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Machine learning approaches for
predicting protein-ligand binding
sites from sequence data

Orhun Vural* and Leon Jololian

Department of Electrical and Computer Engineering, The University of Alabama at Birmingham,
Birmingham, AL, United States

Proteins, composed of amino acids, are crucial for a wide range of
biological functions. Proteins have various interaction sites, one of which
is the protein-ligand binding site, essential for molecular interactions and
biochemical reactions. These sites enable proteins to bind with other molecules,
facilitating key biological functions. Accurate prediction of these binding sites
is pivotal in computational drug discovery, helping to identify therapeutic
targets and facilitate treatment development. Machine learning has made
significant contributions to this field by improving the prediction of protein-
ligand interactions. This paper reviews studies that use machine learning to
predict protein-ligand binding sites from sequence data, focusing on recent
advancements. The review examines various embedding methods and machine
learning architectures, addressing current challenges and the ongoing debates
in the field. Additionally, research gaps in the existing literature are highlighted,
and potential future directions for advancing the field are discussed. This study
provides a thorough overview of sequence-based approaches for predicting
protein-ligand binding sites, offering insights into the current state of research
and future possibilities.
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1 Introduction

Protein-ligand binding sites are specific regions on proteins where various
ligands—including small organic molecules, peptides, nucleotides, and proteins—can
attach or bind (Zhao et al., 2020). Although experimental laboratory methods identify these
regions with the highest accuracy, they are generally costly and time-consuming (Sadybekov
and Katritch, 2023). Therefore, computational approaches to drug discovery have become
increasingly important.These computational methods offer distinct advantages by reducing
costs and speeding up identifying and optimizing potential drug candidates (Gupta et al.,
2021). Predicting protein-ligand binding sites is a critical component of computational drug
discovery, essential for pinpointing viable drug targets and advancing the development of
new therapeutics (Stank et al., 2016). Recent advancements in machine learning have
significantly improved this field by introducing sophisticated computational techniques
to analyze the complex interactions between proteins and ligands (Xia et al., 2024).
While traditional methods based on geometry, energy, or templates have been successful,
deep learning has recently achieved much better results (Gagliardi et al., 2022). Deep
learning models can learn complex patterns directly from raw data and generalize better
across diverse datasets. Protein ligand binding sites prediction in computational models is
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divided into two main categories, based on input type: structure-
based and sequence-based (Gamouh et al., 2023;Hosseini et al., 2024).

Structure-based methods in computational drug discovery
(SBDD) utilize detailed knowledge of the spatial information
of proteins and integrate chemical properties using methods
such as voxel-grid techniques (Sunseri and Koes, 2020). Figure 1
presents a 3D view of the 6Y3C protein and its associated ligands
(Miciaccia et al., 2021). The number of protein-ligand binding
sites on a protein can vary widely, depending on the specific
protein and its function. In Figure 1A, the regions highlighted
in yellow, blue, and purple represent protein-ligand binding sites.
Figure 1B focuses on one of the binding sites shown in Figure 1A,
offering a closer view of how the ligand interacts with the binding
pocket. Figure 1C highlights the specific interactions between the
ligand and the surrounding amino acid residues. In recent years,
deep learning techniques used to identify these regions have
often approached the problem as either image segmentation or
object detection within structure-based frameworks. For instance,
studies like RefinePocket (Liu et al., 2023), Kalasanty (Stepniewska-
Dziubinska et al., 2020), PointSite (Yan et al., 2022), andDeepPocket
(Aggarwal et al., 2021) use image segmentation techniques for
binding site prediction, while RecurPocket (Li et al., 2022) and
FRSite (Jiang et al., 2019) employ object detection techniques.
Structure-based approaches depend on high-resolution 3D protein
structures from X-ray crystallography or NMR spectroscopy
(Maveyraud andMourey, 2020).Thesemethods face challenges such
as reliance on accurate structures, static views of dynamic proteins,
and high time and cost demands. AlphaFold (Abramson et al.,
2024) has revolutionized the determination of 3Dprotein structures,
significantly reducing reliance on experimental methods. However,
drug discovery still primarily depends on 1D amino acid sequence
data for critical tasks. Advancing approaches like AlphaFold
requires a deeper understanding of the 1D sequence data used
as input. This topic is further explored in the Discussion and
Analysis section.

