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Processing biological data is a challenge of paramount importance as the
amount of accumulated data has been annually increasing along with the
emergence of new methods for studying biological objects. Blind application
of mathematical methods in biology may lead to erroneous hypotheses and
conclusions. Here we narrow our focus down to a small set of mathematical
methods applied upon standard processing of scRNA-seq data: preprocessing,
dimensionality reduction, integration, and clustering (using machine learning
methods for clustering). Normalization and scaling are standard manipulations
for the pre-processing with LogNormalize (natural-log transformation), CLR
(centered log ratio transformation), and RC (relative counts) being employed as
methods for data transformation. The justification for applying these methods
in biology is not discussed in methodological articles. The essential aspect of
dimensionality reduction is to identify the stable patterns which are deliberately
removed upon mathematical data processing as being redundant, albeit
containing important minor details for biological interpretation. There are no
established rules for integration of datasets obtained at different sampling times
or conditions. Clustering calls for reconsidering its application specifically for
biological data processing. The novelty of the present study lies in an integrated
approach of biology and bioinformatics to elucidate biological insights upon
data processing.

KEYWORDS

biocentric mathematics, ScRNA-seq, dimension reduction, cell clustering, datasets
integration

Abbreviations: t-SNE, t-distributed Stochastic Neighbor Embedding; UMIs, unique molecular
identifiers; MSCs, mesenchymal stem cells; PCA, Principal Components Analysis; ICA, Independent
Component Analysis; UMAP, Uniform Manifold Approximation and Projection; CCA, canonical
correlation analysis; RPCA, reciprocal PCA.
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1 Introduction

The advent of high-throughput methods has enabled the
accumulation of vast amounts of biological data over the last
decades. Data analysis has evolved progresively into an extremely
complex, time-consuming, and labor-intensive processing.
Meanwhile, mathematical methods have been repurposed for
biology as a commonly accepted standard, with the responsibility for
the implementation resting with the scientists who initially applied
them in biology. The hallmarks of modern science, by and large,
are grounded in the credibility of the available methods and tools
harnessed by all members of the scientific community. Therefore,
the initial application of the purelymathematicalmethods in biology
formed an unquestioned standard.

Gradually, as the large amount of biological information
has been accumulated, numerous scientists started sharing their
results on the publicly accessible platforms dedicated to biological
data analysis. Many of the researchers who utilize libraries and
packages implementing the functionality of key mathematical
methods pointed out that the results of the well-studied and
well-acknowledged data analyses were not always reproducible
when applying the mathematical methods solely. Despite these
observations, the scientific community did not propose any changes
in approaching the biological data analysis even though biological
data are fundamentally different from other types of data. As of
today, despite much criticism, dissatisfaction, and perplexity, the
biological community continues to use the existing toolkit.

Of note, the scRNA-seq method allows for quantifying mRNA
levels within cells; however, this does not necessarily imply that
these mRNAs will be translated into proteins. Extensive post-
transcriptional regulatory mechanisms can influence the translation
process, ultimately shaping the cell’s protein profile.

The essential difference of biological data lies in the fact that, in
contrast to large values, even the smallest values or a tiny shift can
lead to dramatic consequenceswithin a cell or a living organism.This
unique feature emerges from the “clamp” mode of the intracellular
circuitry and signal transduction. The presence of a small amount
of a transcription factor or a secondary messenger can completely
alter cell metabolism, yet the calculation results may indicate a lower
expression level of these proteins compared to the others. This is
the emerging problem we encounter that is associated with applying
standard mathematical approaches to biological data analysis.

A prime example of this is the RNA-velocity method. The
method was developed in 2018 and represents a mathematical
model of DNA processing. Initially, the only variables included in
the equation were the variables characterizing the RNA splicing
and degradation. After receiving abundant comments regarding
the inadequacy of the obtained results, the developers added the
variables related to vesicular transport (export from the cell) to the
equation. These changes significantly increased the accuracy and
reproducibility of the results obtained.

The RNA-velocity method was first introduced in 2018 and
represents a mathematical model that utilizes both unspliced and
spliced transcripts to predict the dynamic future expression of
genes at the single-cell level. This innovative approach has been
widely recognized for its capability to infer the direction of
cellular differentiation and temporal dynamics of cell states. The
foundational paper by La Manno et al., 2018, provides a detailed

explanation of the RNA-velocity concept, algorithms, and practical
applications (La Manno et al., 2018).

The field of systems biology, aiming to integrate different types
of biological data, is one of the stages in the evolution of the
universal mathematical methods applied for biological data analysis.
The multidimensionality of biological data allows for the discovery
of new hidden regularities, enabling the development of effective
bio-centric computational methods.

The study consists of 4 sections describing the key stages of
scRNA-seq data processing: I Pre-processing; II Dimensionality
reduction from aMathematician’s Perspective; III Cell clustering; IV
Data integration from a Mathematician’s Perspective. Each section
provides an explanation of the mathematical transformations
occurring at this stage for biologists, as well as an example
of the application of the mentioned tools and a discussion of
possible ways to overcome challenges encountered during scRNA-
seq data analysis.

2 Materials and methods

Cell Ranger version 7.0 was employed for scRNA-seq data
analysis. Notably, beginning with version 7.0, Cell Ranger
incorporates intronic reads by default in UMI counting - a
significant shift from earlier versions, which excluded intronic reads
from the UMI analysis.

For preprocessing, the web_summary.html file from the Cell
Ranger’s outs folder was used. The Recluster function of the
Loupe Browser tool was utilized for filtering low-quality cells.
As a comparison, the Seurat package for processing scRNA-seq
data was employed. Dimensionality reduction was carried out
using the RunPCA function. Visualization of the results of linear
dimensionality reduction method (PCA) was achieved using t-
distributed Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP). Cell clustering
was performed using the Find Neighbors and Find Clusters
functions within the R package Seurat. Data integration was
executed using the Integrate Data and Find Integration Anchors
functions of the R-package Seurat.

We utilized Seurat version 4.0.6 to perform the analysis of
scRNA-seq data.

