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Pancreatic Ductal Adenocarcinoma (PDAC) poses a significant health threat
characterized by poor clinical outcomes, largely attributable to late detection,
chemotherapy resistance, and the absence of tailored therapies. Despite
progress in surgical, radiation, and chemotherapy treatments, 80% of PDAC
patients do not benefit optimally from systemic therapy, often due to
asymptomatic presentation or disease regression upon diagnosis. The disease’s
progression is influenced by complex interactions involving immunological,
genetic, and environmental factors, among others. However, the precise
molecular mechanisms underlying PDAC remain incompletely understood. A
major challenge in elucidating PDAC’s origins lies in deciphering the genetic
variations governing its network. PDAC exhibits heterogeneity, manifesting
diverse genetic compositions, cellular attributes, and behaviors across patients
and within tumors. This diversity complicates diagnosis, treatment strategies,
and prognostication. Identification of “Differentially Expressed Genes” (DEGs)
between PDAC and healthy controls is vital for addressing these challenges.
These DEGs serve as the foundation for constructing the PDAC protein
interaction network, with their network properties being assessed for further
insights. Our analysis revealed five key hub genes (KHGs): EGF, SRC, SDC1,
ICAM1 and CEACAM5. The KHGs were predominantly enriched in pathways
such as: ErbB signaling pathway, Rap1 signaling pathway, etc. Acknowledging
the therapeutic promise and biomarker importance of PDAC KHGs, we have
also pinpointed approvedmedications for the identified key genes. Nevertheless,
it is crucial to conduct experimental validation on KHGs to confirm their
effectiveness within the PDAC context. Overall, this study identified potential key
hub genes implicated in the progression of PDAC, offering significant guidance
for personalized clinical decision-making and molecular-targeted therapy for
PDAC patients.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a complex and
aggressive cancer in humans, ranking as the seventh most prevalent
cause of cancer-related mortality. Its incidence is anticipated
to elevate, potentially reaching the third position due to its
rising occurrence and bleak prognosis (Kleeff et al., 2016).
Despite advancements in surgical, radiation, and chemotherapy
interventions, the majority of PDAC patients, approximately 80%,
do not receive appropriate systemic therapy, largely because they
either lack symptoms or experience disease regression upon
diagnosis. (Ducreux et al., 2015). Consequently, the 5-year overall
survival rate for PDAC remains significantly low at 3%–5%.
However, less than 20% of all patients are eligible for surgery because
most are diagnosed with either locally advanced or metastatic
disease (Shen et al., 2018; Mar Kolbeinsson et al., 2023). Given
the pressing necessity to deepen our comprehension of PDAC
pathogenesis, there is an imperative demand for the identification
of novel biomarkers (Sturm et al., 2022). These biomarkers
could serve as potential prognostic indicators and uncover novel
therapeutic targets, aiming to ameliorate the currently dismal
treatment outcomes (Dayimu et al., 2023).

It is widely recognized that the abnormal activation or
deactivation of genes significantly contributes to the development
and advancement of cancer (Jones et al., 2008). Existing research
on PDAC indicates that the abnormal expression of genes is
a significant factor in the occurrence and advancement of this
neoplasm (Tesfaye et al., 2019; Zhao et al., 2018). Over the
past decades, studies have offered molecular insights into PDAC,
highlighting specific genes such as KRAS, PI3K, PTEN, mTOR,
and pathways related to apoptotic signals, cell cycle regulation, and
cell adhesion (Zhang et al., 2023; Yinga et al., 2011; Sentia et al.,
2016). Nevertheless, comprehending the pathological mechanism of
PDAC poses significant challenges, leading to a dearth of efficacious
medications and elevated medical expenses (O’Neill et al., 2012).

Various treatment modalities are employed in the
management of pancreatic cancer, encompassing surgical resection,
chemotherapy, adjuvant chemotherapy, targeted therapies,
and immunotherapies tailored to specific targets. Adjuvant
chemotherapy combines surgical resection, radiation, or targeted
therapy with chemotherapy. FOLFIRINOX, an FDA-approved
regimen for locally advanced and metastatic pancreatic cancer,
consists of a combination of leucovorin calcium (folinic acid),
fluorouracil, irinotecan, and oxaliplatin. Administered prior to
surgical resection, FOLFIRINOX diminishes tumor size in patients
with locally advanced disease stages, achieving overall response rates
(ORRs) of less than 28% and an 11-month period without cancer
progress (Fan et al., 2019; Faris et al., 2013). Targeted therapy focuses
on various kinases, cancer-specific proteins, and receptors, including
passive immunotherapy usingmonoclonal antibodies. Clinical trials
are exploring drugs targeting EGFR, HER2, VEGF, MAPK, IGF-1R,
c-Met, and PI3K/Akt/mTOR (Borja-Cacho et al., 2008).

