit
hepatotoxicity, genotoxicity, skin sensitization, eye irritation, or
ototoxicity (Table 4).

4 Discussion

The findings of this in silico study unequivocally demonstrate
that baicalin possesses significant potential as a therapeutic agent
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for cancer treatment and prevention. Notably, baicalin exhibited
low binding energy with key target proteins, including p53, VEGF,
and Bcl-2, indicating strong interactions and potential inhibitory
effects. Particularly, baicalin’s strong binding affinity (−9.2 kcal)
with Bcl-2 suggests that it may induce apoptosis by targeting both
intrinsic and extrinsic pathways (Huang et al., 2022; Li et al., 2021;
Liu et al., 2003; S; Singh et al., 2021). This apoptotic-inducing
effect is crucial for eliminating cancer cells and preventing tumor
progression. Furthermore, baicalin’s interaction with VEGF may
diminish its effects, thereby preventing metastasis and inhibiting
angiogenesis, a critical step in cancer progression (Z. Hu et al.,
2022; Shehatta et al., 2022). The RMSD and RMSF plot obtained
through 100-ns MD simulation against docked complexes of
baicalin and target proteins exhibited a strong interaction and
stability, except for NF-kB. Strong hydrogen bond interactions of the
baicalin–Bcl2 docked complex showed hydrogen bonds at GLY60,
ASP61, and ARG65; strong hydrophobic interactions at TRP1495,
TYR1502, PHE1519, TYR1523, and PHE1533; and other bindings that
stabilize baicalin on the target protein and thus have a potential
to be used as an anti-cancerous agent (Kusakabe et al., 2023).
Baicalin is also known for its anti-cancerous activity through
in vitro studies performed in different cell lines, such as MCF-
7, MDA-MB231, 3T3, and A-549. The interaction of baicalin
with p53 indicates that it is effective in management of DNA
damage or alterations (Parihar et al., 2024). Activation of p53 is
associated with inhibition of the cyclin–CDK complex, which is
involved in proliferation (Abdallah et al., 2018; Fu et al., 2012;
Abdallah et al., 2018; Fu et al., 2012). Tumor suppressor gene,
p53 has also been reported to play a crucial role in activation
of BAX and inhibition of Bcl-2 in the apoptotic pathway via
regulation of PUMA (p53 upregulated modulator of apoptosis)
(Parihar et al., 2024; Zhao et al., 2023). Bax activation eventually
results in the apoptosis of cancer (Toma et al., 1995). Baicalin
also has shown direct effects on Bcl-2, another hallmark for
initiating cancer cell death. Inhibition of Bcl-2 (p53-dependent
and -independent) leads to the activation of a caspase-cascade
system, resulting in an increased apoptotic rate. Interestingly,
baicalin has inhibitory actions on VEGF as well (Kusakabe et al.,
2023; Xiang et al., 2022; Zhao et al., 2023). VEGF is secreted in
response to hypoxic conditions of a tumor to fulfil the requirement
for nutrients and blood supply (Kumar Maurya and Lomte, 2022;
Verma et al., 2021). VEGF is responsible for the formation
of new blood vessels and metastasis via activation of VEGFR
(Kumar Maurya and Lomte, 2022). These properties of baicalin
promote it as a cancer therapeutic for cancer prevention-related
research (S. Singh et al., 2021; Verma et al., 2021). Furthermore,
use of baicalin with other drugs having inhibitory properties
against NF-kB may result in development of a highly effective
combination for anti-cancer therapy.

5 Conclusion

Cancer prevention involves resisting cancer development at
its initial stages (NF-kB and p53), retarding angiogenesis (VEGF)
and initiating cancer cell apoptosis (BAX/Bcl-2 and TNF-alpha).
Eradicating this complex and debilitating disease has emerged
as a significant challenge for researchers. Among all selected

phytochemicals, baicalin demonstrated a promising docking score
and was prioritized for MDS. This has shown efficacious binding
with p53, VEGF, and Bcl-2, although its binding with NF-kB
was comparatively weaker. Baicalin’s in silico activity highlights
its potential as an anti-cancer agent. Its ability to interact with
multiple targets involved in cancer progression suggests its multi-
faceted mechanism of action. Furthermore, an ADMET analysis
confirms baicalin’s favorable pharmacokinetic and safety profile,
with minimal risk or hepatotoxicity, genotoxicity, or other systemic
toxicities.

Although these computational studies, including molecular
docking and MDS, provide valuable insights into baicalin’s
molecular mechanisms, they also underscore the necessity for
experimental validation. Rigorous in vitro and in vivo investigations
are required to confirm the therapeutic potential of baicalin
and elucidate its biological pathways. In conclusion, the findings
of this research position baicalin as a promising candidate
for cancer prevention. With further studies, it may contribute
to the development of novel, more effective, and targeted
strategies for cancer treatment, offering hope for improved
patient outcomes.
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