Sequence-based methods utilize one-dimensional (1D)
amino acid sequence data as input. The 1D sequence is a
direct representation of the protein’s genetic blueprint and is
experimentally measurable with high reliability (Alfaro et al., 2021).
Sequence-based methods are less computationally intensive, do

not require high-resolution structural data, and can be applied to
a wider variety of proteins, including those for which structural
information is unavailable. There are many more known protein
sequences than experimentally determined structures (Chelur
and Priyakumar, 2022). The general process of sequence-based
binding site identification begins with a given protein sequence
as input, leading to the final prediction and evaluation. The
first step is feature extraction, which is challenging due to the
complexity and diversity of proteins. This involves converting
linear sequence data into numerical vectors that accurately
represent the protein’s functional and structural characteristics.
Effective feature extraction is critical because the quality of the
numerical representation directly impacts the performance of
subsequent machine learning models. These techniques include
binary representation, which encodes the presence or absence
of specific amino acids; physicochemical representation, which
considers the chemical and physical properties of amino acids;
evolution-based representation, which leverages evolutionary
information from multiple sequence alignments; and structure or
machine learning-based representations, which use structural data
or advanced algorithms to infer relevant features (Jing et al., 2019).
Once the protein sequence is converted into a numerical format, it
is ready for training with machine learning models using datasets
with known binding sites. These datasets provide the necessary
ground truth for model training and validation. The datasets most
frequently employed in the literature are sc-PDB (Desaphy et al.,
2015), COACH420 (Krivák and Hoksza, 2018), HOLO4k (Krivák
and Hoksza, 2018), PDBBind (Liu et al., 2015), CSAR NRC-
HiQ (Dunbar et al., 2013), UniProt (UniProt Consortium, 2015),
Pfam (Finn et al., 2014), BioLip (Zhang et al., 2024), and PiSite
(Higurashi et al., 2009). Each dataset has its unique characteristics
and specific applications, contributing to the robustness and
generalizability of the trained models. For instance, COACH420,
derived from the COACH (Yang et al., 2013b) test set, is a
widely recognized benchmark dataset that includes 420 protein-
ligand complexes. Each complex consists of a single-chain protein
intricately bound to a small molecule ligand. HOLO4K: A larger
and more challenging dataset with 4,009 protein-ligand complexes.
It includes multi-chain structures, offering a wider range of protein
binding scenarios.

FIGURE 1
(A) Three binding site regions of 6Y3C protein in blue, yellow, and purple. (B) Close-up of a binding site with its ligand. (C) Ligand (orange) binding to a
site. Generated with PyMol (Schrodinger, 2015).
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TABLE 1 Sequence-based machine learning models for predicting protein-ligand binding sites.

Model Feature
extraction
methods

Machine
learning
modela

Dataset Evaluation
metric

Accuracyb Year

SCRIBER (Zhang
and Kurgan, 2019)

ASAquick, HHblits,
ANCHOR,

PSIPRED, AAindex

Logistic Regression BioLip, UniProt,
Pfam

MCC 0.230 2019

DeepCSeqSite
(Cui et al., 2019)

PSSpred, Anglor,
Jensen-Shannon
divergence (JSD),
Relative entropy

Deep Convolutional
Neural Network

BioLip MCC 0.496 2019

DELIA (Xia et al.,
2020)

PSI-BLAST,
HHblits,

SCRATCH-1D,
S-SITE

ResNet + BiLSTM BioLip, ATPBind MCC 0.469 2020

HoTs (Lee and Nam,
2022)

1D-CNN,
hierarchical

recurrent neural
network

CNN +
Transformers

scPDB, PDBbind,
COACH420,
HOLO4k

Top-n success rate
(%)

66.3 ± 0.9 2022

Birds (Chelur and
Priyakumar, 2022)

DeepMSA,
PSIPRED,

SOLVPRED

ResNet scPDB MCC 0.568 2022

T5 GAT Ensemble
(Gamouh et al.,

2023)

ProtT5 Graph Neural
Network + Attention

BioLip, RCSB MCC 0.592 2023

LaMPSite (Zhang
and Xie, 2023)

ESM-2, RDKit Pooling + Clustering scPDB, COACH420 Top-n success rate 66.02 2023

Pseq2Sites
(Seo et al., 2024)

ProtTrans CNN + Attention COACH420,
HOLO4k, CSAR

Top-n success rate 96.8 2024

Seq-InSite
(Hosseini et al.,

2024)

ProtT5, MSA MLP + LSTM PiSite MCC 0.462 2024

aThe Machine Learning Model column catalogs foundational models that constitute the core framework of the research presented, although the architecture of these studies may incorporate
additional models.
bThe reported results are sourced from their own publications. Please note that direct comparisons between these values may not be valid due to differences in methodologies, preprocessing
steps, and testing datasets. If separate results were provided for each ligand type, their average was calculated.