Despite the array of therapies available, the survival rate for
patients remains notably low, primarily due to late diagnosis
of pancreatic cancer resulting from nonspecific symptoms and
the limited efficacy of drugs (Trikudanathan et al., 2021). The
paramount concern is early detection, achievable through the
identification of Pancreatic cancer specific biomarkers and effective

prognostic techniques. A pressing need exists for the development
of anti-PaCa drugs with minimal side effects and precise cancer
targeting (Roacho-Pérez et al., 2021). This research conducts
a comprehensive transcriptome analysis of pancreatic cancer,
utilizing both microarray and high-throughput sequencing data
to acquire valuable insights into the molecular alterations taking
place in cells throughout the course of disease advancement. The
primary focus is on holistic gene expression profiling in pancreatic
cancer. Additionally, this study seeks to provide insights into the
exploration of PDAC key hub genes through diverse databases and
bioinformatics approaches.

Previous meta-analyses in PDAC have primarily focused on
integrating multiple microarray datasets to identify DEGs. For
instance, a study by Li et al. analyzed 11 microarray datasets
comprising 334 tumor samples and 151 non-tumor samples
to identify gene signatures differentiating PDAC from normal
pancreatic tissues (Liu et al., 2019). Another investigation by Zhang
et al. combined two expression profiles, GSE16515 and GSE22780,
to identify hub genes serving as potential biomarkers for PDAC
diagnosis and therapy (Zhang et al., 2018). The novelty of the
current study lies in the integration of both RNA-seq (GSE171485)
and microarray (GSE71989 and GSE22780) data, providing a
more comprehensive and up-to-date analysis. This approach not
only validates previously identified DEGs but also uncovers novel
gene expression patterns and potential therapeutic targets, thereby
contributing to a deeper understanding of PDAC pathogenesis
and treatment avenues. The integration of these datasets is crucial
for several reasons. First, combining RNA-seq and microarray
data leverages the strengths of both platforms, resulting in a
more robust and comprehensive analysis. Second, the increased
sample size enhances statistical power, allowing for the detection
of subtle gene expression changes that may be missed in smaller
studies. Third, the diversity in sample populations improves the
generalizability of the findings, making them more applicable to
a broader patient population. Finally, this integrative approach
facilitates the identification of potential drug-gene interactions by
providing a more complete picture of the molecular alterations in
PDAC, thereby informing the development of targeted therapies.

Previous studies on PDAC have often been limited by smaller
sample sizes or reliance on single-cohort analyses, potentially
restricting the generalizability of their findings. For instance, earlier
research identified highly expressed genes in PDAC but was
constrained by the scope of data available at the time (aacrjournals.
org). In contrast, the combination of GSE171485, GSE71989, and
GSE22780 allows for a more extensive meta-analysis, leveraging
a larger and more diverse sample pool. This approach not only
validates previously reported DEGs but also uncovers novel gene
expression patterns and potential therapeutic targets that may have
been overlooked in earlier studies. The inclusion of both RNA-seq
and microarray data further enriches the analysis, providing a more
comprehensive understanding of PDAC’s molecular landscape and
facilitating the identification of drug-gene interactions that could
inform future treatment strategies.

It is interesting to be noted that, a disease typically arises
from disruptions within the intricate web of interactions among
related genes within cells, rather than solely from abnormalities
in a single gene. This understanding has introduced a systemic
approach to understand biological issues, emphasizing the

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1536783
https://aacrjournals.org/cancerres/article/63/24/8614/510923/Highly-Expressed-Genes-in-Pancreatic-Ductal?utm_source=chatgpt.com
https://aacrjournals.org/cancerres/article/63/24/8614/510923/Highly-Expressed-Genes-in-Pancreatic-Ductal?utm_source=chatgpt.com
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Bhattacharjee et al. 10.3389/fbinf.2025.1536783

importance of comprehending the collective impact of multiple
genes and proteins on disease development and advancement. This
approach underscores the significance of viewing living systems
as interconnected networks. Hence, the concept of “Network
Medicine” emerges, seeking to delve into the intricacies of diseases
by systematically identifying their pathways and modules (Safari-
Alighiarloo et al., 2014). Here, we have developed protein-
interaction maps and analyzed these maps through network
algorithms to understand the theoretical aspects of network maps.

