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Identifying cancer biomarkers through DNA methylation analysis is an efficient
approach toward the detection of aberrant changes in epigenetic regulation
associated with early-stage cancer types. Among all cancer types, cancers with
relatively low five-year survival rates and high incidence rates were pancreatic
(10%), esophageal (20%), liver (20%), lung (21%), and brain (27%) cancers.
This study integrated genome-wide DNA methylation profiles and comorbidity
patterns to identify the common biomarkers with multi-functional analytics
across the aforementioned five cancer types. In addition, gene ontology was
used to categorize the biomarkers into several functional groups and establish
the relationships between gene functions and cancers. ALX3, HOXD8, IRX1,
HOXA9, HRH1, PTPRN2, TRIM58, and NPTX2 were identified as important
methylation biomarkers for the five cancers characterized by low five-year
survival rates. To extend the applicability of these biomarkers, their annotated
genetic functions were explored through GO and KEGG pathway analyses. The
combination of ALX3, NPTX2, and TRIM58 was selected from distinct functional
groups. An accuracy prediction of 93.3% could be achieved by validating the ten
most common cancers, including the initial five low-survival-rate cancer types.

KEYWORDS

comorbidity pattern, support vector machine, early detection, KEGG pathway, gene
ontology

1 Introduction

Cancers are highly complex diseases, and no ideal prophylactic, diagnostic, or
therapeutic methods are currently available for them. Although we can reduce cancer risk
by avoiding some important preventable risk factors, such as not smoking, not using alcohol
and maintaining a healthy weight, there is no guarantee that someone will not develop
cancers. Certain cancers may be asymptomatic in the early stages, and by the time patients
do present with symptoms, the diseasesmight have already progressed to themore advanced
stages when the cancers have metastasized (Beger et al., 2008). By that time, treatment
may become very difficult, and the survival rate is low. The five-year survival rates for
pancreatic, esophageal, liver, lung, and brain cancers are all less than 30% compared to other
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cancers (Siegel et al., 2021; Deorah et al., 2006). This study
focused on analyzing genome-wide DNA methylation profiles
simultaneously for these five foregoing cancer types, as they all
have high incidence and low survival. Highly associatedmethylation
biomarkers were identified simultaneously from different cancers
on a genome-wide scale, which could be applied to detect whether
a subject possesses a higher risk of developing the selected
target cancers.

Common causes of cancer include genetic abnormalities,
structural variations, and abnormal gene expression resulting
from DNA methylation (Mardis and Wilson, 2009). In
the present study, we selected biomarkers for early cancer
diagnosis based on DNA methylation mechanisms. DNA
methylation regulates gene expression without altering DNA
sequences. Hence, DNA methylation is a type of epigenetics.
Unlike true genetics, epigenetics focuses on the changes
in gene function that occur in response to environmental
factors, histone modifications, chromatin conformation, and
noncoding RNAs (Zhang et al., 2020; Frías-Lasserre and
Villagra, 2017).

In regular DNA methylation, CH3 is attached to C-5 of
cytosine by DNA methyltransferases, and 5-methylcytosine is
formed (Moore et al., 2013). Gene expression decreases with
an increasing degree of DNA methylation. In mammals, DNA
methylation usually occurs at CpG sites where a guanine nucleotide
follows a cytosine nucleotide and they are linked by a phosphate
moiety. The C + G content and the observed: expected CpG
ratio of a CpG-rich CpG island are >50% and >0.6, respectively
(Gardiner-Garden and Frommer, 1987). Cancer risk increases with
tumor suppressor gene methylation and oncogene demethylation.
Methylated and unmethylated probes occur at methylation
sites, and their methylation levels are indicated as β-values.
The latter are obtained by dividing the signal intensity of the
methylated probe by the signal intensity of all probes with
normalized values between 0 and 1 (Du et al., 2010). Here, we
identified highly discriminating biomarkers by determining the
differences in methylation between tumor and normal cells at
each probe.

Earlier studies performed differential gene expression (RNA-seq
and DNA methylation) analyses and performed gene functional
clustering and pathway analyses to obtain biomarkers related
to specific diseases (Sun et al., 2021; Yang et al., 2019). In the
present work, we combined the output of DNA methylation
analyses and comorbidity patterns for specific target cancers. We
then identified superior candidate biomarkers by intersecting
primary biomarkers identified by the DNA methylation profile
analysis with the secondary biomarkers related to the comorbidities
of each specific cancer type. The most recent research has
obtained biomarkers for specific cancers by profiling DNA
methylation analyses either on single cancers or those within
similar organ systems. However, these biomarkers might also
be common to other cancer types and could misidentify or
erroneously detect them. The aims of this study were to find
commonly associated biomarkers for the foregoing five cancers
and extend to other cancer types, and try to develop a better
and effective diagnostic tool for general cancer detection
at early stages.

