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Antibodies are naturally produced safeguarding proteins that the immune
system generates to fight against invasive invaders. For centuries, they have
been produced artificially and utilized to eradicate various infectious diseases.
Given the ongoing threat posed by COVID-19 pandemics worldwide, antibodies
have become one of the most promising treatments to prevent infection and
save millions of lives. Currently, in silico techniques provide an innovative
approach for developing antibodies, which significantly impacts the formulation
of antibodies. These techniques develop antibodies with great specificity and
potency against diseases such as SARS-CoV-2 by using computational tools
and algorithms. Conventional methods for designing and developing antibodies
are frequently costly and time-consuming. However, in silico approach offers
a contemporary, effective, and economical paradigm for creating next-
generation antibodies, especially in accordance with recent developments in
bioinformatics. By utilizing multiple antibody databases and high-throughput
approaches, a unique antibody construct can be designed in silico, facilitating
accurate, reliable, and secure antibody development for human use. Compared
to their traditionally developed equivalents, a large number of in silico-designed
antibodies have advanced swiftly to clinical trials and became accessible sooner.
This article helps researchers develop SARS-CoV-2 antibodies more quickly
and affordably by giving them access to current information on computational
approaches for antibody creation.

KEYWORDS

in silico, antibody, SARS-CoV-2, computational approach, bioinformatics, molecular
dynamic simulation

1 Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic, which is caused by the
SARS-CoV-2 virus (Severe Acute Respiratory Syndrome Coronavirus 2), has already
claimed the lives of approximately 6.8 million people so far and as of right now,
there is no effective therapy for COVID-19 as the virus is emerging (Infectious
Diseases Society of America, 2024). To control the disease progression, various

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1533983
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1533983&domain=pdf&date_stamp=2025-02-11
mailto:aisyahmualif@utm.my
mailto:aisyahmualif@utm.my
https://doi.org/10.3389/fbinf.2025.1533983
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1533983/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1533983/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1533983/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Subramaniam et al. 10.3389/fbinf.2025.1533983

types of antiviral drugs (Al-Tawfiq et al., 2020; Beigel et al.,
2020; Gordon et al., 2021; Arbel et al., 2022) and
antibodies (Safarzadeh Kozani et al., 2022; Keam, 2022)
were prescribed to COVID-19 patients. Although antibodies
offer protection with higher specificity against SARS-CoV-2
than drugs but their limitations point out the challenges in
developing sustainable antibodies in the phase of rapid viral
evolution (Van Regenmortel, 2014).

COVID-19 therapeutic antibodies developed to target the key
components of SARS-CoV-2, Spike (S) protein, which interacts with
ACE2 receptor protein on the cells in the respiratory tract during
viral invasion (Pizzato et al., 2022). However, continuous structural
changes of S protein of SARS-CoV-2 caused by rapid mutations
render the effectiveness of the therapeutic antibodies.The antibodies
which have been approved by EUA to be prescribed for COVID-19
patients, lost the approval as the mAb is no longer effective against
currently emerging SARS-CoV-2 (Orders, 2022; Keam, 2022).

In this case, in silico technology paves promising approaches
to design antibodies with our desired formats and customize the
residues that favor higher binding affinity and good developability
in a shorter time frame (Wolf Pérez et al., 2022). According
to Moore, the phrase “in silico” refers to computer-assisted
experimental procedures used in modern research (Moore,
2021). The integration of in silico technology into pharmaceutical
research, notably in antibody designing, offers a sustainable
approach and complementary avenue to traditional experimental
methods that facilitates efficient antibody discovery for SARS-
CoV-2 while conserving time and resources (Jabalia et al., 2021;
Shaker et al., 2021; Ivanov et al., 2023).

2 Antibody discovery using in silico
technology

Existing therapeutic antibodies for SARS-CoV-2 were
discovered in laboratory through various approaches that
involves in vitro technology. Hybridoma technology (Köhler and
Milstein, 1975) and phage display (Smith and Petrenko, 1997) are
employed to produce antibodies for SARS-CoV-2 with a wide
range of application (Antipova et al., 2020; Kim et al., 2022;
Somasundaram et al., 2020; Wang et al., 2023). Despite having
many benefits to producing mAbs, in vitro technology poses
limitations in terms of expenses as the methods mentioned above
require sophisticated and resource-intensive high-throughput
screening and characterization processes, which also consume
adequate time (Moraes et al., 2021). In this case, in silico technology
complements in vitro technology and can overtake several stages of
conventional antibody discovery methods.