The primary aim of this study is to enhance our comprehension
of the genes or proteins implicated in the initiation and progression
of PDAC disease, to facilitate the development of more efficacious
treatment strategies.

Material and methods

Detailed description of the data sets used
in the study

In our study, one RNA-seq dataset GSE171485, two microarray
datasets GSE71989 and, GSE22780 were obtained from the NCBI
GEO repository database (https://www.ncbi.nlm.nih.gov/geo/)
utilizing two platforms (Affymetrix and Illumina) to analyze
the human gene expression profiling between normal/healthy
and pancreatic cancer patients. A detailed description of GSE
datasets is mentioned (Supplementary Table S1). We omitted any
samples subjected to drug treatment or associated with any other
disease. The datasets GSE171485, GSE71989 and GSE22780 offer
a comprehensive and diverse foundation for conducting a meta-
analysis to identify differentially expressed genes (DEGs) and
potential drug-gene interactions in PDAC. Each dataset contributes
unique attributes in terms of data heterogeneity, sample size,
population diversity and methodological approaches, enhancing
the robustness and applicability of the findings.

Data heterogeneity and methodological
approaches

GSE171485 provides high throughput RNA-sequencing data
from six PDAC specimens and six adjacent non-tumor tissues,
offering deep insights into gene expression profiles with high
sensitivity and specificity. In contrast, GSE71989 and GSE22780
utilize microarray platforms to analyze gene expression. GSE71989
includes data from 14 PDAC tissues and eight normal pancreatic
tissues, while GSE22780 comprises profiling of eight matched
tumor and adjacent normal samples. The combination of RNA-
seq and microarray data introduce methodological heterogeneity
that, when integrated, can mitigate platform-specific biases and
provide a more comprehensive understaning of gene expression
alterations in PDAC.

Sample size and population diversity

The aggregated sample size across these datasets enhance
the statistical power of the meta-analysis. GSE171485 contributes

12 samples, GSE71989 adds 22 and GSE22780 16, totaling 50
samples. The increased sample size allows for more reliable
detection of DEGs and reduces the likelihood of false positives.
Moreover, the inclusion of samples from different populations
and institutions enhance the generalizability of the findings,
ensuring that the identified DEGs are representative of diverse
PDAC patient cohorts. Standardized preprocessing and batch effect
correction ensure data comparability. By combining three datasets,
a robust meta-analysis can be performed to identify reliable DEGs
and explore drug-gene interactions in PDAC. The integration
of these datasets enhance statistical power, cross validation and
biological relevance, ultimately facilitating the discovery of potential
therapeutic targets and drug repositioning strategies for PDAC
treatment (Balasenthil et al., 2011; Jiang et al., 2016;Wu et al., 2021).

Data analysis and retrieving genes with
differential expression

We performed RNA-seq analysis on the dataset GSE171485. We
downloaded the raw Fastq files having single-end data and checked
the quality of the Fastq fileswith “FastQC” tool (v0.12.1) (Wingett and
Andrews, 2018). Further, we proceeded with alignment with “STAR”
(v2.7.10a) (Dobinetal., 2013)against “hg38”humanreferencegenome
(Guoetal.,2017)asreference.Then,wecalculatedthereadcountsusing
the “featureCounts” (subreads package v2.0.3) tool (Liao et al., 2014).
Differential expression analysis was performedutilizing the “DESeq2”
package in R (Love et al., 2014). To perform microarray analysis
on the datasets, initially we normalized the datasets using “RMA”
(McCall et al., 2010). To proceed with the microarray expression
analyses, we used “Affy” package in R (Gautier et al., 2004). From
these analyses, we retrieved the top upregulated and downregulated
genes from both the datasets.

Differential gene expression and network
analysis

We used STRING v12.0 (SearchTool for the Retrieval of
Interacting Genes/Proteins) database (https://string-db.org/) to
build a protein-protein interaction (PPI) network of the common
differentially expressed genes (DEGs) in humans (Damian et al.,
2023). STRING can help to give information about either physical
or functional associations of the protein-protein interaction map.
These connections are sourced from text analysis of literature,
co-expression examinations, genomics-contextual forecasts,
computational projections, and high-throughput experimental
findings, alongside the consolidation of existing insights from
other databases. “Cytoscape” software (version 3.9.1) was used to
visualize and analyze the protein-protein interaction map DEGs in
our study (Paul et al., 2003).