3 Results and discussion

3.1 Pre-processing

One of the critical data preparation steps at the preprocessing
stage is cell filtering (Luecken andTheis, 2019). The outcome of the
entire subsequent analysis depends on the decisions made at this
stage. Currently, there are no universally accepted recommendations
for the preprocessing (You et al., 2021; Ahlmann-Eltze and Huber,
2023). Most researchers make their decisions based on their own
judgment (drawing from their experience of analyzing their own
data). If the experiments and analysis are conducted in a laboratory
either by an inexperienced researcher or for the first time, the
biological interpretation of the results and the overall planning of
further experiments can be significantly impaired. Depending on
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the implementation of this step, filtering low-quality cells can be
done in various ways. In the widely used Seurat platform, three
metrics are used to remove low-quality cells - the number of
genes in the cell, the number of reads per cell, and the percentage
of mitochondrial genes (Figures 1H,I) (Hao et al., 2024). It is
considered that a low number of genes and reads in a cell, as well
as a high percentage of mitochondrial genes, indicate significant cell
damage. However, such indicators may imply a specific functional
state of the cell, and such cells should not be removed from
the analysis. The 10x Genomics platform contains a specialized
software named 10x Genomics Loupe Browser, which allows for
preprocessing and removal of low-quality cells based on gene count,
reads, and the percentage of mitochondrial genes. Both Seurat
and the 10x Genomics Loupe Browser offer valuable tools for cell
filtering, each with its distinct advantages. Seurat excels in providing
flexibility through adjustable parameters and iterative filtering,
enabling more precise control over dimensionality reduction and
clustering processes. However, it does not offer real-time feedback
on cell quality, a feature uniquely provided by the Loupe Browser.
The Loupe Browser’s intuitive visual interface and dynamic tracking
of cluster changes significantly enhance biological relevance,making
it an ideal choice for researchers prioritizing the preservation of
biological context.

The approach outlined in this study integrates established tools
and metrics for scRNA-seq data processing, aiming to improve
practical applicability and adaptability across varied experimental
contexts. Future studies will benefit from a more systematic
strategy to boost reproducibility, incorporating rigorous statistical
frameworks for assessing UMI and other biological indicators,
while complementing visual evaluation with quantitative methods.
Currently, we are developing stricter criteria for parameter selection
and data analysis, aiming to align with and integrate into standards
for biological interpretation.

Here, we present a generic approach for processing scRNA-
seq data and detecting the low-quality cells. For this stage, we
developed our original method allowing for an accurate detection
of the appropriate number of cells and genes to retain.

Themain principle of the methodology resides in the sequential
cell filtering using the reclustering tool in the 10x Genomics Loupe
Browser. Figure 1A illustrates the idea that all cell clusters can
be separated into two groups. Such a segregation may be related
to several reasons; however, in this case, it can be explained
by the quality of cell sequencing (Figure 1B) – the cells in blue
color represent problematic cells and have less than 10,000 UMIs.
Low-quality and dying cells exhibit an extensive mitochondrial
contamination due to a severe impact that had destroyed not only
the plasma cell membrane but the two mitochondrial membranes
as well. To filter them out, a filtration based on the UMI count per
cell with visual control (Figure 1C) is required. By adjusting the
upper and lower sliders in Loupe Browser using Recluster algorithm,
we filter out cells containing more than 10,000 UMIs and less than
40,000 UMIs (Figure 1D). By moving the sliders, we change the cell
counts in each cluster. Figure 1E demonstrates that by applying this
procedure, we remove all cells from clusters 4 and 9 indicating that
these cells were of low-quality.

Before the UMI filtration, 5,380 cells have been detected. After
filtering out poorly sequenced cells, 3,328 cells remain, with 2,052
being removed (38% removed barcodes). Clusters 4 and 9 are

excluded from further analysis (Figure 1E). The number of unique
molecular identifiers (UMIs) per barcode can vary and it depends
on the sequencing conditions. Barcodes with a very high UMI count
may represent multiple cells combined together (multiplets), while
barcodes with very low UMI count may represent the low-quality or
empty cells (empty droplets).

The next stage represents the cell filtering based on the number
of genes expressed (Figure 1F). Adjusting the sliders allows for
clusters (7 and 10) with a low number of genes to emerge.
Figure 1H presents violin plots of the same sample before filtering,
showing a significant number of cells standing out from the
main cluster. Figure 1I displays the violin plots after filtering,
demonstrating an even cell distribution.

After cell filtering based on gene expression, 3,002 cells remain
for further analysis with 328 cells being removed.Therefore, clusters
7 and 10 are totally excluded from further analysis (Figure 1G). Low-
quality cells and empty droplets typically have a very low number
of genes. Cell doublets or multiplets, on the other hand, have an
excessively high number of genes.

That being said, the proposed filtering approach results in
3,002 cells remaining in the analysis out of the initial 5,380 cells,
followed by 44% cell removal. The question of whether it is a
high or a low proportion still remains. Considering the cost of the
reagents for library preparation and subsequent sequencing, the
researchers strive to retain as many cells as possible for further
analysis. However, cells added by adjusting the minimum and
maximum thresholds often prove to be useless in subsequent
analysis as they do not fit into the biological interpretation, falling
outside the main cell characteristics of the sample. To perform a
comprehensive analysis of doublets in the data, it is essential to
consider all currently available approaches. These include filtering
cell barcodes byUMI counts, filtering cells by the number of features,
filtering cells by the proportion ofmitochondrial (mt) reads, filtering
cells by detecting the doublets using community tools, identifying
and removing empty droplets based on expression profiles, and
eliminating ambient RNAs associated with barcodes.

The approach presented in this study offers a novel
systematic framework for cell filtering, significantly enhancing
the reproducibility and accuracy of data analysis. By integrating
rigorous statistical tools to assess UMI and biological indicators
complementing visual evaluation with quantitative methods.
The results achieved through this methodology exhibit higher
accuracy in identifying and excluding low-quality cells compared
to conventional filtering techniques, such as Seurat, thereby
ensuring greater biological relevance and robust substantiation of
conclusions.

For visualization and controlled filtration, the Recluster function
of the Loupe Browser tool represents a convenient tool. Unlike
filtration in the Seurat package, the Loupe Browser allows real-time
tracking of the number of cells in clusters, enabling the retention of
themost biologically significant clusters.Thus, in the Seurat package,
it is not possible to assess the impact of the filtration on the number
and size of clusters, whichmay lead to an unreasonably large number
of clusters and theirmeaninglessly small size, therefore complicating
subsequent stages of scRNA-seq data analysis such as cell typing,
trajectory inference, and RNA-velocity.