In silico antibody discovery comprises a multi-staged
computational approach that accelerates the precision of antibody
development. The process begins with the analysis of antibody
sequences extracted from databases such as Protein Data Bank
(PDB) (Bernstein et al., 1977), UniProt (UniProt Consortium, 2015)
and other specified databases listed in Table 2. Modeling of 3D
antibody structure is performed using predictive computational
tools after sequence analysis to generate structural models with
detailed spatial analysis. The next stage involves the evaluation
of antibody interaction with targeted antigens through molecular

docking. In this stage, high-affinity antibody candidates can be
identified by predicting their interaction profiles. Finally, the
developability of the antibodies will be evaluated via molecular
dynamic simulation since the simulation refines the antibody-
antigen complexes by examining their manufacturability. In recent
times, in silico approach has been usedwidely in producing potential
therapeutic options for COVID-19 through computational tools
as presented in Table 1. In silico technology has been applied
into SARS-CoV-2 antibody discovery in various stages of the
process. Computational tools that can be used in different stages
of SARS-CoV-2 antibody discovery are listed in Table 2.

2.1 Analysis of antibody sequences

Sequences of antibody discovered as therapeutic option for
COVID-19 are required to be analyzed before subjecting the
sequence for further analysis. Since all variable domains fold into
a series of beta strands joined by loops in a very similar 3D shape,
the complementarity-determining regions (CDRs) are six of these
loops at the top, where these regions develop loops that extend
from the surface of the antibody, will result in direct contact with
the antigen (Davies and Chacko, 1993). Numbering each residue
according to a conventional approach is very helpful for sequence
comparisons and engineering due to the continuity of the antibody
structural similarity. Precise identification and characterization of
these antibody regions are crucial in development and modification
of antibodies (Patel et al., 2023). These annotated CDRs establish a
significant degree of variation in antibody structure (Wong et al.,
2019). Hence, it is critical for recognizing CDR to ensure its binding
to a specific antigenic molecule before posing modifications to
the antibody.

Numbering schemes with different approaches and set of
applications have been developed to standardize the annotation of
CDRs. An early yet widespread approach for annotating CDRs is
the Kabat numbering scheme, which detects hypervariable regions
and relies on the antibody sequences alignment (Kabat, 1991).
The 3D structure of the antibodies is the foundation of Chothia
numbering scheme (Chothia and Lesk, 1987) which emphasizes the
structural locations of CDRs and the protected framework areas
that sustain them. An enhanced version of the original Chothia
scheme, theMartin scheme, introduces more structural insights and
improves the numbering to cover a greater number of spots (Martin
and Thornton, 1996), however, it has not been widely utilized.
The well-established and comprehensive IMGT numbering scheme,
annotates immunoglobulin and T cell receptors (Lefranc et al.,
2015). It offers a standardized framework for comparing different
species by ensuring consistency across species and antibody types
by defining CDRs using both sequence and structural data.

Immunogenicity of the antibody sequences is also predicted
to assess the immunogenic response of the therapeutic antibody
which ensures safety and effectiveness. Immunogenicity prediction
analysis helps in determining whether the antibody sequences
exhibit low immunogenicity by identifying significant epitopes and
ensuring that they fall below thresholds associated with strong
immune activation. These antibodies can enhance their feasibility
and reduce detrimental immune responses in various patient
populations (Harris and Cohen, 2024).
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TABLE 2 Computational tools used in different stages of antibody discovery in silico.

Application in silico
technology

Tools Usage References

Databases

UniProt Provides well-annotated protein
sequences

UniProt Consortium (2015)

Protein Data Bank (PDB) A repository for biological
macromolecular crystal structures

Bernstein et al. (1977)

SwissProt database Provides non-redundant protein
sequences

Bairoch and Apweiler (2000)

PROSITE A protein data repository Hulo et al. (2006)

Structural Classification of Proteins
(SCOP) database

Provide the most recent version of PDB
of a protein

Lo Conte et al. (2000)

Structural Antibody Database
(SAbDab)

Provides antibody structural data Dunbar et al. (2013)

Therapeutic Structural Antibody
Database (Thera-SAbDab)

Antibody sequence repository, after
numbered and aligned all therapeutic
variable domain sequences to the
sequences of known structures in
SAbDab

Raybould et al. (2020)