In this paper, we focus on sequence-based protein-ligand
binding site prediction studies that employ machine learning
techniques. As seen in Table 1, we have summarized these
studies by focusing on their feature extraction techniques,
and machine learning models. The Analysis and Discussion
section provides a detailed evaluation of the machine learning
models listed in Table 1, highlighting the strengths, limitations, and
research gaps of sequence-based approaches. Additionally, potential
future directions are outlined in the Future Directions section.

2 Sequence-based computational
methods

Proteins are composed of a set of amino acids, each represented
by a unique symbol (e.g., “A” for Alanine, “G” for Glycine). Similar to
human language, which consists of sequences of words that convey

meaning, protein sequences are structured in specific patterns that
hold significant biological information. To analyze these sequences,
feature engineering techniques are employed to derive meaningful
attributes from the data. Machine learning models are then trained
on these features to predict protein-ligand interactions or other
relevant biological properties.

2.1 Feature engineering

Sequence-based methods leverage sequence data to capture
biochemical and biophysical properties without direct 3D structural
information. Multiple review papers provide a detailed overview
of embedding approaches for protein sequence-based structures
(Jing et al., 2019; Ibtehaz and Kihara, 2023; Villegas-Morcillo et al.,
2022; Zhang and Liu, 2019; Hoksza and Gamouh, 2022; Tran et al.,
2023). Embedding methods have been categorized in various ways
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across different studies. Jing et al. (2019) classified these methods
into five distinct categories based on their information sources
and methodologies: binary encoding, physicochemical properties
encoding, evolution-based encoding, structure-based encoding, and
machine-learning encoding. We categorize embedding methods
into two groups: traditional embedding methods and machine
learning-based embedding methods.

Transformer-based models (Vaswani et al., 2017) have gained
popularity for applying linguistic analogies to protein sequences.
For example, ProtTrans (Elnaggar et al., 2021), ESM-1b (Rives et al.,
2021), and ESM-MSA (Rao et al., 2021) are transformer-based
protein language models used for feature extraction. ProtTrans
includes models like ProtBert and ProtT5, leveraging the
transformer architecture to process large-scale protein datasets and
produce sequence embeddings. ProtBert has 420million parameters
and was trained on 2 billion protein sequences. ESM-1b employs a
transformer-based architecture to generate embeddings for protein
sequences and has been trained on 250 million protein sequences.
ESM-MSA is another protein language model that uses multiple
sequence alignments (MSAs) from UniRef50 (Suzek et al., 2007)
as input, interleaving row and column attention. It is trained on 26
million MSAs. Other popular advanced embedding methods for
protein sequences are ProtVec (Asgari and Mofrad, 2015), SeqVec
(Heinzinger et al., 2019), and UniRep (Alley et al., 2019). ProtVec
uses the skip-gram-based Word2Vec model (Mikolov et al., 2013)
to treat amino acid k-mers like words. It is trained on a corpus
of 546,790 sequences obtained from Swiss-Prot (Boutet et al.,
2007). SeqVec uses the Embeddings from LanguageModels (ELMo)
(Sarzynska-Wawer et al., 2021) approach, which generates context-
aware embeddings by considering the surrounding amino acids
in a sequence. UniRep, based on a multiplicative Long Short-
Term Memory (mLSTM) model (Krause et al., 2016), captures
essential biochemical properties by predicting the next amino acid
in a sequence and is trained on approximately 24 million protein
sequences from UniRef50.

In addition to these protein language models, various other
methods can be employed to create feature maps from protein
sequences. These techniques include 1D-CNN, calculating
relative solvent accessibility (RSA), position-specific score matrix
(PSSM), secondary structure (SS), token embeddings, segment
embeddings, one-hot encoding, conservation scores (CS), amino
acid composition (AAC), physiochemical properties, and more
(Laine et al., 2021; Guo et al., 2021; Raj and Chandra, 2024). Many
specialized tools and software have been developed to calculate
these features, enabling the generation of comprehensive feature
maps from protein sequences.