Herein, we primarily focus on integrating biological and
bioinformatic approaches for data processing to achieve a more
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FIGURE 1
Processing the scRNA-seq data and detecting the low-quality cells during adipogenic differentiation of mesenchymal stem cells (MSCs). (A) t-SNE
Projection of Cells Colored by UMI counts (web_summary file, CellRanger). (B) t-SNE Projection of Cells Colored by Automated Clustering
(web_summary file, CellRanger). (C) Cell counts by clusters. (D) Removal of cells with excessively high or low counts. (E) Clusters removed based on
UMI counts. (F) Removal of cells with excessively high or low features. (G) Clusters removed based on features. (H) Violin plot (VlnPlot) before cell
filtering. (I) Violin plot (VlnPlot) of cells after cell filtering using parameters obtained from the Loupe Browser.
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comprehensive understanding of biological processes. Leveraging
the advanced functionalities of the Seurat package, including
iterative filtering and rerunning dimensionality reduction and
clustering, will further enhance the reproducibility and objectivity
of the analyses. Incorporating systematic criteria based on Seurat’s
infrastructure into the proposed methodology will facilitate the
development of more quantitatively grounded and reproducible
guidelines. Although the presentedmethodology already establishes
a robust framework for advancements, incorporating Seurat’s
capabilities to calculate quality control metrics for clusters further
enhances both accuracy and objectivity.

To infer, it is essential to recognize the profound impact that
preprocessing steps can have on the biological interpretation of data.
Variability in interpretation can stem from how low-quality cells
are filtered and analyzed. Wang et al. (2020) demonstrated that
different preprocessingmethods can yield significantly varied effects
on clustering algorithms. Similarly, You et al. (2021) highlighted
that while several packaged preprocessing workflows offer users
convenient tools, their comparative performance and influence
on downstream analysis remain underexplored. Additionally, Hsu
and Culhane (2020) provided a comprehensive guide to PCA and
related methods. In the current study, we addressed the relationship
between PCA and singular value decomposition, the differences
between correlation and covariance matrices, the effects of scaling,
log-transformation, and standardization, as well as how to recognizу
artifacts like the horseshoe or arch effect in PCA.

3.2 Dimensionality reduction from a
Mathematician’s perspective

Dimensionality reduction methods emerged in the early 20th
century and have continued to evolve, often independently in
multiple fields, ultimately giving rise to a myriad of overlapping
terminology (Meng et al., 2016).

3.2.1 Linear dimensionality reduction method
Principal Components Analysis (PCA) is an exploratory

multivariate statistical technique for simplifying complex data sets.
Principal components analysis has been used to solve a wide range of
biomedical problems, including microarray data analysis in search
for outlier genes as well as the analysis of other types of gene
expression data (Raychaudhuri et al., 2000).

scRNA sequencing yields a large number of gene patterns
related to the investigated cells. Each gene pattern is defined by
high dimensionality. To further analyze the data, it is necessary
to group cells with similar gene patterns into the defined and
separated clusters.Themost commonapproach to scrutinizing high-
dimensional data spaces is to reduce the dimensionality. Since the
surrounding world is three-dimensional, it is necessary to reduce
the number of variables in the dataset to three, capturing only
the main characteristics of the cells. In an attempt to interpret the
enormous amount of gene expression data generated by scRNA-
sequencing procedures, we have developed an analytical framework
by employing the statistical concepts of PCA (Craig et al., 1997). To
accomplish this, PCA, which transforms the original variables into
new axes, has been enrolled since the primary aim of using principal
components is dimensionality reduction.

PCA is one of the most commonly used dimensionality
reduction techniques in biology. It was shown that the first few PCs
are closely related to the tissue of origin and that projection onto the
first two PCs provides us with an informative way of visualizing this
extremely high-dimensional data. Since the PCs are ordered by the
amount of variance they explain—the first PC explains most of the
variance, the second PC explains the second most of the variance,
and so on—the researchers often choose the first fewPCs, dismissing
information that might be hidden in the other PCs (Huang et al.,
2022). Each of these PCs may stand for biological processes, which
involve various biological functions and rely on the activation or
inhibition of a subset of genes. Several studies have already shown
the value of Independent Component Analysis (ICA) in the gene
expression context, notably Liebermeister, who was the first to apply
ICA to gene expression data (Gorban et al., 2008). Comparing to
PCA, ICA is considered to be amore effectivemethod of eliminating
a wide range of noise.

When selecting the number of principal components using
data-driven statistics, we emphasize the importance of employing
robust techniques to optimize the analysis of scRNA-seq data.While
we primarily utilized the Seurat package, which offers the dims
argument in the FindNeighbors function to specify the number
of components, this approach does not inherently determine the
optimal number of components.

To address this, incorporating methods such as the Elbow plot,
which evaluates the variance explained by each component, and
cross-validation techniques to assess the robustness of clustering
results across varying numbers of principal components, can ensure
that the selection is both statistically justified and biologically
meaningful.

Of note, neither PCA nor ICA can overcome both the high
dimensionality and noisy characteristics of biological data. On the
other hand, PCA can occasionally fail to accurately reflect our
knowledge of biology for the following reasons: a) PCA assumes that
gene expression follows amultivariate normal distribution, while the
recent studies have demonstrated that microarray gene expression
measurements instead follow a super-Gaussian distribution, b) PCA
decomposes the data based on the maximization of its variance. In
some cases, the biological question may not be related to the highest
variance in the data (Yao et al., 2012).

While scRNA-seq and microarrays are fundamentally distinct
platforms with unique technical features and inherent biases,
comparing them offers valuable historical insight into the evolution
of dimensionality reduction techniques such as PCA, which were
widely applied in microarray analysis. However, drawing direct
parallels between these two platforms remains inappropriate given
their distinct methodologies and applications.

This idea can be demonstrated with a trivial example.
Supposingly, a hypothetical study comprises only three genes for
analysis and cell description. For each cell, we have a set of three
numbers representing the gene counts in that cell. These number
sets can be represented as points in a three-dimensional space. The
original information will be redistributed onto three components -
in line with the dimensionality of the task. Essentially, this means
that instead of using the original cartesian coordinate system, we
choose a different coordinate system for our three-dimensional plot,
aligning the axes along the directions of the highest point variance.
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Let’s suppose we want to reduce the dimensionality to two
dimensions. In this case, we should discard the component that
contains the least amount of information. In other words, we
exclude the direction by choosing a two-dimensional projection,
along which the dispersion of points is minimal as compared to the
remaining two.

In fact, a projection plane can be considered as a two-
dimensional « screen » positioned to provide the minimal “image”
distortion of information. By selecting the image with themaximum
dispersion of the points on the plane among all possible projections,
we lose less information as compared to formally dropping the last
coordinate.

