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Machine learning and genomic medicine are the mainstays of research
in delivering personalized healthcare services for disease diagnosis, risk
stratification, tailored treatment, and prediction of adverse effects. However,
potential prediction errors in healthcare services can have life-threatening
impact, raising reasonable skepticism about whether these applications have
practical benefit in clinical settings. Conformal prediction offers a versatile
framework for addressing these concerns by quantifying the uncertainty
of predictive models. In this perspective review, we investigate potential
applications of conformalized models in genomic medicine and discuss the
challenges towards bridging genomic medicine applications with clinical
practice. We also demonstrate the impact of a binary transductive model and
a regression-based inductive model in predicting drug response as well as
the performance of a multi-class inductive predictor in addressing distribution
shifts in molecular subtyping. The main conclusion is that as machine
learning and genomic medicine are increasingly infiltrating healthcare services,
conformal prediction has the potential to overcome the safety limitations of
current methods and could be effectively integrated into uncertainty-informed
applications within clinical environments.

KEYWORDS
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1 Introduction

Artificial Intelligence (AI)-based models are having transformative impact on high-
risk predictions made for personalized medicine applications (Hamet and Tremblay, 2017).
Genomic medicine as a cornerstone of precision medicine has the potential to revolutionize
healthcare for rare diseases and cancer through robust and reliable personalized diagnosis,
risk stratification, and tailored treatment solutions (Brittain et al., 2017). However,
prediction errors can have life-threatening impact, raising reasonable skepticismonwhether
these applications are reliable and have clear practical benefit in routine clinical practices.
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The main sources of prediction errors are the stochasticity and
complexity of the models, the different data collection/curation
protocols, and domain shifts that result in data falling outside
training distributions (Stacke et al., 2020). Besides, even optimized
models and data curation protocols do not guarantee reliability
and robustness. Prediction errors can also be the result of aleatoric
uncertainties reflecting the irreducible variability which often arises
from the inherent randomness of the data that cannot be controlled
or predicted. In addition, incomplete domain knowledge and
limited data cause epistemic uncertainties that often result in model
inadequacies and inevitably poor performance. These challenges
underscore the need of rigorous uncertainty quantification to assess
and mitigate the risks associated with prediction errors. Particularly
in clinical applications that most often have no tolerance for errors,
enhancing the safety and reliability of AI-based predictions is a
prerequisite towards informed decision-making, improving also
trustworthiness and broader acceptance of AI-driven healthcare
solutions in practice.

1.1 Uncertainty quantification methods

To mitigate the risks associated with singleton predictions,
where each output corresponds to a single data instance, several
uncertainty quantification methods have been employed in
healthcare machine learning (ML) applications to calibrate
outcomes into distributional predictions (Chen and Guestrin,
2016). Bayesian inference is a statistical approach that uses Bayes’
theorem to combine prior knowledge of a model with the observed
data. Bayesian inference interprets probabilities as degrees of belief
and helps in estimating and managing uncertainty in predictions.
Specifically, Bayesian methods such as Monte Carlo dropout
(Hammersley, 2013), variational inference (Blei et al., 2017), and
Dempster-Shafer Theory (DST) (Xiao, 2020), along with non-
Bayesian techniques like deep ensembles (Lakshminarayanan et al.,
2017), softmax calibration, and selective classification (Geifman and
El-Yaniv, 2019), leverage prior distributions and posterior inference
to provide a probabilistic framework for estimating uncertainty in
predictions. Other techniques, including Fuzzy systems (Karaboga
and Kaya, 2019), Rough Set Theory (RST) (Pawlak, 1998), and
Imprecise Probability (Augustin et al., 2014), have also been applied
to manage uncertainty of ML models in healthcare applications
(Vidhya and Shanmugalakshmi, 2020; Ahmed P et al., 2020;
Giustinelli et al., 2022).These estimate the probabilistic distributions
rather than deterministic outcomes, enhancing both decision-
making and model interpretability—critical factors in healthcare
settings for decision support and risk mitigation. Distribution-free
uncertainty quantification techniques implement an alternative
approach as a general framework offering rigorous statistical
guarantees for black-box models, thereby reducing uncertainty in
the decision-making process. Conformal Prediction (CP) provides
a particularly effective and versatile distribution-free approach for
statistically quantifying uncertainty (Angelopoulos andBates, 2021).
Unlike traditional prediction methods, CP generates prediction sets
with guaranteed error rates, rather than point estimates. CP operates
under the assumption of independent and identically distributed
random variables (i.i.d.), with an emphasis on exchangeability.