2 Materials and methods

2.1 Differential methylation analysis for the
primary biomarkers

The Cancer Genome Atlas (TCGA; https://www.genome.
gov/Funded-Programs-Projects/Cancer-Genome-Atlas) was the
source of the DNA methylation profiles for >50 cancer types
acquired from the Infinium HumanMethylation450 K BeadChip
(Illumina, San Diego, CA, United States). Each profile included
the methylation levels (β-value) for approximately 480,000 probes.
Tumor tissue samples were assigned to the experimental group,
while normal tissue samples were assigned to the control group.
The numbers of subjects per group, cancer type, and tumor type are
listed in Table 1. For the TCGA datasets, we listed the Sentrix ID
and Sentrix position of each subject, whichmatch the corresponding
IDAT file in Supplementary Table S1.

In accordance with standard DNA methylation analytical
procedures, the IDAT file required standard preprocessing,
such as data quality control (QC) and β-value normalization
(Wang et al., 2018). Here, the Chip Analysis Methylation Pipeline
(ChAMP) toolkit (Morris et al., 2014) was used to evaluate
the methylation profiles. Probes unsuitable for analysis were
removed by QC procedures. BMIQ normalization procedures
were applied to correct the scale differences introduced by
the probe design (Teschendorff et al., 2013). As the β-values
for certain probes may not be distributed within the majority
ranges because of noise interference, the interquartile range
method (Walfish, 2006) was applied to remove outliers for each
probe. The Benjamini‒Hochberg multiple-testing correction
(Benjamini and Hochberg, 1995) was applied to the p values to
lower the false discovery rate (FDR) and to filter the probes.
The data were preprocessed and cleaned, and the average
beta-value difference (∆β value) between the experimental
and control groups was calculated for each probe. If a gene
contained at least one probe (loci) with |∆β| value greater than
a previously defined thresholding value and its p-value was less
than 0.05, it would be considered as a primary biomarker for
the target cancer. The workflow of our analyses was step-by-step
shown in the Supplementary Figure S1.

2.2 Comorbidity pattern analysis for the
secondary biomarkers

Certain diseases may occur before and/or after a cancer is
diagnosed. These comorbidities have certain associations with
cancers and could play vital roles in cancer prevention, diagnosis,
prognosis, and treatment (Ogle et al., 2000). Therefore, the
biomarkers were selected by considering the characteristics of
the comorbidities related to a specific cancer type. Relevant
studies and reports on a selected cancer and its comorbidities
were searched, and the associated genes could be identified
from the DisGeNet (https://www.disgenet.org) and OMIM
(https://www.omim.org) databases. The comorbidities and
their associated genetic biomarkers for each cancer type were
defined as secondary biomarkers.
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TABLE 1 The numbers of patients per group, cancer type, and tumor type.

Cancer Source Number of the
subjects in

experimental group

Number of the
subjects in control

group

Tumor type Accession number

Brain GEO 70 8 Glioma GSE123678

Esophagus TCGA 186 16 Esophageal Carcinoma N/A

Liver TCGA 280 36 Liver Hepatocellular Carcinoma N/A

Lung TCGA 370 42 Lung Squamous Cell Carcinoma N/A

Pancreas TCGA 185 10 Pancreatic Adenocarcinoma N/A

2.3 Common biomarker selection

Testing toolkit costs must be considered when methylation-
specific PCR assays are performed for early cancer detection.
Hence, the number of target methylation biomarkers should be
reduced to a reasonable figure. We expected that the number of
target biomarkers could be reduced as much as possible, and that
higher classification performance could be achieved. Methylation
biomarkers with significantly different performance levels among
the five cancers had to be carefully selected to evaluate the
DNA methylation status of the query subjects. The results of the
initial screening indicated whether additional experimentation or
examination is needed.

For common biomarker selection, a threshold of |Δβ| values
>0.2 was applied to all five selected cancers simultaneously.
The biomarkers that met this condition possessed high
differential methylation expression levels across all five
selected cancers. These biomarkers were hierarchically
clustered (Chen et al., 2014) into different functional groups,
and only one representative biomarker was selected from each
functional group.