2.2 Methodological approaches

Table 1 lists studies that focus on sequence-based protein
binding site prediction. In this section, we provide an overview
of each model included in Table 1, highlighting the feature
extraction techniques employed, the specific machine learning
algorithms applied.

SCRIBER (Zhang and Kurgan, 2019) converts input protein
sequences into profiles representing structural, evolutionary, and
physicochemical properties. These profiles include relative solvent

accessibility (RSA) values predicted by ASAquick (Faraggi et al.,
2014), which calculates solvent accessibility scores using only
sequence-based features without relying on 3D protein structures
and predicts the ASA for each residue based on encoded sequence
features. Other features include evolutionary conservation values
from HHblits (Remmert et al., 2012), relative amino acid propensity
(RAAP) scores, protein-binding disorder from ANCHOR
(Dosztányi et al., 2009), secondary structure from PSIPRED
(Buchan et al., 2013), a sequence-based tool. Physicochemical
properties (charge, hydrophobicity, and polarity) from the AAindex
resource (Kawashima et al., 2007). SCRIBER employs a logistic
regression model (Cramer, 2002) to predict protein-binding
residues. SCRIBER processes a protein in approximately 45 s,
significantly faster than PSI-BLAST, which takes 194 s, and
PSI-BLAST combined with SANN (Joo et al., 2012), which
requires 246 s.

DeepCSeqSite (Cui et al., 2019) leverages a Deep Convolutional
Neural Network along with position-specific score matrix (PSSM),
relative solvent accessibility (RSA), and secondary structure (SS)
anticipated through PSSpred (Yan et al., 2013). RSA, a numeric
value (often between 0 and 1), indicates how much of a residue’s
surface is solvent-exposed versus buried. PSSpred uses neural
networks to predict secondary structure elements, such as alpha-
helices, beta-sheets, and coils, directly from sequence data. These
elements, combined with positional embeddings, are used to
build a detailed feature map from the protein sequence. To
further enhance prediction accuracy, additional features such as
conservation scores—calculated via Jensen-Shannon divergence
(JSD) and relative entropy—residue type and dihedral angles,
with predictions made by ANGLOR (Wu and Zhang, 2008), are
incorporated.

DELIA (Xia et al., 2020) predicts protein–ligand binding
residues using a hybrid model of convolutional neural networks
(CNNs) (LeCun and Bengio, 1995) and bidirectional long short-
term memory networks (BiLSTMs) (Schuster and Paliwal, 1997).
It processes both 1D sequence feature vectors and 2D distance
matrices to analyze amino acid sequences alongside protein spatial
structures. DELIA utilizes sequence-based insights by integrating
PSSMs from PSI-BLAST for evolutionary insights, fast and
accurate evolutionary data from HHblits, secondary structure, and
solvent accessibility predictions from SCRATCH-1D (Cheng et al.,
2005), as well as binding propensities from S-SITE (Yang et al.,
2013a). The SCRATCH software generates predictions for
secondary structure and solvent accessibility using the amino acid
sequence provided.

HoTS (Lee and Nam, 2022), employs a hierarchical recurrent
neural network and 1D-CNN for protein sequence embedding
to predict binding regions and drug–target interactions. HoTS
leverages both CNN and transformer-based models, utilizing CNN
layers to identify sequential motifs and transformers to model
interdependencies. It also employs fully connected layers for
accurately predicting binding regions.

Birds (Chelur and Priyakumar, 2022), utilizes a ResNet
(He et al., 2016) architecture to predict a protein’s binding
site based on the protein’s sequence information. This study
employs a variety of techniques to extract information from
protein sequences and construct a feature map, including token,
positional, and segment embeddings, as well as multiple sequence
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alignments (MSAs) from DeepMSA (Zhang et al., 2020). From
these MSAs, the position-specific score matrix (PSSM), Secondary
Structure (SS), and Information Content (IC) were derived.
Additionally, the Relative Solvent Accessibility (RSA) of each
amino acid was determined by SOLVPRED from MetaPSICOV 2.0
(Jones et al., 2015).