In general, if we aim to obtain a two-dimensional image for an
n-dimensional task, we first use mathematical statistical methods to
determine n directions corresponding to the maximum variance of
the points. Next, we sort the directions by variance (from high to
low) and discard the last n-2 directions. The resulting image does
not contain the original information about the cell composition but
only reflects the degree of “similarity” between the original gene
sets. Actually, the larger the n value, the more information is lost
during the dimensionality reduction. Therefore, the obtained image
can only be used to formulate a hypothesis that needs to be further
verified using other methods.

That being mentioned before, we can interpret the gene sets for
each cell as points in a n-dimensional space. To perform clustering,
the reduction of the dimensionality to two or three is needed to
enable visualization.

3.2.2 Non-linear dimensionality reduction and
visualization method

PCA is called a linear dimensionality reduction method, as new
coordinates are determined as linear combinations of the old ones.
In other words, each new coordinate is calculated as the sum of the
old ones multiplied by certain coefficients. One of the fundamental
differences between non-linear methods such as t-distributed
Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP) as contrasted with PCA is
that they aim to preserve the similarity (and dissimilarity) between
cells in a low-dimensional space. PCA, on the contrary, aims to
preserve the global data structure. Let’s explain the principles of
their operation by considering a two-dimensional plane as the low-
dimensional space, keeping inmind that the argumentation stays the
same for a three-dimensional space.

3.2.3 Stochastic Neighbor Embedding (t-SNE)
The implementation of t-SNE consists of two principal stages.

First, t-SNE establishes pairwise associations between all points in
the n-dimensional space, assigning each point with index i a number
pij, which represents the probability that this point is similar to the
point with index j. The probability is calculated using a formula
that incorporates the coordinate values of points i and j. As a
result, similar points will have a higher probability of being selected,
while the probability of selecting dissimilar points will be low. The
outcome is an undirected graph with n vertices and edge lengths pij.

Next, t-SNE constructs a similar probability distribution qij for
the points on the plane. In other words, first n points are defined at
random on the plane (number of points is the same as the number of
the investigated cells, however at this stage each point has only two

coordinates instead of n). The algorithm shifts these points on the
plane, aiming to position them in such a way that the probabilities
of similarity of points on plane qij would be as close as possible to the
corresponding probabilities pij. Actually, the method simulates each
cell as a two-dimensional point, with similar cells being modeled
as closely located points while dissimilar cells modeled as points
that are located far apart. Thus, the method preserves the distances
between points in the original n-dimensional space. The main
criteria of the optimal points distribution in 2D space is a minimum
of some quantity defined as a “sum of differences” of pij from qij for
all i and j, and recalculated after any shift of the points on the plane.

Laurens van der Maaten and Geoffrey Hinton (Maaten and
Hinton, 2008), who created this method, proposed the following
physical analogy for the algorithm operation: all points are
connected by springs. The stiffness of the spring connecting points
i and j depends on the difference between the similarity of the
two points in the multidimensional space and the two points on
the plane. If the system is “released,” after a while, it will reach an
equilibrium, which represents the desired distribution.The resultant
force will contract the points of the two-dimensional space for the
nearby points in the multidimensional space and repel them for
distant points.

3.2.4 Uniform manifold approximation and
projection (UMAP)

UMAP was created by Leland McInnes and co-authors (Healy
and McInnes, 2024) as an alternative to t-SNE and combines the
advantages of both methods: t-SNE in terms of dimensionality
reduction and PCA - in terms of speed. Another advantage of
UMAP is that it aims to preserve not only local but also global
distances between points. This shows that UMAP is not limited
to the dimensionality of the original space, while t-SNE is subject
to the so-called “curse of dimensionality.” The latter refers to the
exponential increase in the number of combinations when trying
all possible coordinates of points on the plane as the dimensionality
(n) grows. As a result, t-SNE may suffer from performance issues.
The benefit of UMAP is that, unlike t-SNE, which considers all
possible pairwise comparisons, it only compares each point with its
(k) nearest neighbors. When comparing PCA, t-SNE, and UMAP, it
can be stated that tasks that are well handled by PCA are equally
well handled by t-SNE and UMAP. However, the reverse is not
generally true.

PCA is widely utilized for initial exploratory analyses due to
its time efficiency and ability to capture global variance structures,
making it an optimal choice for datasets where identifying broad
variance patterns is crucially important. However, PCA may fall
short in datasets with complex, non-linear relationships, as it
can obscure biologically meaningful clusters. In contrast, methods
such as t-SNE and UMAP excel at capturing local structures,
often unveiling finer substructures or rare cell populations within
a dataset. t-SNE and UMAP are particularly valuable when the
primary objective is to delineate distinct cell clusters, such as in
immune cell subtype analyses, where subtle differences between
populations might be overlooked with PCA. For instance, t-SNE
has proven effective in distinguishing closely related immune cell
subpopulations that PCA might otherwise conflate. Additionally,
UMAP often surpasses t-SNE in large datasets due to its faster
computation and its ability to retain some global structures,
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TABLE 1 Used Seurat function.

Function Arguments

Linear dimensionality reduction

RunPCA npcs

Non-linear dimensionality reduction

RunTSNE dims

RunUMAP dims

making it a powerful tool for lineage tracing in developmental
biology research.

These practical considerations highlight the importance of
selecting the appropriate dimensionality reduction technique based
on the specific characteristics and analytical objectives of the
dataset at hand.

3.2.5 Spatial arrangement of clusters
When specifying the dimensionality in the arguments of

the RunTSNE and RunUMAP functions (Table 1), additional
coordinates in the third dimension can be obtained providing a clear
understanding of the spatial arrangement of clusters in relation to
each other.

For example, in a 2D image, it is not evident whether the third
cluster belongs to the main cluster of cells or not (Figure 2A).
However, in a 3D visualization, it becomes apparent that the 3rd
cluster is a part of the main cluster, while the 2nd and 4th clusters
are located at a significant distance (Figure 2B).

Of note, trellis plots may offer a more effective alternative for
visualizing variable pairs in a 2D space, providing clearer and
more accessible data interpretation while minimizing distortions
associated with 3D representations. Adopting such approaches
can significantly enhance result interpretation and ensure a more
accurate representation of the findings.

3.2.6 Problems and limitations of dimensionality
reduction

Despite a widespread use of dimensionality reduction
algorithms, such as t-SNE and UMAP, these algorithms have
characteristics that inherently lead to the lack of trust: they do
not preserve the important aspects of high-dimensional structure
and are sensitive to arbitrary choices of a user.