2.4 Gene distance calculation and
functional clustering

Each gene might be associated with multiple functions and
annotated by several well-known functional annotation databases.
Hence, functional relationships among all selected biomarker
candidates should be analyzed, and representative biomarkers can
be assigned based on their functionality. Here, gene ontology
(GO) annotations (geneontology.org) were used to cluster the genes
according to their annotated functional terms among three GO
trees. The associated GO terms were arranged by a directed acyclic
graph (DAG) tree structure (Bada et al., 2004). When the GO terms
associated with the biomarker genes and their precise locations
in the tree structures were identified, the distances between gene
pairs could be measured, and a distance matrix of all candidate
biomarkers was generated.

The weight of a specific GO term is defined before calculating
gene distances, and it is calculated by counting the number of
genes annotated by the ith GO term (Gti) divided by the total

number of nonduplicate genes within all GO terms. The weight
of a GO term is used as a reference for the position located in a
specific GO tree. The GO terms located in the upper levels of a GO
tree contain relatively more annotated genes, and their weights are
relatively higher. Equation 1 shows the calculation formula for an
associated weight. W (ti) represents the weight of the ith GO term.
The information content and Sorensen-Dice coefficient distances
(Sorensen, 1948) were then applied to calculate the gene distances.
If two GO terms of interest were located in different GO functional
trees, they would have no common ancestor, and their information
content distance would be 1. However, if two GO terms were located
in the same GO tree, they might have at least one or more common
ancestors. In this case, the weight of the lowest common ancestor
(LCA) was calculated according to the information content distance
(distIC) and denoted in Equation 2. Here, tLCAi,j is the LCA for the ti
and tj GO terms. The Sorensen-Dice coefficient distance (distSC) is a
statistical method used to determine the similarity between two sets.
It was applied to identify similarities between the gene sets annotated
by GO terms. IfGti andGtj are gene sets annotated by the ith and jth
GO terms individually, then the Sorensen-Dice coefficient distance
is calculated according to Equation 3. Here,Gti∆Gtj is the symmetric
difference between Gti and Gtj. The distance between two GO terms
may be measured by calculating the average information content
and Sorensen-Dice coefficient distances (shown in Equation 4).
The functional distance between genes a and b is determined by
averaging the distances between GO term pairs for a and b. Once
all distances for candidate biomarker pairs are calculated, a distance
matrix can be formulated and normalized between 0 and 1. If the
functional relationship between two genes is close, their distance
would be close to 0. If two genes are not annotated by common
GO terms, their distance would be 1. After the distance matrix was
constructed, the following clustering analysis was performed for all
selected candidate biomarkers.

Algorithms were used to cluster candidate biomarkers into
several functional groups according to themeasured distancematrix
of gene functions. Genes with similar functions were classified
into the same group. Both partitioning and hierarchical clustering
algorithms were applied in this study. However, the hierarchical
clustering approach is more suitable for categorical data as long as
a similarity measure can be defined accordingly, and no specific
number of final biomarkers is defined at the beginning. Hence, the
hierarchical clustering approach is a preferable choice.

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1523524
http://geneontology.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Tsai et al. 10.3389/fbinf.2025.1523524

Furthermore, KEGG pathway analysis was also performed
for each selected cancer by using the GSEA package in
Python (GSEAPY) (Fang et al., 2023). This analysis yielded the
shared KEGG pathways among the five selected cancers. For each
selected cancer, biomarkers with |Δβ| greater than 0.2 were utilized
to form an input gene set for KEGG pathway analysis. After that, we
performed an intersection of KEGG pathways for each cancer, and
the intersected genes within the same pathway in each cancer were
specifically selected.

W(ti) =
|Gti|

#ofnon− duplicategenes
(1)

distIC(ti, tj) =
{
{
{

2W(tLCAi,j
) −W(ti) −W(tj), tLCA exists

1,otherwise
(2)

distSC(ti, tj) =
|Gti∆Gtj|

|Gti ∪Gtj| + |Gti ∩Gtj|
(3)

dist(ti, tj) =
distIC(ti, tj) + distSC(ti, tj)

2
(4)

2.5 Identifying the optimal biomarker
combination

To find the biomarker combination with the best performance,
the selected common biomarker candidates were isolated
individually or arranged into multiple groups, and β-values were
obtained for each subject. Support Vector Machine (SVM) was
applied to select the optimal biomarker combination based on
the classification accuracy of each biomarker group (Boser et al.,
1992). The training cohort for the SVM comprised the subjects
diagnosed with five low-survival-rate cancers. To evaluate the
performance of each biomarker combination, we integrated
testing datasets obtained from Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/). GEO is a database repository
containing comprehensive genetic and epigenetic datasets as
independent validation resources for selected biomarker evaluation
(Bjaanæs et al., 2016; Soares-Lima et al., 2021; Nones et al.,
2014). The numbers of testing subjects per testing dataset
are listed in Table 2. To ensure the commonality of each common
biomarker, the methylation profiles of subjects diagnosed with the
most prevalent cancers (breast, colorectal, prostate, bladder, and
stomach) were additionally included from TCGA into the testing
cohort. Hence, a total of 10 cancer types were applied to test the
performance of each biomarker combination selected from the
8 common biomarkers, and the optimal biomarker combination
was selected based on an overall testing accuracy and functionally
clustered groups.