Antibody Sequence Analysis

Antibody region-specific alignment
(AbRSA)

Determines CDR through numbering
the sequence

Li et al. (2019)

ANARCI Annotates antibody and antigen
receptor variable domain amino acid
sequences from various species with
different numbering schemes

Dunbar and Deane (2015)

3D Modeling of Antibody

SWISS-MODEL Offers an automated modeling tool that
is simple to use and incorporates expert
knowledge, where the approach is
characterized as rigid fragment
assembly

Schwede et al. (2003)

MODELLER Offers modeling of comparative protein
structures

Šali and Blundell (1993)

AlphaFold2 Offers an extensive deep-learning
framework for protein structure
prediction

Skolnick et al. (2021), Ruff and Pappu
(2021), and Cheung et al. (2023)

RoseTTAFold Model protein-protein complexes using
only sequence information

Liang et al. (2022)

ABodyBuilder Model antibody only Leem et al. (2016)

Visualize 3D Antibody Model

PyMOL Visualise protein molecules in various
representations

DeLano (2002)

Visual Molecular Dynamics (VMD) To view wider-ranging molecules
including protein

Humphrey et al. (1996)

Evaluation of 3D Antibody Interaction

ClusPro Permits the direct docking of two
interacting proteins

Kozakov et al. (2017)

High Ambiguity Driven Docking
Approach (HADDOCK)

Docking tool that harness biochemical
and biophysical interaction data

Dominguez et al. (2003)

(Continued on the following page)

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1533983
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Subramaniam et al. 10.3389/fbinf.2025.1533983

TABLE 2 (Continued) Computational tools used in different stages of antibody discovery in silico.

Application in silico
technology

Tools Usage References

RosettaDock Offers multi-scale docking approach
that combines a high-resolution,
all-atom refinement stage that
optimizes both rigid-body orientations
and side-chain conformation with a
low-resolution, centroid-mode, and
coarse-grain stage

Lyskov and Gray (2008)

ZDOCK A docking tool that uses Fast Fourier
Transform (FFT) to optimize
electrostatics, desolvation, and GSC
score that defines the total number of
grid points in this layer that overlap any
grid points belonging to ligand atoms to
yield less a clash penalty

Chen et al. (2003)

HawkDock A docking tool is developed by the
HawkDock server with the integration
of the ATTRACT docking algorithm
and the MM/GBSA free energy

Weng et al. (2019)

Molecular Simulation of
Antibody-antigen Complex

GROMACS (Groningen Machine for
Chemical Simulations)

An open-source software package
designed for molecular dynamics
simulations of biochemical molecules
including proteins

Berendsen et al. (1995) and
Van Der Spoel et al. (2005)

This table outlines the key stages involves in in silico antibody discovery for SARS-CoV-2, along with the computational tools used at each stage, as described in the following sections of the
review. The databases to acquire antibody and antigen sequences are also included in this table.

ANARCI (Dunbar and Deane, 2015), an online tool that offers
to annotate variable domains of antibodies from various species,
enabling precise identification of CDRs and their alignment for
immunogenicity analysis, is widely used in several SARS-CoV-2
studies (Wang et al., 2022; Xu et al., 2021; Zhou et al., 2023).
Antibody region-specific alignment (AbRSA) (Li et al., 2019), is also
a platform to perform sequence analysis by delimiting the CDRs
and antibody numbering for numerous antibodies targeting viral
particles (Dănăilă and Buiu, 2022; Dzimianski et al., 2023; Singh
et al., 2023).

2.2 Modeling of 3D antibody

The successive unfolding process of protein folding transforms
the protein sequences of the SARS-CoV-2 binding antibodies, which
are mostly composed of a linear sequence of amino acids, into
a functional three-dimensional antibody structure (Poluri et al.,
2021). The arrangement of the amino acids determines its basic
structure. From this linear arrangement, localized folding results
in the formation of secondary structures including alpha helices
and beta sheets, which are fuelled by hydrogen bonds between
adjacent amino acids. The intricate three-dimensional tertiary
structure is its repercussions of the continuous folding of the
secondary structure together with the inclusion of loops and turns
of the antibody (Rehman et al., 2022).