Though such approaches have proven valuable, they do have
limitations. In particular, it is left up to users to unpack the
biological meaning of the results on their own. Moreover, these
methods can lead users to ignore important information hidden
in higher dimensions (Table 2). The question remains how one can
decide which of the reduced dimensions are biologically relevant
and which can be traced to artifacts or noise (Simmons
et al., 2015).

Moreover, it is worth mentioning the importance of additional
parameters inmethods such asRunPCA,RunTSNE, andRunUMAP.
For instance, the “features” parameter in RunPCA, which
dictates which genes are considered during principal component

calculations, plays a critical role in shaping the analysis. Similarly,
the ability to select the input space in bothRunTSNE andRunUMAP
has a substantial influence on the resulting embeddings and,
consequently, on downstream analyses.

Of note, the application of only one method often does not
suffice to capture all important signals. It is therefore necessary
to apply several methods addressing different aspects of the data
under scrutiny. Lehrmann, A et al., developed a framework for
linear and non-linear dimension reduction methods within our
visual analytics pipeline SpRay (Lehrmann et al., 2013). Since an
interpretable link between the data’s features and low-dimensional
representation is missing, we cannot rely on them as hypothesis-
generating tools (Boileau et al., 2020).

In other words, it is essential to understand that mathematical
methods applied for biological data processing and visualization
are used for data analysis in other scientific disciplines. Insufficient
insight into the mathematical algorithm behind each stage of raw
data transformation forces the biologists to regard the obtained
results as given, without considering alternative representations.
Meanwhile, when the parameters are altered, the patterns identified
during the initial analysis are preserved, albeit with slight variations.
The preservation of these patterns indicates the presence of
specific interrelations among the elements of the dataset. The
skill of interpreting the obtained results is gradually developed
through professional communications with colleagues regarding
the identified patterns. However, in most cases, the obtained
results confirm or reflect the initial expectations, but the most
valuable findings could be those that contradict the existing notions,
sometimes even overturning them. In any case, every result obtained
through bioinformatic methods needs to be subsequently validated
experimentally.

Dimensionality reduction is indispensable for scRNA-seq data
processing; however, its blind application can lead to incorrect
interpretation of the obtained results. Having analyzed a substantial
amount of our own data, we arrived to a conclusion that for a more
accurate biological interpretation of the obtained results at this stage,
it is essential: to use coordinates of other components besides 1 and
2; to utilize three-dimensional data representation to avoid incorrect
cluster arrangement relative and employ different parameter values
in the functions to search for the variant of results that best describe
the subject of study.

To ensure clarity and avoid any confusion, the terms can be
precisely defined as follows:

• PCA Components: Linear combinations of the original
variables designed to capture the maximum variance in the
dataset. In scRNA-seq analysis, PCA components are frequently
employed to reduce dimensionality while retaining key patterns
in gene expression.

• UMAP Dimensions: UMAP (Uniform Manifold
Approximation and Projection) projects high-dimensional
data into a lower-dimensional space, preserving both local
and global structures. Dimensions in UMAP refer to the axes
of this reduced space, which are used for visualization and
downstream analysis.

• t-SNE Dimensions: t-SNE (t-distributed Stochastic Neighbor
Embedding) is a non-linear visualization method focused on
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FIGURE 2
2D- UMAP (A) and 3D- UMAP (B) of MSCs induced towards adipogenic differentiation.

preserving local similarities between data points in a lower-
dimensional space. t-SNE dimensions correspond to the axes
in this reduced visual representation.

3.3 Cell clustering

Clustering is another crucial step in biological data processing. It
is different from classification since the elements under investigation
are being grouped based on a set of certain features within clustering
process. Biological analysis considers cell samples as elements
under examination, while the expressed genes are referred as
certain features (Duò et al., 2018).

For novice researchers, the varying number of clusters obtained
during data processing and analysis can be quite challenging
(Yu et al., 2022; Zhang et al., 2023). At a first glance it may seem

that the more clusters one can obtain, the more information can be
gleaned about the presence of different cell types in a sample, or cells
at different stages of differentiation, or cells with specific biochemical
processes being activated at the time of sequencing. Still, this view is
highly questionable as discussed below.

The R package Seurat allows for the modification of argument
values of functions for finding the nearest neighbors and
clustering (Table 3). In the FindNeighbors function, the dims
argument allows for changing the number of principal components
for analysis, while the FindClusters function has the option to
select different clustering algorithms. The FindNeighbors and
FindClusters functions from the Seurat package offer exceptional
flexibility for handling scRNA-seq data. These functions effectively
address challenges posed by the unevenness and diversity of scRNA-
seq datasets through featuring the options to select clustering
algorithms and adjust the number of principal components. They
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TABLE 2 Problems and limitations of dimensionality reduction.

Problems and limitations Ref.

High dimensionality and noise characteristics of biological data

Raychaudhuri et al. (2000)PCA assumes that gene expression follows a multivariate normal distribution

PCA decomposes the data based on the maximization of its variance

Do not preserve important aspects of high-dimensional structure and are sensitive to arbitrary user choices
Hao et al. (2024)

Researchers often choose the first few PCs, completely ignoring information that might be hidden in other PCs

It is left up to the user to unravel the biological meaning of the results on their own
Huang et al. (2022)

These methods can lead to users ignoring important information hidden in higher dimensions

In lacking an interpretable link between the data’s features and low-dimensional representation, their use as hypothesis-generating tools is
restricted

Yao et al. (2012)

Application of only one method does not suffice to capture all important signals Gorban et al. (2008)

Biological world seems much more complex than the world of celestial mechanics Eckmann and Tlusty (2021)

TABLE 3 Used Seurat function.

Function Arguments

Find Neighbors (Waltman and
van Eck, 2013)

Dims

Find Clusters (Traag et al., 2019)

Resolution

Original Louvain algorithm

Louvain algorithm with multilevel
refinement

SLM algorithm

Leiden algorithm

are indispensable tools for managing complex data, enabling
detailed investigations and uncovering essential biological signals
within cell populations. Unlike methods such as hierarchical
clustering or DBSCAN, Seurat’s functions are specifically designed
to accommodate the unique characteristics of scRNA-seq data,
allowing for more effective management of their sparse and
high-dimensional nature.