To verify the applicability of the optimal biomarker combination
for individual cancer types, we performed two additional tests.
Firstly, we applied SVM to independently train and test for each
of the selected low-survival-rate cancers. Next, we combined
the subjects from the five selected low-survival-rate cancers to
train a universal prediction model based on SVM technology,
and the prediction model was evaluated on the five additional

selected cancers (breast, colorectal, prostate, bladder, and stomach)
to validate the classification performance. The numbers of
subjects for different groups, cancer types, and tumor types were
listed on the Table 2.

3 Results

3.1 Primary biomarkers

Differentially methylated positions (DMPs) were obtained by
setting the thresholds |∆β values| ≥ 0.35 and Benjamini-Hochberg
adjusted p-values <0.01. We obtained 8,724, 4,337, 7,607, 4,765, and
452 DMPs for brain, esophageal, liver, lung, and pancreatic cancer,
respectively. We then used volcano plots to show the distribution
of all DMPs (Figure 1). The horizontal axis indicates ∆β values. The
DMPs approaching both sides outwardly reflect large differences in
methylation. The vertical axis reveals that the statistical significance
of the DMPs increases with decreasing p value.Therefore, the DMPs
located at the upper right and upper left corners of the volcano plot
are good candidates. We also color-coded the DMPs in the volcano
plot based on their methylation status. If a DMP |∆β| value is larger
than the thresholding value, the DMP was hypermethylated and
represented by a light green dot. If a DMP |∆β| value is less than the
thresholding value, the DMP was hypomethylated and represented
by a red dot. If the DMPswere located within promoter regions, they
probably regulated gene expression (Li and Zhang, 2014) and served
as good biomarker candidates for the following experimental design.
These DMPs are represented by black dots.The remaining DMPs are
represented by white dots. After DMPs were filtered by the defined
|∆β| values threshold, 3,227, 1,342, 1,615, 1,383, and 240 genes
remained for brain, esophageal, liver, lung, and pancreatic cancer,
respectively. These DMPs were defined as the primary biomarkers.

3.2 Comorbidities and secondary
biomarkers

The comorbidities associated with each cancer were retrieved
from published articles. Their associated genes were identified from
well-known gene-disease databases. For example, the comorbidities
of brain cancer are related to benign brain and nervous system
neoplasms. Esophageal cancer comorbidities are related to certain
bone pathologies. Melo-Martin et al. reported that a lack of
aldehyde dehydrogenase 2 (ALDH2) may cause Asian alcohol
flush syndrome, which is correlated with esophageal cancer and
osteoporosis (de Melo-Martin and Crystal, 2021). Elliott et al.
stated that patients with esophageal cancer are at increased risk
of osteoporosis even after esophagectomy (Elliott et al., 2019). Liver
cancer comorbidities are associated with cirrhosis and hepatitis
B and C. Tatsuo Kanda et al. indicated that most patients with
hepatocellular carcinoma (HCC) also have cirrhosis, and ∼70% of
all patients with HCC also have hepatitis B or C (Kanda et al., 2019).
The most common lung cancer comorbidities include pneumonia
and airway-related diseases. Alessia Guarnera et al. reported
that COVID-19 pneumonia may affect lung cancer diagnosis
(Guarnera et al., 2022). Patients with lung cancer are relatively
more susceptible to COVID-19 pneumonia than noncancerous
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TABLE 2 The numbers of subjects per group, cancer type, and tumor type. (Test cohort).