Functional annotation/gene ontology
enrichment analysis

Functional analysis and Gene Ontology (GO) enrichment were
performed using theDAVIDWeb server (https://david.ncifcrf.gov/).
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FIGURE 1
Volcano plots depicting genes exhibiting significant differences between pancreatic tumor tissues and neighboring non-tumor tissues across the three
datasets. (A) GSE171485 (B) GSE71989 (C) GSE22780. The horizontal axis represents the fold-change (log scale), while the vertical axis represents the
P-values (log scale). Each point represents a distinct gene, with red and blue denoting upregulated and downregulated genes, respectively.

Thisweb-based bioinformatics resource offers an accessible platform
for researchers to comprehensively analyze differentially expressed
genes, providing a suite of functional annotation tools. Utilizing
DAVID tools, researchers can identify enriched biological themes,
including Gene Ontology (GO) terms, discover functionally related
gene groups, visualize genes on BioCarta and KEGG pathway
maps, and exploremany-genes-to-many-terms relationships in a 2D
view. Additionally, the platform enables the search for functionally
related genes not present in the original gene list, enhancing the
understanding of the biological significance of the gene set under
investigation (Da et al., 2009; Brad et al., 2022).

Identification of key hub genes

Performing a comprehensive analysis is crucial to derive optimal
insights from a specified biological network construction.The main
goal in omics data analysis is to pinpoint pivotal hub genes, acting
as molecular regulators.The process of identifying these crucial hub
genes within the network of (DEGs) entails leveraging topological
network attributes, particularly metrics such as degree, closeness

centrality, and betweenness centrality (Bell et al., 1999). Nodes
with high betweenness centrality, called bottlenecks, have been
demonstrated to predict gene essentiality (Duron et al., 2009).These
topological properties were computed using the Network Analyzer
plug-in in Cytoscape-3.9.1 (Paul et al., 2003).

Analyzing the drug-gene interaction

In order to find potential drugs for PDAC treatment, we
employed the DGIdb (v4.2.0) web tool (Sharon et al., 2020), which is
a repository of interactions between drugs and genes as well as genes
that can be targeted by drugs.

Survival analysis of the key hub genes

In order to understand disease biology and improve patient
outcomes survival analysis of the key hub geneswas performedusing
GEPIA (Gene Expression Profiling Interactive Analysis) (http://
gepia.cancer-pku.cn/about.html) database (Tang et al., 2017).
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FIGURE 2
Network illustrating the interactions among proteins encoded by the genes that exhibit differential expression.

Results

Quantification of the differentially
expressed genes

To identify the DEGs we applied a cut-off of |log2foldchange|≥1
and padj (adjusted p-value) < 0.1. The padj value was computed
using the Benjamini–Hochberg (BH) method to control for
multiple testing. A total of 294 common DEGs were obtained
from the three different datasets. Figure 1 presents volcano
plots that illustrate the genes displaying significant differential
expression between pancreatic tumor tissues and adjacent
non-tumor tissues across the three datasets. These plots
provide a visual representation of the statistical significance
and magnitude of gene expression changes, with highly
upregulated and downregulated genes distinctly highlighted.
By integrating data from all three datasets, the volcano plots
offer a comprehensive overview of key genes that may serve
as potential biomarkers or therapeutic targets in pancreatic
cancer research.

Functional annotation of differentially
expressed genes

A total of 128 genes have been found to be upregulated
and 90 genes have been found to be downregulated in our

study. To understand the functions associated with the up and
downregulated genes, Gene Ontology and KEGG pathway analyses
of the common up and downregulated genes were performed using
the DAVID server. The interaction network of the differentially
expressed genes (DEGs) identified across the three datasets has
been visually represented in Figure 2. This network illustrates
the relationships and functional connections between the DEGs,
providing insights into their potential roles in the underlying
biological processes.

KEGG pathway analysis of upregulated DEGs
Based on the KEGG pathway analysis, the upregulated DEGs

were predominantly enriched in: galactose metabolism, ECM-
receptor interaction, mucin-type O-glycan biosynthesis, metabolic
pathways, type II diabetes mellitus (Figure 3). It is interesting
to be noted that, significant gene count was associated with
metabolic pathways.