To determine whether increasing the number of clusters is
reasonable, several monitoring variations need to be applied
and tested. First, as demonstrated in Figure 3 the number of
clusters grows (from 2 to 9) along with the increase in resolution
(Figures 3A–F). However, even the initial analysis of cluster number
apparently indicates that with the increase in resolution, clusters 1
and 2 emerge within cluster 0 (Figure 3B), while cluster 3 appears
to be distinguishable in addition to clusters 1 and 2 (Figure 3C),
clusters 1 and 3 become evident at the center of the residual
cluster 0, (Figure 3D) and etc. Upon increasing the resolution, some

clusters remain indistinguishable within the next several steps, while
others appear to be resolved as early as the second step.The observed
variations are biologically significant, as they allow us to identify
clusters that are resistant to clustering and are likely to contain
specific features, enabling the identification of cells of a particular
type, or differentiation stage, or reflecting distinct biochemical
processes.

Second, the number of cells within a cluster makes a difference.
As demonstrated in Table 4, in case the number of clusters is equal
to 2, all cells are distributed into two groups - 2893 (cluster 0) and
34 (cluster 1) cells. If the number of clusters is equal to 4, cluster
0, which initially contained 2893 cells, is now divided into three
clusters with cell counts of 200, 806, and 77. Of note, the 4th cluster
retains 35 cells, which is 1 cell less than when the cell sample is
divided into two clusters. To infer, the biologically significant cells
are mainly located in clusters that maintain their size upon the
increase of the resolution parameters.

Third, the lists of the most represented genes in each cluster
at different resolutions are important. The term “most represented
genes” refers to highly variable genes predominantly expressed in
specific clusters, serving as potential cluster-specific markers. A
principal question that remains to be answered is whether the
appearance of new clusters with increasing resolution has any
biological significance or whether these new clusters are related
to specifying the desired number of clusters. Table 5 lists the top
10 most represented genes in each cluster at different resolutions.
Clusters with similar (but not identical) sets of genes are highlighted
with the same color. Visual analysis of Table 5 uncovers that some
clusters are inherited from the beginning of the clustering process,
while the others appear only at a certain resolution. At some point,
there is an artificial splitting effect of a biologically significant cell
cluster into two less meaningful ones. Significance in this case refers
to the connection of all cluster genes to a specific process, while a
decrease in significance corresponds to the emergence of these genes
in two neighboring clusters.
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FIGURE 3
Resolution-dependent variations in the number of clusters identified in mesenchymal stem cells (MSCs) undergoing adipogenic differentiation. (A)
Resolution 0.1, (B) Resolution 0.2, (C) Resolution 0.3, 0.4, (D) Resolution 0.5, (E) Resolution 0.8, (F) Resolution 0.9.

In clustering, unlike classification, the analyzed features of
elements are grouped together based on the similarity of multiple
characteristics. Within the context of biology, this is of great
importance because the appropriately selected parameters of the
used functions and a biocentric perception of the obtained results
allow for discovering previously unknown patterns. Specifically
in biology, a cluster corresponds to subpopulations of cells that
have similar biological process, consistently express a membrane
marker, or have a certain number of transcripts reads. Therefore,
in addition to automatically or manually typing the obtained
clusters, we recommend generating a series of projections with
different cluster numbers, evaluating the number of cells within
them as well as differential expression of genes. This will help

to eliminate erroneous hypotheses that may arise while interpreting
the results.

To ensure consistency in clustering outcomes across various
datasets, a dedicated focus on both parameter selection and data
preprocessing stages is requires. A key recommendation can be
to meticulously document the complete parameter settings and
preprocessing workflows in a detailed and transparent manner,
enabling replication in future studies. This includes specifying
the resolution settings in clustering, the principal components
utilized in dimensionality reduction, and the criteria for identifying
and filtering low-quality cells. Moreover, to mitigate variability in
clustering outcomes when analyzing new datasets, we recommend
leveraging tools like Seurat—not only for their robust clustering
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TABLE 4 Cell number in at different resolution parameters.

Resolution Number of clusters Number of cells in clusters

0 1 2 3 4 5 6 7 8

0.1 2 893 34 — — — — — — —

0.2 4 2009 806 77 35 — — — — —

0.3
5 935 805 79 73 35 — — — —

0.4

0.5

7 1066 875 589 207 83 72 35 — —0.6

0.7

0.8 8 686 598 561 500 384 82 81 35 —

0.9
9 540 536 477 401 86 72 193 87 35

1

capabilities but also for their ability to integrate datasets by
aligning thembasing on common features.This approachminimizes
inter-dataset variability, allowing for more consistent clustering
across different experiments. Additionally, sensitivity analyses on
parameter choices can provide valuable insights into the critical
settings required to maintain reproducibility.

Towards this end, in clustering, unlike classification, the
analyzed features of elements are grouped together based on the
similarity of multiple characteristics. Within the context of biology,
this is of great importance because the appropriately selected
parameters of the used functions and a biocentric perception of the
obtained results allow for discovering previously unknown patterns.
Specifically in biology, a cluster corresponds to subpopulations of
cells that have similar biological process, consistently express a
membrane marker, or have a certain number of transcripts reads.
Therefore, in addition to automatically or manually typing the
obtained clusters, we recommend generating a series of projections
with different cluster numbers, evaluating the number of cells within
them as well as differential expression of genes. This will help to
eliminate erroneous hypotheses that may arise while interpreting
the results.

3.4 Data integration from a
Mathematician’s perspective

Let’s consider two data sets, each representing a set of vectors
that reflect the expression patterns of cells in two samples. Without
loss of generality, let us consider integration as identifying groups of
cells within the control and experimental samples whose expression
patterns are so similar that they can be defined as cells of
the same type.

Data integration is preceded by several steps of data processing
and analysis. First, regardless of whether integration is being

performed, data normalization is conducted to structure the data
with different value ranges into a unified pattern which allows for
their comparison. Essentially, the process involves first shifting and
then scaling the original set of values. After normalization, the
expression values of all genes lie within the same range.The outliers,
which are cells that are likely to be “junk” cells with some probability,
are removed from the data sets and excluded from the analysis. Once
the data is properly normalized, all genes should be considered equal
in their potential influence, meaning none of them can be given
preference or deemed more significant than the others in advance.

Next, genes are selected to assess the degree of similarity between
the cells. If the number of genes is not excessively large, all genes can
be considered. In Seurat, the default value for the number of genes is
set to 2000 (functions Find Variable Features and Select Integration
Features).