Cancer Source Number of the
subjects in

experimental group

Number of the
subjects in control

group

Tumor type Accession number

Brain TCGA 534 0 Brain Lower Grade Glioma N/A

Esophagus GEO 24 16 Esophageal squamous cell
carcinoma

GSE178212

Liver TCGA 100 14 Liver Hepatocellular Carcinoma N/A

Lung GEO 164 19 Lung adenocarcinomas GSE66836

Pancreas GEO 167 29 Pancreatic ductal
adenocarcinoma

GSE49149

Colorectal TCGA 314 38 Adenomas and
adenocarcinomas

N/A

Breast TCGA 368 47 Ductal and lobular neoplasms N/A

Bladder TCGA 419 21 Transitional cell papillomas and
carcinomas

N/A

Prostate TCGA 503 50 Adenomas and
adenocarcinomas

N/A

Stomach TCGA 395 2 Adenomas and
adenocarcinomas

N/A

FIGURE 1
Volcano plots of five selected cancers: (A) colorectal cancer; (B) esophageal cancer; (C) liver cancer; (D) lung cancer; (E) pancreatic cancer.
Hypermethylated methylation loci (Hyper) were represented by light green dots, and hypomethylated methylation loci (Hypo) were represented by
light red dots. The black dots represented the loci near the promoter region (Prom_reg).

patients. There were 20,376, 1,203, 4,065, 962, and 12,291
associated disease genes (secondary biomarkers) associated with
brain, esophageal, liver, lung, and pancreatic cancer, respectively.
Information and references for the comorbidities are shown in
Table 3.

3.3 KEGG pathway analysis of each
selected cancer

We applied the GSEA package for discovering shared
significant KEGG pathways among the five selected cancers.
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TABLE 3 Information and references for comorbidities of five cancers.

ICD-single Cancer Comorbidities GeneNum References

225 Brain Benign neoplasms of brain and other parts of nervous
system

10170 Sturm et al. (2017)

239 Brain Neoplasms of unspecified nature 10206 Sturm et al. (2017)

733 Esophagus Other disorders of bone and cartilage 1203 Elliott et al. (2019)

571 Liver Chronic liver disease and cirrhosis 649 Roca Suarez et al. (2021), Kanda et al. (2019)

070 Liver Viral hepatitis 1780 Ringehan et al. (2017)

574 Liver Cholelithiasis 269 Wang et al. (2019)

573 Liver Other disorders of liver 1367 Wang et al. (2019)

486 Lung Pneumonia 216 Guarnera et al. (2022), Søyseth et al. (2007)

496 Lung Chronic airway obstruction 208 Caplin and Festenstein (1975)

491 Lung Chronic bronchitis 299 Caplin and Festenstein (1975)

490 Lung Bronchitis 239 Caplin and Festenstein (1975)

577 Pancreas Diseases of pancreas 763 Umans et al. (2021)

574 Pancreas Cholelithiasis 269 Monami et al. (2017)

532 Pancreas Duodenal ulcer 120 Higashiyama et al. (2015)

571 Pancreas Chronic liver disease and cirrhosis 649 Xu et al. (2013), Gdowski et al. (2017)

211 Pancreas Benign neoplasms of other parts of digestive system 10169 Basturk and Askan (2016)

533 Pancreas Peptic ulcer site unspecified 168 Bao et al. (2010)

531 Pancreas Gastric ulcer 153 Bao et al. (2010)

This analytical procedure identified 141 common KEGG
pathways with an adjusted p-value below 0.05. The name
of each pathway and their corresponding intersected genes
were listed in Supplementary Table S2.

3.4 Functional clustering and KEGG
pathways of common biomarkers

The candidate biomarkers were obtained by intersecting the
primary and secondary biomarkers, which have characteristics
of both methylation and comorbidity patterns. The numbers
of candidate biomarkers for brain, esophageal, liver, lung, and
pancreatic cancers are 1,692, 725, 716, 773, and 156, respectively.We
then selected the biomarkers from each selected cancer that met the
conditions of a ∆β values greater than 0.2 to formfive biomarker sets,
and their intersection was defined as common biomarkers. Finally,
there were eight biomarkers could be identified including ALX3,
HOXA9, HOXD8, HRH1, IRX1, NPTX2, PTPRN2, and TRIM58.
Among them, only HRH1 and PTPRN2 were hypomethylated,
while the other six common biomarkers were hypermethylated
conditions. After gene distance calculation and distance matrix
construction (Figure 2) for the eight aforementioned consensus

biomarkers, we used the unweighted pair group method with
arithmetic mean (UPGMA) to divide them into three groups.
The first group comprised ALX3, HOXD8, IRX1, HOXA9, and
HRH1, the second group included PTPRN2 and TRIM58, and
the third group contained the last biomarker of NPTX2. For the
first functional group, ALX3, HOXD8, IRX1, and HOXA9 shared
GO terms in all three GO categories. The common GO terms
were regulation of transcription from the RNA polymerase II
promoter under the GO structural tree of Biological_Processes,
chromatin under the GO structural tree of Cellular_Component,
and sequence-specific double-stranded DNA binding under the
GO structural tree of Molecular_Function. In addition to GO
functional analysis, the associated KEGG pathways were also
found as follows: HOXA9 was located in hsa05202 (Transcriptional
misregulation in cancer), HRH1 in hsa04020 (Calcium signaling
pathway), hsa04080 (Neuroactive ligand-receptor interaction), and
hsa04750 (Inflammatory mediator regulation of TRP channels).
Both Zhang and Yin mentioned that the pathway hsa05202 was
related to non-small cell lung cancer and hepatocellular carcinoma,
respectively (Zhang et al., 2019; Yuan et al., 2021). Xu et al. revealed
that the apoptosis of lung cancer cells is induced through calcium
signaling pathway (Xu et al., 2015).
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FIGURE 2
The distance matrix for 8 common biomarkers.