Molecular Function, biological process and
cellular component of upregulated DEGs

The Molecular Function (MF) of the upregulated DEGs was
significantly enriched in: sterol transporter activity. The Biological
process (BP) of the upregulated DEGs were mainly enriched in:
cell adhesion, response to virus (Supplementary Figure S1). While
the Cellular Component (CC) of the upregulated DEGs were
mainly enriched in: plasma membrane and integral component of
plasma membrane (Supplementary Figure S2).
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FIGURE 3
KEGG Pathway Analysis of among genes that were upregulated in pancreatic tumors compared to nearby non-tumor tissues.

FIGURE 4
KEGG Pathway Analysis of the among genes that were downregulated in pancreatic tumors compared to nearby non-tumor tissues.

KEGG pathway analysis of downregulated DEGs
On the other hand, to gain insight into the functionalities of

downregulated differentially expressed genes, Gene Ontology (GO)
and KEGG pathway analyses were performed. Based on the KEGG
pathway analysis, the downregulated DEGs were primarily enriched
in: pancreatic secretion (Figure 4).

Molecular Function, biological process and
Cellular Component of downregulated DEGs

The Molecular Function of the downregulated genes were
significantly enriched in: hemoglobin alpha binding, organic acid
binding, oxygen transporter activity. The Biological processes
of the downregulated genes were: hydrogen peroxide catabolic
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TABLE 1 Genes Obtained from Differentially Expressed Gene interaction Networks.

S.N. Degree Betweenness centrality Closeness centrality

1 SRC HBB NKAP

2 EGF ARL14 NKAPL

3 CEACAM5 SRC P2RX1

4 ICAM1 EGF SLC17A9

5 ANLN PKM SLC30A2

6 XBP1 CEACAM5 SLC39A8

7 AGR2 XBP1 HBB

8 KRT19 ANLN ARL14

9 SDC1 AGR2 ALAS2

10 AURKA GPX2 HBD

11 AGRN OASL TMEM92

12 PKM RPS9 EPS8L3

13 MUC5AC AGRN SRC

14 ITGA6 ICAM1 EGF

15 BIRC5 SDC1 PKM

16 TOP2A PLEK2 CEACAM5

17 OASL GP2 ICAM1

18 GPX2 CTRL CASP9

19 GMNN KRT19 GATA3

20 GATA3 FLNB SDC1

process, cellular oxidant detoxification, cytoplasmic translation
(Supplementary Figure S3). While, the Cellular Component
(CC) of the downregulated DEGs were mainly enriched
in: zymogen granule membrane, haptoglobin-hemoglobin
complex, hemoglobin complex, endoplasmic reticulum, ribosome,
cytosolic ribosome (Supplementary Figure S4).

Discovery of the key hub genes through
network analysis

To identify pivotal nodes within the network, centrality
examines each node using metrics such as degree, betweenness and
closeness. This approach was employed to pinpoint essential hub
genes and bottleneck genes within scale-free biological networks
based on their topological characteristics. Nodes with higher
centrality values are instrumental in pinpointing biological entities

that exert significant influence on the overall activities of the
biological network. In order to enlist inferred genes in this network,
we selected the top 20 genes based on degree, betweenness
and closeness centralities, mentioned in Table 1. Additionally,
by utilizing CytoHubba, extension of Cytoscape we identified
the top 20 genes based on MNC (Maximum Neighbourhood
Component) and EPC (Edge Percolated Component) properties,
as outlined in Table 2. Afterwards, we aimed to identify shared
genes that were present in a minimum of five attributes within the
top twenty rankings across all assessed centralities and clustering
techniques. These common genes were considered key hub genes.
Notably, EGF, SRC, ICAM1, CEACAM5, and SDC1 were frequently
identified and assumed to be key hub genes.

The key hub genes showed enrichment in pathways
linked to diverse processes such as fluid shear stress and
atherosclerosis (Figure 5), with the significance of other
pathways being less pronounced.
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TABLE 2 Genes Obtained from Differentially Expressed Gene Interaction
Networks based on EPC and MNC Clustering.

S.N. EPC MNC

1 EGF EGF

2 SRC SRC

3 ICAM1 CEACAM5

4 CEACAM5 ICAM1

5 ITGA6 ITGA6

6 SDC1 AURKA

7 KRT19 KRT19

8 MUC5AC MUC5AC

9 AGRN AGRN

10 XBP1 SDC1

11 GATA3 GMNN

12 PKM ANLN

13 AGR2 TOP2A

14 ANLN GATA3

15 MUC4 RRM2

16 TOP2A RPS9

17 AURKA MUC4

18 BIRC5 RPL3

19 CD80 KIF20B

20 TFF1 BIRC5

EPC, edge percolated component; MNC, maximum neighbourhood component.