Integration is performed in two steps: defining the “anchors”
(Find Integration Anchors) and integrating the cells (Integrate
Data). “Anchors” represent pairs of similar cells in different samples.
First, dimensionality reduction is performed (specified by the “dims”
parameter). In Seurat (Kujawa et al., 2022), this can be achieved
using canonical correlation analysis (CCA), reciprocal PCA, or
reciprocal LSI (latent semantic indexing), as chosen by the user
(Table 6) (Luecken et al., 2022). Then, each cell from one sample is
compared to every cell from the other sample. If the cells turn out to
be similar (known as mutual nearest neighbors), the pair is labeled
as an “anchor.”

As dimensionality reduction comes at the expense of accuracy,
false “anchors” may arise. Therefore, after comparing all cells from
both samples in low dimensionality, a filtering of “anchors” is
performed using the original data or full-dimensional data, and
false anchors are removed. Let’s explain the mechanism of anchor
filtering. Let’s suppose an anchor “links” cell Q and cell R from two
original samples Query and Reference, respectively. In the Reference
sample, the number of the nearest neighbors for cell Q is determined
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TABLE 5 The list of the first 10 genes in each cluster at different resolution parameters.

Resolution 0.1

DCN CD36

PTX3 FABP4

SFRP2 CRYAB

IGF1 POSTN

MMP2 TIMP3

LUM IGFBP5

COMP COL4A1

PDGFRA COL4A2

PLPP3 NDUFA4L2

EFEMP1 MYLK

Resolution 0.2

LUM ACTA2 LRRC75A CD36

AKR1C1 TAGLN SCD FABP4

IGF1 MYL9 TGFBI POSTN

PLPP3 TPM1 COL4A1 CRYAB

TWIST1 CALD1 IGFBP5 TIMP3

RAB31 PALLD FN1 IGFBP5

GPX3 RGCC LOX COL4A1

SAT1 MYLK POSTN COL4A2

GJA1 MFAP5 FADS1 NDUFA4L2

SRPX ACTB THBS1 MYLK

Resolution 0.3–0.4

LUM ACTA2 LRRC75A FABP4 CD36

AKR1C1 TAGLN TGFBI FABP5 FABP4

IGF1 MYL9 COL4A1 G0S2 POSTN

PLPP3 TPM1 SCD LPL CRYAB

TWIST1 CALD1 IGFBP5 IGFBP5 TIMP3

MMP3 PALLD FN1 APOE IGFBP5

RAB31 MYLK LOX PNPLA2 COL4A1

SAT1 RGCC FADS1 CEBPA COL4A2

GJA1 MFAP5 POSTN ACACB NDUFA4L2

DCN ACTB THBS1 CRYAB MYLK

(Continued on the following page)
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TABLE 5 (Continued) The list of the first 10 genes in each cluster at different resolution parameters.

Resolution 0.5–0.7

IGF1 DKK3 ACTA2 CHRDL1 LRRC75A FABP4 CD36

MMP3 PTX3 TAGLN PLPP3 COL4A1 FABP5 FABP4

PRRX1 IL1RL1 MYL9 GPX3 SCD G0S2 POSTN

TWIST1 MT1E TPM1 LUM TGFBI LPL CRYAB

COL6A3 MT1X CALD1 CFD IGFBP5 IGFBP5 TIMP3

OLFML2B MT1M MYLK AKR1C1 FN1 APOE IGFBP5

SELENOP TSC22D3 PALLD APCDD1 LOX PNPLA2 COL4A1

ZFP36L2 COMP ACTB DCN FADS1 CEBPA COL4A2

HMCN1 MORF4L2 CAV1 SPON2 COL1A1 ACACB NDUFA4L2

SFRP2 ITGBL1 TPM2 MT2A THBS1 CRYAB MYLK

Resolution 0.8

MMP3 AKR1C1 PTX3 PLIN2 ACTA2 LRRC75A FABP4 CD36

SFRP2 PLPP3 DKK3 C7 TAGLN SCD FABP5 FABP4

COL6A3 CHRDL1 IL1RL1 APOE MYL9 TGFBI G0S2 POSTN

PRRX3 LUM RGCC CLDN11 TPM1 FN1 LPL CRYAB

HMCN1 IGF1 MFAP5 RSPO3 MYLK COL4A1 IGFBP5 TIMP3

AL139393.2 MTR COL1A1 MMP14 CALD1 FADS1 APOE IGFBP5

ASS1 GPX3 COMP SCD PALLD LOX PNPLA2 COL4A1

SCRG1 DCN MT1E ADAM12 CAV1 IGFBP5 CEBPA COL4A2

COL3A1 RAB31 ELN ADH1B ACTB COL1A1 ACACB NDUFA4L2

CXCL3 MGP SCG2 CRYAB CNN1 THBS1 CRYAB MYLK

Resolution 0.9

PTX3 COL6A3 FABP4 IGF1 ACTA2 DKK1 CHRDL1 LRRC75A CD36

DKK3 SFRP2 FABP5 MMP3 TAGLN IL1RL1 PLPP3 SCD FABP4

RGCC ASS1 G0S2 GALNT15 MYL9 MORF4L2 GPX3 COL4A1 POSTN

IL1RL1 SCRG1 IGFBP5 LUM TPM1 AKR1C1 CFD TGFBI CRYAB

COL1A1 MT1E APOE TWIST1 MYLK MTR LUM FADS1 TIMP3

MFAP5 PRRX1 LPL MGP CALD1 RASSF4 AKR1C1 FN1 IGFBP5

MT1E COL3A1 CRYAB RAB31 PALLD RAB31 SPON2 LOX COL4A1

COMP MT1X SCD TNFSF10 CAV1 SULF2 APCDD1 IGFBP5 COL4A2

SCG2 HMCN1 C7 FBXO32 ACTB TSC22D3 SAA1 COL1A1 NDUFA4L2

ELN MT2A PLIN2 GJA1 CNN1 BEX3 DCN THBS1 MYLK
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TABLE 6 Used Seurat function.

Function Arguments

Integrate Data
normalization.method = “SCT”

normalization.method = “LogNormalize”

Find Integration Anchors

reduction = “rpca”

reduction = “cca”

reduction = “rlsi”

using the parameter k.filter, which represents the most similar cells.
If cell R is not among them, the anchor is removed.

Each remaining anchor is assigned a weight factor that
characterizes the “quality” of that anchor. To explain the evaluation
mechanism. Let’s take the anchor QR and a certain number of
most similar anchors, determined by the parameter k.score. First,
we obtain two sets of cells in the Query and Reference samples,
consisting of the ends of these anchors. Second, we find the nearest
neighbors of cells Q andR, resulting in two additional sets.Themore
identical cells are present in these pairs of sets, the higher weight
is assigned to the anchor QR. In other words, anchors should link
the sets of similar cells in one sample with sets of similar cells in
the other sample. Next, the integration is performed, which involves
merging pairs of cells labeled as a single anchor, taking into account
their weight.