3.5 The optimal biomarker combination

We further compared the performances of the eight selected
biomarker candidates to evaluate various combinations and different
numbers of biomarkers for the prediction of five low five-year
survival rate cancer types (brain, esophageal, liver, lung, and
pancreatic cancers). In this study, we also selected additional five
common cancer types (breast, colorectal, prostate, bladder, and
stomach cancers) to validate the commonality of the selected
cancer biomarkers. Considering the diversity of genetic functions,
one biomarker from each functional group clustered based on
the GO functional annotations was selected to form a biomarker
combination. We found that the biomarker combination with the
highest classification accuracy consisted of ALX3, NPTX2, and
TRIM58, which could achieve an average accuracy of 93.3% for the
original five low five-year survival rate cancers and the other five
additional common cancers (breast, colorectal, prostate, bladder,
and stomach cancers). The recall and precision for the 10 different
cancer types could achieve an average of 0.957 and 0.97, respectively.

Two additional tests based on the optimal biomarker
combination (ALX3, NPTX2, and TRIM58) were performed in
this study. The first test executed independent training and testing
procedures for the initially selected low-survival-rate cancers (brain,
esophageal, liver, lung, and pancreatic cancers), and the second test
integrated all subjects from the five initially selected low-survival-
rate cancers to construct a universal prediction model and applied
the developed prediction model to diagnose the five additional
selected new cancers (breast, colorectal, prostate, bladder, and
stomach cancers) for validation. The corresponding prediction
performance of the two tests by featuring the optimal biomarker
combination (ALX3, NPTX2, and TRIM58) were shown in Table 4,
5, respectively. In addition, the Δβ values of ALX3, NPTX2, and
TRIM58 were shown in Table 6, and the Δβ values for each stage
were shown in Table 7. Although no consistent patterns for the Δβ
of ALX3, NPTX2, and TRIM58 were observed across the stages,
these three genes were stably hypermethylated in nearly all stages,
except for NPTX2 at the fourth stage in liver cancer.

TABLE 4 Prediction results of independent prediction models for the
five low-survival-rate cancers by using the optimal biomarker
combination (ALX3, NPTX2, and TRIM58).

Cancer Accuracy Recall Precision F score

Brain 0.885 0.871 1.000 0.931

Esophagus 0.867 0.733 1.000 0.846

Liver 0.860 0.840 1.000 0.913

Lung 0.885 0.878 0.993 0.932

Pancreas 0.944 0.952 0.981 0.967

TABLE 5 Prediction results of the constructed universal model for
validating the five additional cancers by using the optimal biomarker
combination (ALX3, NPTX2, and TRIM58).

Cancer Accuracy Recall Precision F score

Colorectal 0.906 0.965 0.932 0.948

Breast 0.964 0.989 0.968 0.979

Bladder 0.952 0.962 0.988 0.975

Prostate 0.888 0.900 0.976 0.936

Stomach 0.987 0.992 0.995 0.994

4 Discussion

4.1 The methylation status of identified
biomarkers and patented biomarkers

The best combination of common methylation biomarkers
derived from the five initial cancer types were ALX3, NPTX2,
and TRIM58. Among them, NPTX2 and TRIM58 were also
identified and appeared in certain patents. Most patented
biomarkers in Table 8 possessed significant ∆β values in the
DNA methylation analytical results and were considered primary
biomarkers for specific cancer types. The average ∆β values of
the listed patented biomarkers for brain, esophageal, liver, lung,
and pancreatic cancers were 0.38, 0.23, 0.25, 0.44, and 0.28,
respectively. However, some of the patented biomarkers did not
appear in the final biomarker list, mainly because their ∆β values
did not satisfy the minimum threshold setting of a specific cancer
or their corresponding classification accuracies were too low.
For example, in pancreatic cancer, the |∆β values| of SEPT9
fell below the threshold of the default settings; therefore, it was
filtered out from the candidate common biomarkers. Furthermore,
the number of selected biomarkers should be limited since
methylation-specific PCR (MSP) experiments should be considered
regarding their materiality of cost. Hence, strict filtering standards
and threshold settings were applied in this study for crucial
biomarker selection.
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TABLE 6 The Δβ values of ALX3, NPTX2, and TRIM58 for five low-survival-rate cancers.