Protein folding analysis provides many useful insights about
the interaction of the antibody especially through identifying
the structure of CDR loop formations, but this multifaceted

process requires expensive and specialized equipment, making it
a challenging task before computational tools are being employed
(Benjin and Ling, 2020; Brito and Archer, 2020). But as time passes,
using in silico technology, where protein modeling has allowed
for generally reliable predictions to be made (Srivastava et al.,
2018). The goal of protein modeling is to make use of a
range of computer methods to analyze amino acid sequences
to predict the three-dimensional (3D) structure of the antibody
sequences. Protein modeling provides distinctive approaches for
predicting protein structures through a variety of tools that has
been included on Table 2, which uses the protein sequences
as an input (Agnihotry et al., 2022).

AlphaFold2 (Cheung et al., 2023; Ruff and Pappu, 2021;
Skolnick et al., 2021) produces remarkably accurate 3D structure
predictions using a neural network architecture that has been
trained on a large database of structural and protein sequence
data. This tool is utilized in various SARS-CoV-2-related studies
that explore the binding behavior of its structural proteins (Ali
and Caetano-Anollés, 2024; Jiao et al., 2023; Raisinghani et al.,
2024). There are also several studies on the structural analysis of
antibodies that prove the modeling capability of AlphaFold2 for
antibody sequences (Du and Huang, 2023; Yin et al., 2022). SWISS-
MODEL (Schwede et al., 2003) utilizes a homology-modeling
approach that is performed iteratively until a satisfactory model
structure is obtained. 3D structures of SARS-CoV-2 antibodies
(Schepens et al., 2021; Beshnova et al., 2022) were successfully
determined through this tool.MODELLER (Šali and Blundell, 1993)
is a 3D modeling standalone tool, used to predict the 3D structure
of SARS-CoV-2 antibodies (Mercurio et al., 2021; Yang et al.,
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2021) and restore missing residues in its structure (Martí et al.,
2022; Giron et al., 2020). RoseTTAFold is one of the modeling
tools that uses neural network-based techniques, incorporating
connection between sequences, atomic coordinates, residue-residue
orientations, and distances. This tool has been used in several
studies on SARS-CoV-2 antibody discovery (Ford et al., 2022;
Jing et al., 2024; Lubin et al., 2021). ABodyBuilder (Leem et al.,
2016) is an antibody modeling software that incorporates multiple
tools, including ABangle (Dunbar et al., 2013) and FREAD (Choi
and Deane, 2010). Since this tool is specialized for antibody
modeling, numerous studies employed ABodyBuilder to model
the variable region of antibodies (Das et al., 2022; Das et al.,
2023; Rouet et al., 2023) which also includes bispecific antibody
(Ojha et al., 2022).

2.3 Evaluation of antibody interaction

The specificity of a novel or pre-existing antibody of SARS-
CoV-2 can be accessed through validation in silico using
computational tools. The binding properties of an antibody are
primarily determined by the sequence and structure of CDRs
through molecular docking. Molecular docking is performed
using the analyzed and modeled 3D antibody structures to study
the interaction by predicting the preferred orientation, affinity,
and interaction of an antibody-antigen complex by analyzing
intermolecular interactions (Koçer and Çelik, 2024).

Molecular docking is a process that anticipates atomic-level
molecular interactions (Agu et al., 2023). Molecular docking can be
performed with various types of biological molecules which include
small molecules such as drugs, metabolites, ligands, inhibitors, ions
(Jarad et al., 2023; Noreen et al., 2023), and complex molecules that
compriseDNA, RNA, proteins, peptides, carbohydrates, nucleosides
(Aziz et al., 2023;Madku et al., 2023;Weng et al., 2020). According to
research by (Shahmirzaie et al., 2020),molecular docking has proven
its capability of being a pioneering analysis to validate biological
model interaction by providing binding site information. In the
process of validation of antibody binding, molecular docking helps
in predicting the preferred orientation of an antibody to the targeted
antigen when these molecules are bound to each other to form a
stable complex (Gaudreault et al., 2023).

Binding of an antibody exhibits both rigid and flexible
properties which is essential for efficient antigen recognition and
immune response (Fernández-Quintero et al., 2020). Electrostatic
interactions and complementary structures lead to a relatively
rigid and specific binding between the paratope and epitope
where the rigidity ensures high-affinity binding and specificity
(Zeng et al., 2023). On the other hand, the antibody also exhibits
flexibility that facilitates conformational changes in the antigen and
antibody. Flexibility allows the antibody to bind to a wide range
of epitopes and identify antigens with various conformations by
allowing it to accommodate variations in the antigen structure
(Kilambi and Gray, 2017). An induced-fit mechanism takes place
in binding conditions, where the conformational changes between
the antigen and antibody are made upon binding to enhance
their interactions. The flexibility of an antibody allows it to
adapt to the structural alterations in the antigen and improves
binding affinity (Bekker et al., 2020). In general, an antibody requires

dynamic equilibrium between rigid and flexible phases upon its
binding to the antigen.