Identification of drugs for the key hub
genes

To understand the potential druggability of the identified key
hub genes, approved drugs of the identified key hub-genes were
discovered through DGIdb (https://www.dgidb.org/), a web-based
database specializing in drug-gene interactions and druggable genes.
The same has been described in Table 3.

Survival analysis of the key hub genes

It is important to be noted that, the survival outcomes of the
genes can provide valuable prognostic information. By analyzing
the expression levels of these genes in patient samples, researchers
can predict the likelihood of disease progression, recurrence, or
overall survival. GEPIA (Gene Expression Profiling Interactive
Analysis) (http://gepia.cancer-pku.cn/about.html) database was

used to perform survival analysis of the key hub genes. GEPIA
provides a variety of customizable functions, such as comparing
gene expression differences between tumor and normal tissues,
profiling based on cancer types or stages, analyzing patient survival,
identifying gene similarities, conducting correlation analysis, and
performing dimensionality reduction analysis (Tang et al., 2017). It
can be observed from Figure 6 that, high expression of the key hub
genes significantly reducing the patients’ survival rate.

Discussion

In this study, we analyzed gene expression profiles from
three GEO datasets (GSE171485, GSE71989 and GSE22780)
through comprehensive bioinformatics methods. Gene Ontology
(GO) function and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway annotation of the overlapped DEGs discovered.
Furthermore, by constructing a protein-protein interaction (PPI)
network, we pinpointed several key hub genes closely associated
with PDAC development and Survival analysis of the key hub genes
performed to understand association between expression of the
KHGs and PDAC survival rate.

As discussed earlier, EGF, SRC, ICAM1, CEACAM5, and SDC1
were considered to be key hub genes in our study. In this study, EGF
gene was found to be downregulated when PDAC was compared
with healthy controls. The EGF (Epidermal Growth Factor) gene
encodes a protein which is participated in cell growth, proliferation,
and differentiation (Wee andWang, 2017). Epidermal Growth Factor
is a signalingmolecule that plays a crucial role in the regulation of cell
growth,development, andhealing (LindseyandLanghans, 2015).EGF
binds to its receptor, the epidermal growth factor receptor (EGFR),
triggering a series of intracellular signaling events that ultimately
influence cell behaviour (Sabbahet al., 2020).This signalingpathway is
important for normal physiological processes, such as tissue repair, as
well as in the development of various organs and systems in the body
(Berlanga-Acosta et al., 2009). Alterations or dysregulation of theEGF
gene or its signaling pathway can be associated with various diseases,
including cancers viz. colorectal cancer, non-small cell lung cancer
(NSCLC), prostate and pancreatic cancers. Overexpression of EGF or
mutations initssignalingpathwaymayleadtouncontrolledcellgrowth
andcontribute to thedevelopmentandprogressionofcancer (Fenghua
and Harris, 2014).

The nonreceptor tyrosine kinase c-Src (SRC), classified as a
proto-oncogene, exhibits a correlation between its expression and
activity with advanced malignancy and unfavorable prognoses
in diverse human cancers. Originally recognized as the cellular
counterpart of v-Src, the transforming gene product of the avian
Rous sarcoma virus, SRC has been significantly implicated in
the initiation, sustenance, advancement, and metastasis of various
human cancers, including those affecting the prostate, lung, breast,
colorectal and pancreatic tissues (Wheeler et al., 2009).

The ICAM1 gene, which stands for Intercellular Adhesion
Molecule 1, encodes a cell surface glycoprotein involved in immune
responses and inflammation. ICAM1 plays a crucial role in
facilitating adhesion between cells, particularly between immune
cells and endothelial cells. This adhesion is important for immune
cell recruitment to sites of inflammation and infection. In the
context of cancer, ICAM-1 has been studied for its potential
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FIGURE 5
The KEGG Pathway analysis of the Key Hub-Genes.

TABLE 3 Identification of the approved drugs for the key hub genes.

S.N. Key hub genes Approved drugs

1 EGF CETUXIMAB, PANITUMUMAB

2 ICAM1 LIFITEGRAST

3 CEACAM5 GEFITINIB

4 SRC BOSUTINIB, DASATINIB, CERITINIB, PONATINIB, NINTEDANIB, LAPATINIB, CRIZOTINIB, TRAMETINIB, CLOZAPINE,
GEMCITABINE, DOXORUBICIN, PACLITAXEL, VANEDETANIB, CISPLATIN

5 SDC1 Not available

role in tumor progression and the immune response against
cancer cells (Qiu et al., 2022).