T5 GAT Ensemble (Gamouh et al., 2023) predicts protein
ligand binding sites with a hybrid approach combining sequence
and structure data. This approach incorporates protein language
models (pLMs) for sequence analysis and Graph Neural Networks
(GNNs) (Scarselli et al., 2008) for structural insights, utilizing
ProtT5-XL-UniRef50 (Elnaggar et al., 2021) to generate amino acid
sequence embeddings. These embeddings serve as node features in
the protein graph. The construction of the protein graph leverages
the Python Deep Graph Library (DGL) (Wang et al., 2019),
facilitating a sophisticated approach to modeling protein structures.
In this graph, nodes are designated for individual residues, and
edges define the spatial proximity between these residues. To
determine the most suitable architecture, they tested two well-
known GNN designs: the Graph Convolutional Network (GCN)
(Kipf and Welling, 2016) and the Graph Attention Network (GAT)
(Veliˇckovi´c et al., 2017).

LaMPSite (Zhang and Xie, 2023) predicts ligand binding
sites using protein sequences and ligand molecular graphs. This
approach incorporates residue-level embeddings from the ESM-
2 protein language model (Lin et al., 2023) for proteins and
atom-level embeddings from a graph neural network for ligands.
Additionally, LaMPSite employs a pooling module to aggregate
interaction embeddings, simplifying them to generate a residue-
specific score. Then it clusters residues using the protein contact
map, ranking these clusters to pinpoint binding sites. Current
clustering and filtering processes typically yield one binding site per
prediction, which may limit the identification of multiple or cryptic
binding sites.

Pseq2Sites (Seo et al., 2024) uses ProtTrans, a transformer-
based model, to extract amino acid-level embeddings for protein
sequence analysis. Subsequently, 1D-CNNs were utilized to extract
local features from the resulting embedding sequence, followed
by the application of methods employing position-based attention
mechanisms to capture long-distance contextual information.

Seq-InSite (Hosseini et al., 2024) utilizes ProtT5 and MSA-
transformer embeddings to predict protein interaction sites
from sequence data. Its architecture employs ensemble learning
techniques, integrating a Multi-Layer Perceptron (MLP) and a
Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) network. While Seq-InSite predicts a broad range of protein
interaction sites, including protein-ligand binding sites.

Overall, accurate prediction of protein-ligand binding sites is
a crucial step in the drug discovery pipeline. Beyond theoretical
predictions, these methods provide actionable insights that support
drug target identification, lead optimization, and ligand design.
Once protein binding sites are identified, these predictions lead to
a variety of applications, including virtual screening (Kimber et al.,
2021), studying off-target effects (Rao et al., 2023), predicting
druggability scores (Raies et al., 2022), protein function prediction
(Kulmanov and Hoehndorf, 2020), assessing mutation impacts
(Sun et al., 2021), and pose prediction (Wang et al., 2022),
among others.

3 Analysis and discussion

This section discusses four main topics: advancements in
extracting features from protein sequences, the limitations
of sequence-based methods with an analysis of the
approaches listed in Table 1, the advantages of hybrid methods that
combine sequence- and structure-based techniques, and a review
of the datasets used for testing, as well as tools like AlphaFold that
are employed for protein folding predictions. Each topic highlights
critical aspects of the methodologies and their contributions to
improving protein-ligand binding site predictions.

The models in Table 1 demonstrate a broad range of feature
extraction techniques, spanning traditional evolution- and
structure-based encodings to advanced protein language models
(pLMs). 1D-CNNs are effective at extracting local motifs from
protein sequences but may lose global context when motifs are
spread across non-consecutive regions (Lee andNam, 2022). PSSMs,
a cornerstone of traditional methods, remain critical for capturing
evolutionary information, with their removal causing significant
performance drops (Chelur and Priyakumar, 2022). Relative solvent
accessibility (RSA) and secondary structure elements add structural
insights, but their impact on performance is less pronounced than
that of embeddings or PSSMs (Chelur and Priyakumar, 2022).
Secondary structure features and predicted dihedral angles provide
structural context, with dihedral angles offering more fine-grained
information; however, these features may also introduce noise
(Cui et al., 2019). Protein language models, such as ProtT5-XL,
offer significant advantages in terms of processing speed, generating
embeddings for a human protein in as little as 0.12 s (Elnaggar et al.,
2021). This efficiency is essential when analyzing extensive datasets
with millions of sequences, allowing for high accuracy without
reliance on traditional, computationally intensive evolutionary
steps. ProtT5-XL embeddings, for example, deliver high accuracy
and rich information, outperforming alternatives such as MSA-
transformer embeddings in predictive tasks (Hosseini et al., 2024).
Protein languagemodels (pLMs) tend to be less effective for proteins
that are rare or underrepresented in training datasets. However,
pLMs perform best with well-represented proteins, and challenges
remain in predicting binding sites for rare or novel proteins due to
limited sequence data representation. As shown in Table 1, studies
T5 GAT Ensemble, LaMPSite, Pseq2Sites, and Seq-InSite, which
utilize pLMs extraction methods, demonstrate promising results
compared to other studies listed in Table 1 that use traditional
feature extraction methods.