Cancer ALX3 (β_tumor, β_normal) NPTX2 TRIM58

Brain 0.368 (0.395, 0.027) 0.515 (0.535, 0.020) 0.441 (0.463, 0.022)

Esophagus 0.505 (0.660, 0.155) 0.502 (0.694, 0.192) 0.321 (0.563, 0.242)

Liver 0.361 (0.464, 0.103) 0.279 (0.421, 0.142) 0.306 (0.364, 0.058)

Lung 0.573 (0.626, 0.053) 0.288 (0.383, 0.095) 0.463 (0.497, 0.034)

Pancreas 0.395 (0.431, 0.036) 0.455 (0.558, 0.103) 0.396 (0.431, 0.035)

TABLE 7 The Δβ values of ALX3, NPTX2, and TRIM58 for five low-survival-rate cancers by stage.

Cancer ALX3 (1st stage, 2nd stage, 3rd stage, 4th stage) NPTX2 TRIM58

Esophagus 0.466, 0.476, 0.545, 0.484 0.536, 0.453, 0.514, 0.517 0.351, 0.304, 0.332, 0.326

Liver 0.358, 0.399, 0.344, 0.310 0.294, 0.304, 0.267, −0.104 0.287, 0.329, 0.298, 0.569

Lung 0.559, 0.585, 0.591, 0.621 0.283, 0.306, 0.257, 0.301 0.465, 0.504, 0.383, 0.522

Pancreas 0.318, 0.409, 0.346, 0.426 0.239, 0.472, 0.447, 0.556 0.266, 0.407, 0.392, 0.480

TABLE 8 The patent for identifying biomarkers through DNA methylation relative to the five cancers.

Patent ID Cancer Related biomarkers

US20140011702A1 Brain TBX3, FSD1, FNDC3B, DGKI, AGT, FLJ25422, SEPP1, SOX10, MAP3K14, SOX10, ACOT8, KCNMB1, CHI3L2, COG4, FAM49A,
GPR85, CCND1, MGC29671, LGALS1, SDPR, GPR128, NET1, SLC26A5, RNASE3, CDKN2B, NUP98, CYP24A1, ACTL6B, KLK10,

TRPV4, CX36, TRIM58, GRIP1, PHLDA2, PON1, SLC2A2, TNF, FLJ23657, C1orf176, FLJ32447, HOXA11, LY6K, HMG20B,
KHDRBS2, WT1, TFF2, ZNF542, ZSCAN1, ZNF540, HBZ, GPR92, HOXA9, KCNA4, RAC2, CYP1B1, FUT3, GCET2, MEGF10,

GRK1, GPX5

CN113403398A Esophageal NECAB2, UBXN10, CYFIP2

CN110603329A Liver BMPR1A, PSD, ARHGAP25, KLF3, PLAC8, ATXN1

US20190203298A1 Lung BCAT1, TRIM58, ZNF177, CDO1

EP3430162B1 Pancreas BMP3, RASSF1A, BNC1, MESTv1, TFPI2, APC, SFRP1, SFRP2, EYA2, NPTX2, SEPT9v2, WNT5a, CDKN2B, ALX4, HIC1, RARB,
SST, ESR1, TAC1, BRCA1, CHFR, GSTP1, MGMT, MLH1, NEUROG1, P16, PENK and VIM

The genes identified as our final candidates are presented in bold text.

4.2 Effects of outliers on biomarker
selection

The distribution of the β values of cancer patients influences
biomarker selection. If there are too many probe outliers, the
∆β values calculation may return major errors, the number of
DMPs may decrease if the assigned ∆β values threshold is not
changed, and important biomarkers might be initially excluded.
O-6-methylguanine-DNA methyltransferase (MGMT) is a critical
brain cancer biomarker (Yousefi et al., 2021). If the outliers had
not been removed early in the process, the calculated probe ∆β
values would be 0.349. The assigned threshold is 0.35. If the outliers
were promptly removed, however, the ∆β values calculated for the
MGMT probe would increase to 0.443, and MGMT would become
one of another biomarker candidates.