RosettaDock is a docking approach that optimizes both rigid-
body orientations and side-chain conformation (Lyskov and Gray,
2008). RosettaDock is used to perform docking of nanobodies
against SARS-CoV-2 receptor-binding domain (RBD) (Yang et al.,
2021), monoclonal antibodies against rare antigenic site of SARS-
CoV-2 spike protein (Suryadevara et al., 2024) and a specific
antibody against SARS-CoV-2 spike protein to improvise the
binding affinity (Neamtu et al., 2023). ZDOCK uses Fast Fourier
Transform (FFT) to yield less clash penalty in docking (Chen et al.,
2003). Several studies employed ZDOCK to study the SARS-CoV-
2 antibody-antigen interaction (Khan et al., 2020; Nath et al.,
2021). HawkDock is an unique docking tool with integration
of the ATTRACT docking algorithm and the MM/GBSA free
energy that allows determination of antibody-antigen binding
precisely (Weng et al., 2019). Docking is performed through this
tool with nanobodies and therapeutic antibodies for interaction
analysis (Shah and Woo, 2022; Yang et al., 2024). ClusPro is a
widely used docking tool that has benchmarked against alternative
docking tools in Critical Assessment of Predicted Interactions
(CAPRI) studies (Kozakov et al., 2017). This tool employed to study
the binding properties of SARS-CoV-2 spike protein RBD with
nanobodies (Shang et al., 2024) and SARS-CoV-2 spike protein
with monoclonal antibodies (Nath et al., 2021). High Ambiguity
Driven Docking Approach (HADDOCK) harnesses biochemical
and biophysical interaction data, including mutagenesis or chemical
shift perturbation data from NMR titration experiments to obtain
near-native results. Binding prediction of the antibodies discovered
with the targeted site on SARS-CoV-2 is performed in several studies
using this tool (Ford et al., 2022; Ford et al., 2023).

2.4 Developability evaluation of antibody

The developability of antibody models discovered using in silico
approach for COVID-19 will be studied and validated as they can
aligned with the real-time experimentally produced therapeutic
antibodies. Molecular dynamics (MD) simulations offer a dynamic
and comprehensive understanding of biomolecular behavior at the
atomic level, and have developed to be an essential tool in the study
of computational biophysics (Lemm et al., 2021). In the field of
antibody design, MD simulations have shown to be very helpful as a
reliable means of testing in silico designs, bridging the gap between
computational predictions and experimental findings by providing
insights into the structures.

MD simulations operate based on the basic principles of classical
mechanics, which make use of Newton’s equations of motion to
predict the motions of individual atoms in a molecular system
(Shukla and Tripathi, 2020). MD simulations accurately depict
the interactions between atoms, including the flexibility of bonds,
angle bending, and non-bonded interactions such as van der Waals
forces and electrostatics, by applying a force field, a mathematical
model that defines the potential energy of the system (Badar et al.,
2022). The force field selection is essential to the precision and
dependability of MD simulations since it significantly impacts the
simulation outcomes. Numerous force fields with unique strengths
and applications have been developed over time. CHARMM force
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field is one of the most common and extensible force fields
in computational chemistry which operates exceptionally well to
simulate lipids, proteins, and nucleic acids (Brooks et al., 2009).
AMBER force field is particularly utilized for proteins and nucleic
acids (Wang et al., 2004). The goal of AMBER is to supply
precise parameter sets for biomolecular systems. The temporary
conformational state of antibody binding is not always visible in
static crystal structures but only can be revealed byMD simulations.
Accurate parameterization of these forcefields in MD simulation
play pivotal roles in comprehending the principles underlying
antibody binding and refining antibody architectures to enhance
their affinity and specificity for target antigens (Shaw et al., 2010).