One key advantage of sequence-based methods is their
computational efficiency. For instance, on the well-known
COACH420 dataset, sequence-based protein-ligand binding
site prediction methods achieved significantly faster execution
times: Pseq2Sites completed predictions in 1.07 s, Birds in 3.97 s,
DeepCSeqSite in 11.13 s, andHoTs in 51.84 s. In contrast, structure-
based methods were considerably slower, with DeepPocket taking
894.28 s, DeepSurf 2436.76 s, and P2Rank 914.61 s (Seo et al., 2024).
Although sequence-based methods are computationally efficient,
they lack the spatial context needed to identify complex binding
interactions, such as those involving residues acrossmultiple protein
chains. By analyzing each chain individually and then combining
the results, traditional sequence-based methods often miss critical
relationships, limiting their accuracy in predicting binding sites.
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The studies in Table 1 highlight distinct characteristics of various
models. For instance, SCRIBER incorporates over 1,000 input
features and relies on feature elimination techniques to manage
complexity, though it remains susceptible to overfitting. SCRIBER
reported a Matthews correlation coefficient (MCC) (Chicco and
Jurman, 2020) of 0.23. DELIA, on the other hand, is tailored
for specific ligand types, which enhances predictive accuracy for
those interactions but limits its applicability to general protein-
ligand binding site prediction. DELIA achieved an average MCC of
0.469, which was derived from results across five different ligand
types. Attention-based models like HoTS and Pseq2Sites excel at
capturing both local interactions and long-range dependencies
within sequences,making them effective for understanding complex
sequence patterns. In the Pseq2Sites study, Pseq2Sites demonstrated
a 96.8% success rate on the COACH test dataset, calculated as
the number of correctly identified pockets divided by the total
number of pockets. Additionally, the study reported success rates
for other models, with HoTS achieving 14.3% and Birds reaching
70%, highlighting the comparative performance within the same
evaluation framework. Seq-InSite achieved an MCC value of 0.462
on the Dset_448 dataset, which focuses on ligands that are not
proteins. However, sequence-based models still struggle to fully
capture inter-chain interactions, which are critical for predicting
functional binding sites in multimeric proteins. Sequence-based
approaches are generally less effective in identifying allosteric
binding sites, which are often located far from the active site
and can be missed without considering the protein’s full 3D
structure (Xia et al., 2024).

Hybrid approaches, which integrate both sequence-based
and structural features, have emerged as powerful strategies to
enhance the accuracy of protein function prediction tasks. The
T5-GAT Ensemble, a hybrid model, combines sequence and
structural features of proteins. While the sequence-based MLP
model achieves an MCC of 0.54, the hybrid model improves this to
0.59 by incorporating structural features. Similarly, DELIA, tested
on five ligand types, demonstrated that the hybrid architecture
outperformed sequence-based models in MCC scores for all
ligand types. Another method, LaMPSite, predicts ligand binding
sites by utilizing both protein sequences and ligand molecular
graphs. The ablation study for LaMPSite indicates a decrease
in accuracy when the interaction module, which combines
the benefits of both methods, is omitted. For this study, the
reported success rate in terms of DCA (Distance Cutoff Accuracy)
is 66.02%.