4.3 Relationships between common
biomarkers and cancers

The consensus biomarkers HOXA9 and HOXD8 belong to the
HOX gene family. Previous research indicated that HOX genes
were associated with liver, colorectal, and lung carcinogenesis.
Furthermore, HOXD8 is a downstream gene of certain miRNAs
associated with various cancers through cell proliferation and
apoptosis (Wen et al., 2020; Sun et al., 2019; Kanai et al.,
2010). Among the probes selected from the optimal biomarker
combinations,García-Ortiz et al. indicated thatmethylation levels in
circulatingNPTX2 increase in pancreatic cancer (García-Ortiz et al.,
2023). Skiriutė et al. observed that NPTX2 is highly methylated
in glioblastoma (Skiriutė et al., 2013). For TRIM58, Tao et al.
showed that TRIM58 is hypermethylated in hepatitis B virus-related
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hepatocellular carcinoma (HBHC) (Tao et al., 2011). Qiu et al.
mentioned that TRIM58 hypermethylation is correlated with poor
disease-free survival after hepatectomy (Qiu et al., 2016). Kajiura
et al. disclosed that aberrant TRIM58 inactivation may cause early
lung adenocarcinoma carcinogenesis (Kajiura et al., 2017). Sun
et al. used RNA-seq and DMP analyses, obtained five biomarkers,
including TRIM58, and authors showed that TRIM58 is a
hypermethylated biomarker for pancreatic cancer (Sun et al., 2021).

Optimal combinations of the consensus biomarkers for
the five cancer types revealed that classification accuracy was
relatively low when we only selected one or two biomarkers
from a functional group. Moreover, classification accuracy
did not differinate or be improved remarkably even when
more than 3 biomarkers were selected from the same
functional group.

4.4 Effects of liquid biopsy methylation
profiles on associated KEGG pathway

To obtain tissue biopsy is an invasive procedure, and tumor
position substantially affects tissue sampling. The quality of
the resected tissue may be poor and introduce error into the
experimental predictions (Constâncio et al., 2020). In contrast,
liquid biopsy can determine the methylation status even before the
onset of carcinogenesis and facilitate early cancer screening. Hence,
the current trend is to use liquid biopsy for DNA methylation
analysis. Here, we used an additional cfDNA methylation profile
of 22 cirrhotic patients from the GEO database to observe the
methylation performance (Hlady et al., 2019). Among the KEGG
pathway associated with the eight common biomarkers, hsa05202
(Transcriptional misregulation in cancer) contains 116 genes, of
which 26 genes show |∆β| values >0.1 and adjusted p-value <0.05 in
cfDNA methylation profiles. Among the 26 genes, AFF4 facilitates
the expression of RUNX2 and one of the eight common biomarkers
identified, HOXA9. Furthermore, Veiga et al. indicated that PBX1 is
associated with cancer cell proliferation and metastasis, and it also
plays an important role in the development of several cancer types,
including esophageal and lung cancer (Veiga et al., 2021), which are
among our selected cancer types. Several studies have shown that
ARNT2 is involved in the carcinogenesis of certain cancer types,
such as non-small cell lung cancer, hepatocellular carcinoma, and
glioblastoma (Yang et al., 2015; Li et al., 2015; Bogeas et al., 2018).
Cheng et al. revealed that CEBPB is functionally related to Menin
and can be considered a therapeutic target for pancreatic cancer
(Cheng et al., 2019). Additionally, Zhu et al. indicated that CEBPB
could serve as a prognostic risk gene for lung cancer (Zhu et al.,
2024). These observations show that the genes on the KEGG
pathway associated with the eight common biomarkers, as
well as the significantly differentially methylated biomarkers in
cfDNA methylation profiles, also have strong effects on several
cancer types.

5 Conclusion

DNA methylation profile analysis is one of the most promising
and effective diagnostic methods for early cancer diagnosis and

treatment. One of its advantages is the ability to detect the
possibility of having cancer before tumor developed. This study
presents an innovative approach by integrating DNA methylation
profiling and comorbidity pattern analysis. Our approach can
enhance the identification of biomarkers with high diagnostic
potential for low-survival-rate cancers types. Eventually, we have
identified eight common biomarkers (ALX3, HOXA9, HOXD8,
HRH1, IRX1, NPTX2, PTPRN2, and TRIM58) and applied a
hierarchical clustering method to cluster them into three functional
groups based on their GO term annotations. Only one biomarker
was selected from each functional group, and the combination of
ALX3, NPTX2 and TRIM58 achieved the highest average prediction
accuracy of 93.3% for the five initially selected cancers (brain,
esophageal, liver, lung, and pancreatic cancers) and the additionally
selected five common cancers (breast, colorectal, prostate, bladder,
and stomach cancers).
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