3.5 Description and comparison of
methods

Small modifications have been made to integrate scRNA-seq
datasets into the algorithm. Instead of using traditional CCA
(Canonical Correlation Analysis) to determine anchors, we employ
randomized non-linear PCA analysis called RPCA.When searching
for anchors between any two datasets using RPCA, each dataset
is projected into the space of the other principal components,
and anchors are selected based on pre-established requirements
of mutual neighborhood. The commands for both algorithms are
quite similar, but these two methods can be applied in different
situations (Figure 4).

CCA (Canonical Correlation Analysis) is well-suited for
determining common sources of variation between datasets.
In this case, cell types are well-known and remain constant,
while significant differences in gene expression patterns are
envisaged across different experimental conditions. CCA is used
for integration when experimental conditions or external factors
cause strong expression shifts. It is useful for integrating datasets
containing different types of data (proteomics, transcriptomics,
metabolomics, etc.) or datasets obtained from different species.
However, CCA-based integration can also lead to excessive
correction, especially when a large proportion of cells do not overlap
between datasets. Thus, it is not recommended to use a default
integration method as it may not fit the specific characteristics of
the cells being studied.

At this stage, the interaction between bioinformaticians and
biologists is crucial in selecting an appropriate method. However,
it is also not advisable to rely solely on one chosen method,
as even profound knowledge of the subject may not guarantee
that all sequencing preparation stages are executed
properly.

Of note, the RPCA-based integration runs significantly faster,
and also represents a more conservative approach where cells in
different biological states are less likely to “align” after integration.

Another method is called “sctransform,” and it avoids some
of the pitfalls of the standard normalization workflows, including
additional application of a pseudocount, and log-transformation.
In particular, scTransform is primarily a normalization method.
Within the framework of scRNA-seq analysis, data normalization,
exemplified by scTransform, represents a crucial step prior
to integrating different datasets. Such normalization methods
are instrumental in mitigating technical variations, thereby
ensuring the data is optimally prepared for subsequent analytical
processes, including integration. For further clarification the
readers may address SCTransform vignette (https://satijalab.
org/seurat/articles/sctransform_vignette.html, n.d.). In a single
command, and without any requirement to set user-defined
parameters, sctransform performs normalization, variance
stabilization, and feature selection based on a UMI-based gene
expression matrix (Hafemeister and Satija, 2019).

Integration, as one of the stages in the scRNA-seq data
processing pipeline, was not initially used. The need for such an
algorithm arose due to the specifics of cell sample preparation,
storage, and cell culturing in vitro (Hie et al., 2019). It is not always
possible to design an experiment that would take into account all
of the organizational issues related to cell isolation and culturing
as well as cell preparation for scRNA-seq (Richards et al., 2021).
Additionally, due to limited resources in research tasks, scientists
are often compelled to employ approaches that save both time
and resources (Ryu et al., 2023). As a result, cells may be isolated
at different times, by different individuals, and cell culturing and
storage as well as library preparation for sequencing are often
performed without extensive experience. All these deviations can
result in artifacts during integration. The goal of integration is
to create an “integrated” data assay for downstream analysis,
identify the shared cell types between datasets, obtain cell type
markers that are conserved in both control and stimulated cells,
and compare the datasets to identify cell-type-specific responses
to stimulation. In addition, there may be a less common task of
expanding the cell number in a sample or increasing the number
of reads. All this allows for creating the integrators, once analyzed,
can reveal missing patterns in the analysis of individual sample
arrays. The choice of integration algorithm is a crucial stage since
the subsequent downstream analysis results will depend on this
very stage.

4 Conclusion

The immense advances that are being made in mapping gene
expression at the resolution of single cells significantly extended
and expanded our understanding of biological objects. Meanwhile,
straightforward application of standard mathematical methods
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FIGURE 4
Cell Clustering and Integration Methods Using the Seurat Package. Cell Samples: Upper left–MSCs induced for adipogenic differentiation; lower
left–control MSCs sample. Integrator (clusters): Examples of data integration and clustering methods include CCA (Canonical Correlation Analysis),
RPCA (Reciprocal PCA), and SCTransform (Regularized Negative Binomial Regression applied to normalize UMI count data) (∗SCTransform is not an
integration method, it is used for data normalization as a substitute for Normalize Data, Find Variable Features, and Scale Data functions. Integrator
(samples) represents the integrated object of overlapping cell samples (control cells and MSCs induced for adipogenic differentiation).

to biological data analysis has already led to several erroneous
hypotheses. The underlying reasons behind this inconsistency is
the lack of communication between mathematicians and biologists.
The need for biological data analysis emerged long after the
mathematical methods were created, so blindly using them “by
default” in biology is completely unjustified. The solution lies
in a close collaboration between these specialists, with biologists
taking the lead in developing algorithms and equations that
describe biological processes. Students studying in faculties where
equal attention is given to biology and mathematics are to
become the versatile experts who can develop professional software
packages and libraries that take into account the peculiarities of
biological entities.

The early algorithms for scRNA-seq analysis have undergone
significant evolution. This evolution has been driven not only
by adaptation and modification of the existing mathematical
approaches for analyzing biological data but also by development of
new algorithms that have noticeably expanded themodern standard
pipeline for scRNA-seq data processing. However, there are key
stages in the algorithm, greatly affecting the right decisions made

for obtaining reliable results and the success in their interpreta-
tion. Experience shows that novices in this type of data analysis
often make similar mistakes. The goal of this article was to adapt
the mathematical principles and methods used in scRNA-seq
data analysis for application in biology. We also provide practical
recommendations for conducting the main stages of scRNA-seq
data analysis using the R package Seurat. One conceptual issue
addressed in the article is, in our view, the blind adherence
to the existing standard methods of scRNA-seq data analysis.
Mathematical methods used in analysis are employed on par
with biological experimental approaches. However, the complexity
of biological data calls for developing tailor-made mathematical
methods that take into account the peculiarities and complexity of
biological systems.

Devising a new bio-centric analytical framework may be
facilitated by the emerging fields in computational mathematics
such as systems and algebraic biology, systems theory, and
artificial intelligence. These fields will enable the researchers, in
close collaboration with biologists, to mathematically describe the
biological processes as well as to develop integral equations that
consider both, significant and non-significant variables.
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