The choice of datasets in protein-ligand binding site prediction
plays a crucial role in developing and evaluating computational
models. To ensure fair testing, addressing data leakage is essential,
especially the similarity between training and test datasets. For
instance, LaMPSite excludes scPDB structures with more than 50%
sequence identity or 0.9 ligand similarity and removes proteins
from COACH420. Pseq2Sites takes additional steps by using
unseen test datasets and filtering proteins with ≤40% structural
similarity for unbiased evaluation. Studies like HoTS further
promote fair analysis by reporting results at various similarity
thresholds.

Protein folding software such as AlphaFold can facilitate hybrid
approaches, certain limitations persist. AlphaFold2 (AF2) relies
on patterns extracted from known protein folds rather than

understanding the physical and chemical basis of proteins (Agarwal
and McShan, 2024). The experimentally determined 3D structural
dataset is limited to fewer than 300,000 structures, compared to
the billions of protein sequences available in public repositories.
AlphaFold 3 (AF3) builds on the evoformer architecture from AF2,
incorporating a diffusion network that refines a cloud of atoms
iteratively to generate highly accurate protein structures. AF3 can
predict heme-binding sites; however, its reliance on structurally
similar proteins in its training data limits its effectiveness for
less-represented or novel protein sequences (Kondo and Takano,
2024). AF3 struggles to accurately predict ligand-binding poses,
particularly for complex ligands such as peptides, ions, and non-
standard molecules (He et al., 2024). Additionally, the lack of
support for user-defined ligands and a broader range of ligand
types further restricts AF3’s applicability in practical drug discovery
efforts. Single changes in the sequence (e.g., point mutations) can
significantly alter a protein’s function or cause misfolding. AF2 is
not trained to predict the effects of mutations on protein structure
or stability (Agarwal and McShan, 2024; Pak et al., 2023). AF3 has
limitations in stereochemistry, hallucinations, dynamic behavior,
and accuracy for specific targets (Abramson et al., 2024). The
Predicted Local Distance Difference Test (pLDDT) serves as a
confidence metric in AF2 and AF3 for evaluating the reliability of
protein structure predictions. However, high pLDDT values or low
Predicted Aligned Error (PAE) scores do not necessarily ensure
alignment with experimental structures (Carugo, 2023; Buel and
Walters, 2022).

Overall, the paper highlights the strengths and limitations of
both 3D and 1D approaches, concluding in the discussion section
that hybrid methodologies represent a promising direction for
future research.

4 Future directions

Future advancements in protein binding site prediction are likely
to focus on integrating sequence-based and structure-based data
to improve model accuracy, particularly for complex binding sites
that depend on 3D spatial context. Hybrid models that combine
these two types of data show promise in addressing limitations of
sequence-only methods, such as identifying distant allosteric sites
or inter-chain interactions. Another promising direction involves
the development of transformer-based models specifically tailored
for protein-ligand interactions, utilizing advanced embeddings to
capture intricate sequence patterns and dependencies. Recently,
GPT-based (Brown et al., 2020) studies have emerged in protein
engineering, harnessing protein sequence data and the capabilities
of large language models (LLMs) rooted in natural language
processing (NLP). These advancements emphasize the need for
a deeper understanding of protein sequence data, improving its
representation, and designing deep learning architectures to align
with these enhancements. Reviews like ours, which focus on
sequence-based protein structures, are expected to make valuable
contributions to the development of these tools. To further advance
the field, it will be critical to enhance the adaptability of protein
languagemodels (pLMs) for underrepresented or rare proteins.This
could be achieved by expanding training datasets or developing
adaptive embedding methods. Additionally, collaboration across
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computational, experimental, and industrial fields will be essential
for validating and refining thesemodels. Such efforts aim to improve
generalizability and optimize predictive tools for specific therapeutic
targets, ultimately accelerating advancements in computational drug
discovery.

5 Conclusion

The prediction of protein-ligand binding sites is crucial for
advancing drug discovery and development, as it enables the
identification of potential drug targets and the design of more
effective therapeutics. Accurate predictionmethods can significantly
streamline the drug discovery process, reducing the time and cost
associated with experimental validation. Our study reviews various
sequence-based approaches for predicting protein-ligand binding
sites using machine learning techniques in computational drug
discovery. Our examination explores the models, focusing on their
embedding methods and deep learning architectures, and discusses
the challenges and future directions associated with sequence-
based methods. Our study aims to serve as a comprehensive
guide for sequence-based prediction of protein-ligand binding sites,
providing a thorough understanding of the existing literature within
a single paper.
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