GROMACS, an open-source software package designed
for molecular dynamics simulations of biochemical molecules
including proteins, acts as an in silico to study the behavior of
antibody and antibody-antigen complexes at the atomic level
(Berendsen et al., 1995; Van Der Spoel et al., 2005). The stability
of various SARS-CoV-2 antibody-antigen complexes, including
complexes involving the SARS-CoV-2 S protein and bispecific
antibodies, as well as the SARS-CoV-2 S protein trimer with
monoclonal antibodies, was assessed by measuring the root-mean-
square fluctuation (RMSF) of the complexes to quantify dynamic
stability (Ford et al., 2022; Ford et al., 2023).

3 Discussion

The global response to the SARS-CoV-2 outbreak has
emphasized the critical necessity of quick therapeutic progress.
Handling SARS-CoV-2 live virus necessitates adherence to Biosafety
Level 3 (BSL-3) laboratory standards as SARS-CoV-2 can be
transmitted by air that can lead to respiratory transmission
(Kaufer et al., 2020). Compliance with the biosafety regulations
of BSL-3 adds to the time and cost of research as it requires a list of
facilities and personal protective equipment (Loibner et al., 2021).
In this case, in silico approach have grown to be valuable in antibody
discovery of SARS-CoV-2.

The usage of computational tools complements various parts of
the experimental approach of antibody discovery for SARS-CoV-
2. The process of discovering new antibodies necessitates creating
antibody libraries consisting of a pool of antibodies featuring various
binding sites and screening them to select the antibody candidates
with the best binding affinities (Kelley, 2020). Thus, the usage of
molecular docking streamlines the process by cutting down the
necessity to use experimental approach, which includes handling
SARS-CoV-2 antigen or virus for repeated screening (Alshahrani,
2023; Boorla et al., 2023; Gaudreault et al., 2023).

Molecular dynamic simulation bridges the gap between
the in silico-developed antibodies and experimentally produced
antibodies by mimicking the near-native condition of the antibody
(Jandova et al., 2021). Researchers can minimize the repeated usage
of live SARS-CoV-2 virus and other experimental assays as these
simulations reduce the dependence on experimental assessments
while retaining a high level of accuracy (Jairajpuri et al., 2021).
Determination of antibody 3D structure is also one of the most
essential contributions of in silico approach in antibody discovery.
3D modelling is a useful complement to approaches such as
cryo-electron microscopy (cryo-EM) and X-ray crystallography

for predicting the three-dimensional structure of antibodies.
Computational modeling of 3D structure of the antibodies offers
a cost-effective alternative, as the equipment required for the
conventional approach is expensive to acquire and maintain (Benjin
and Ling, 2020; Brito and Archer, 2020).

Although implementation of in silico approach in SARS-
CoV-2 antibody discovery significantly reduce the time and
resource investments, transitioning from in silico predictions to
experimentally validated antibodies present a few limitations.
Biological systems are inherently complex, and in silicomodels often
oversimplify these intricacies. Although in silico approaches can
predict the near-native structure and conditions of antibodies, it
unable to capture the complexity of the biological system such as
glycosylation (Kashkooli et al., 2021). Hence, developing integrated
workflows that combine in silico predictions with experimental
validation can optimise the transition between these stages.

Moreover, the effectiveness of in silico tools heavily depends
on the availability of high-quality training data. Rapid evolution
of SARS-CoV-2 has resulted in limited repositories of updated
experimentally validated sequences and structural data in
public databases (Chen et al., 2022). Limited availability of the
information may hinder the accuracy of the computational tools
and the accuracy of the computational predicts is compromised
by this shortage of data. Expansion of these databases and
providing quality training datasets for computational tools are
critical steps that enhance the performance of in silico tools
(Norman et al., 2019; Khuat et al., 2024).

4 Conclusion

Antibody development is anticipated to accelerate at the
greatest pace in upcoming years in life sciences, particularly
in the fight against infectious diseases such as SARS-CoV-
2. Researchers will be able to construct antibodies precisely
but effortlessly due to the developments in bioinformatics and
computer modeling. The in silico approach simplifies the process of
antibody structure prediction and interaction analysis by providing
a molecular dynamic simulation approach for validation. This
method greatly improves the speed, economic performance, as
well as effectiveness of the process of developing novel therapeutic
antibodies. Although precision of computational assessments is
reliant upon existing data and models, in silico technologies
offer a quick and efficient means of prevention and treatment,
that significantly reduce the worldwide burden of this infectious
disease. The approaches are also having potential to resurface
our knowledge of the immune system and antigen-antibody
interaction advances. Overall, the idea of creating antibodies
through in silico design has huge implications for the future
prevention and management of SARS-CoV-2 and other infectious
diseases.
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