The CEACAM5 gene, also known as carcinoembryonic antigen-
related cell adhesion molecule 5, is a gene that encodes a protein
involved in cell adhesion and communication.This gene is amember
of the carcinoembryonic antigen (CEA) family, which includes
cell surface glycoproteins implicated in various physiological
and pathological processes, including cancer. Overexpression of
CEACAM5 is related to numerous cancers viz. breast, colorectal and
pancreatic cancers (Shi et al., 2022).

In this study, SDC1 gene was found to be upregulated when
PDAC was compared with healthy controls. The SDC1 gene, also
known as Syndecan-1, encodes a cell surface proteoglycan that is
involved in cell adhesion, cell signaling, and the regulation of various
cellular processes. Syndecan-1 belongs to the syndecan family of
heparan sulfate proteoglycans. While it has essential roles in normal
physiological processes, alterations in its expression and function
have been associated with cancer viz. breast, multiple myeloma and
pancreatic cancers (Sen et al., 2022).

The identification of hub genes such as EGF, SRC, SDC1, ICAM1
and CEACAM5 offer novel perspectives in PDAC research by
highlighting previously underexplored molecular mechanisms and

potential therapeucyic targets. While prior studies have identified
various hub genes associated with PDAC, the focus on this specific
set of genes provide unique insights into the disease’s pathogenesis.
Previous bioinformatic analyses identified different sets of hub genes
inPDAC.Forexample,Luet. al. identifiedCOL1A1,COL3A1andFN1
as key genes involved in PDACprogression (Lu et al., 2018). Similarly,
Dafrazi et. al. (Dafrazi et al., 2023) recognizedCOL1A1, COL3A1 and
COL1A2 as significant in PDAC using comparable datasets. These
studies primarily highlighted genes associated with the extracellular
matrix and structural components of the tumor microenvironment.
In contrast, the present study’s identification of EGF, SRC, SDC1,
ICAM1 and CEACAM5 shifts the focus towards genes involved in
cellular signaling, adhesion and immune interactions. EGF and SRC
are integral to the EGFR signaling pathway, which is crucial for cell
proliferation and survival. SDC1 (Syndecan-1) plays a role in cell-
matrix interactions and has been implicated in tumor progression and
metastasis. ICAN1 (Intracellular Adhesion Molecule 1) is involved
in immune cell adhesion and transmigration, influencing tumor
immune evasion. CEACAM5 (Carcinoembryonic Antigen-Related
Cell Adhesion Molecule 5) is associated with cell adhesion and has
been associatedwith tumormarker in various cancers. PDACpresents
as a diverse condition, with a significant portion of patients being
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FIGURE 6
Survival analysis of the Key-Hub Genes (A) EGF, (B) ICAM1, (C) CEACAM5, (D) SRC, (E) SDC1.

diagnosedatanadvancedstageduetothelackofeffectivepre-detection
measures.Despiteextensiveclinicalandbasicresearchefforts, therehas
been little notable improvement in the overall incidence and survival
rates of PDAC over recent decades. It is recognized that, identifying
key genes serving as diagnostic, prognostic or therapeutic biomarkers
mayvarydependingonexperimentalconditionsandother influencing
factors. In this current investigation, bioinformatics analysis has been
directed towards identifying key hub genes for PDAC.

The identified hub genes play crucial roles in the progression
of PDAC and by being associated with differentially expressed
genes (DEGs) that regulate metabolism and pancreatic secretion.
These genes are involved in critical signaling pathways that drive
PDAC tumorigenesis, including cell proliferation, adhesion, invasion
and immune evasion. Their biological significance in PDAC is
highlighted by their roles in key oncogenic pathways.The upregulated
DEGs are mainly involved in metabolism, which is essential for
supporting tumor growth and survival. Genes like EGF and SRC
contribute to this metabolic shift by activating PI3K/AKT and
MAPK signaling pathways, which enhance glucose uptake, lipid
biosynthesis and amino acid metabolism-key hallmarks of cancer
metabolism (Dosch et al., 2020). The downregulated DEGs in PDAC
are mainly enriched in: pancreatic secretion pathways, suggesting
a loss of normal pancreatic function. SDC1 (Syndecan-1) plays a
role in maintaining pancreatic homeostasis by regulating cellular
adhesion and signaling (Sanderson and Yang, 2008). Loss of
pancreatic secretion-related genes along with alterations in ICAM1
and CEACAM5, contribute to the loss of normal exocrine function
and promote tumor microenvironment remodeling. EGF and SRC
are central to EGFR signaling, which drives PDAC cell proliferation,

survival and resistance to apoptosis. Activation of Ras/Raf/MEK/ERK
and PI3K/AKT/mTOR pathways by EGF promotes tumor growth,
whileSRCfacilitates invasionandmetastasisbyenhancingcytoskeletal
reorganization. SDC1 (Syndecan-1) modulates cell adhesion and
interaction with the extracellular matrix (ECM), impacting tumor
progression and chemotherapy resistance (Farhangnia et al., 2024).
ICAM1, involved in inflammatory responses, contributes to immune
evasion in PDAC by regulating leukocyte trafficking and tumor-
associated inflammation. CEACAM5 (Carcinoembryonic Antigen-
Related Cell Adhesion Molecule 5) is a marker of tumor progression
and metastasis, implicated in cell adhesion and immune modulation
(Qiu et. al., 2022; Shi et. al., 2022).

Activation of EGF and SRC supports oncogenic growth
by enhancing cellular metabolism, proliferation, and evasion
of apoptosis. SRC and SDC1 regulate ECM remodeling and
integrin signaling, which contribute to PDAC cell migration and
metastasis. ICAM1 and CEACAM5 are involved in immune escape
mechanisms, helping PDAC evade host immune surveillance.
Downregulation of genes involved in pancreatic secretion
contributes to the destruction of normal pancreatic tissue, leading to
the aggressive nature of PDAC. The interplay between upregulated
metabolic genes and downregulated pancreatic secretion genes
in PDC highlights a major shift towards tumor-driven metabolic
adaptation and immune evasion. Hub genes like EGF, SRC,
SDC1, ICAM1, and CEACAM5 serve as key oncogenic regulators,
making them potential therapeutic targets. Targeting these
pathways could disrupt PDAC progression, reduce metastasis,
and enhance immune response, providing a strategic avenue for
PDAC treatment.
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The study relies on publicly available transcriptomic datasets,
which may be limited in terms of sample size, clinical heterogeneity,
or ethnic diversity. Integrating additional datasets, such as single-
cell RNA sequencing or proteomic analyses, could improve the
robustness of these findings. Future studies should validate findings
across multiple PDAC subtypes, as different subgroups (e.g., classical,
basal-like, immune-enriched) may exhibit varying gene expression
patterns. While the study identifies key hub genes (KHGs) in PDAC,
validating these genes requires rigorous experimental approaches.
In vitro models, such as PDAC cell lines with gene knockdown or
overexpression, and in vivo models, such as genetically engineered
mousemodels (GEMMs)or patient-derived xenografts (PDXs), could
be utilized. Single-cell RNA sequencing and spatial transcriptomics
could also refine our understanding of KHGs’ roles in different
tumor microenvironments. CRISPR-based functional screens could
systematicallyassess thenecessityof thesegenes for tumorprogression.

Conclusion

We undertook an extensive examination utilizing one RNA-
seq and two microarray gene expression datasets and compared
PDAC with healthy pancreatic tissue. Our objective was to
identify “Differentially Expressed Genes” (DEGs) and understand
their biological insights through pathway enrichment analysis.
Furthermore, we delved into the structural characteristics of the
gene interaction network and obtained key hub genes. Furthermore,
we identified drugs targeting these key hub genes. To comprehend
the impact of both high and low expressions of the key hub genes
linked to PDAC, we conducted survival analysis on these key hub
genes. These genes are expected to have a pivotal influence on the
advancement of PDAC.

Details of the statistical packages and
software tools used in this study

R version 4.1.0 used in this study.
Cytoscape 3.9.1 used for visualizing the protein interaction

network data.
Cytoscape plugin “Cytohubba” used for predicting EPC, MNC

properties.
Cytoscape plugin “Network Analyzer” used for network

centrality measurements.
DAVID Web server (https://david.ncifcrf.gov/) used for GO-

enrichment analysis.
STRING v12 database (https://string-db.org/) was used to

construct a protein-protein interaction network.
DGIdb (https://www.dgidb.org/) web-based database of drug-

gene interactions was used for drug identification for the identified
key hub genes.
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