1.2 Conformal prediction: principles and
frameworks

Conformal prediction was initially proposed by Vladimir
Vovk (Vovk et al., 2005), and later expanded by Vovk and
Shafer (Shafer and Vovk, 2008). CP provides a structured
framework for quantifying the uncertainty of model predictions.
Depending on the class labels, CP estimates prediction intervals for
regression problems and a set of classes for classification problems,
guaranteeing coverage of the actual value with a predefined
confidence level. CP leverages the concept of how “unusual” a
new sample is relative to prior observations to produce reliable
confidence levels. Therefore, CP uses past experience to determine
accurate confidence levels in new predictions (Shafer and Vovk,
2008). Operating under the assumption of independent and
identically distributed random variables (i.i.d.) or exchangeability,
CP ensures that the order of observations does not impact their
joint distribution. This makes CP particularly valuable in real-world
biomedical applications in which making assumptions about the
underlying data distribution may be challenging or unrealistic. CP
is defined as a mathematical framework that can be used with any
ML model to produce reliable predictions with high probability and
user-defined error rates (Vovk et al., 2005; Shafer and Vovk, 2008).

Given a set of training data D, with n instances
{(xi,yi),…,(xn,yn)}, where xi is a feature vector and yi is the true
label of the ith sample, with K labels in Y, the objective is to predict
the label yn+1 ∈ Y for a new sample with feature vector xn+1. In
classification problems, all possible classes of a new instance are
tested and the probability of a prediction to be the correct one for
each class is quantified. To this end, a non-conformity score αi is
calculated, which is based on the underlying ML algorithm and
indicates how strange an instance is compared with other instances.
A simple example of a non-conformity score is the 1-predicted
probability of the true class, otherwise called inverse probability. For a
new instance the non-conformity score is estimated for each possible
label and a p-value for each possible label is calculated to evaluate the
non-conformity score of the new instance against all other scores. In
a regression analysis framework, CP transforms point predictions to
intervals that contain the true value with a level of guarantee defined
by the user. To compute the non-conformity score for every sample
in the training set, we measure how different the observed value is
compared to the model’s prediction. Detailed information about the
mathematical framework can be found in the Supplementary File.

Figure 1, illustrates the two primary CP frameworks, the
Transductive CP (TCP) and Inductive CP (ICP). TCP, also known
as the full version of CP, uses all available data to train the model,
resulting in highly accurate and informative predictions (Vovk et al.,
2005; Gammerman and Vovk, 2007). In TCP, after selecting a
suitable non-conformity function, the features of a new instance
xn+1 are added to the dataset, and assuming its class yn+1, the model
is retrained K times, where K represents the number of possible
classes (e.g., two for binary classification). For each retrained model,
the non-conformity scores and p-values are calculated to determine
whether the new instance conforms to the existing data.This process
creates prediction regions but is computationally intensive, making
it ideal for small datasets or online applications. In contrast, ICP
addresses the computational inefficiency of TCP by splitting the
training dataset into two subsets: a smaller training set and a
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FIGURE 1
CP-based frameworks. Inductive CP (ICP), involves a static split of the dataset into training and calibration sets, using a single model for all predictions,
while Transductive CP (TCP), builds a new model for each test instance, offering potentially more tailored predictions at the cost of increased
computational effort.

calibration set (Papadopoulos, 2008). The training set trains the
model only once, while the calibration set is used exclusively to
compute p-values for new test instances. Although ICP sacrifices
some flexibility, it provides unbiased predictions and is well-
suited for large datasets, such as those encountered in multi-omics
analyses. The efficiency of ICP depends on factors like dataset size
and quality, the underlying ML algorithm, and the chosen non-
conformity measure. Both frameworks offer robust methods for
creating reliable prediction intervals while accommodating different
computational constraints.

1.3 Parameterization and evaluation

Conformal predictors enhance the reliability of black-box
models by generating prediction sets that reflect uncertainty
in high-risk applications. The evaluation of the conformalized
model generally concerns adaptivity, size, and coverage of the
prediction intervals. As Angelopoulos (Angelopoulos and Bates,
2021) proposed, a model’s adaptivity can be assessed by the size of
the prediction sets, with larger sets indicating higher uncertainty
and more challenging predictions, while smaller sets signify easier
ones. Adaptivity is closely linked to themodel’s conditional coverage,
which ensures that the true label falls within the prediction region
at a defined confidence level for any subset of the test set. Marginal
coverage is achievable, but conditional coverage requires consistency
across subsets of the test data. Angelopoulos et al. recommended the
size-stratified coverage (SSC) to measure adaptivity and suggested
verifying conditional coverage by repeating the framework with
different combinations of calibration and test sets (Angelopoulos
and Bates, 2021). In a similar vein, Park et al. proposed the meta-
XB, a meta-learning approach designed for cross-validation-based

CP that focuses on reducing the average size of prediction sets while
ensuring formal calibration for each task (Park et al., 2023).

Given that CP can be applied across various prediction models,
its effectiveness hinges on three critical parameters, the non-
conformity function, the size of the calibration set within an ICP
framework, and the underlying model. The effectiveness of the
non-conformity function depends on how well it aligns with the
underlying ML model, influencing the accuracy and reliability of
prediction intervals (Vovk et al., 2005). The calibration set size is
equally significant, as larger sets can enhance model coverage at the
expense of increased computational costs. Recent innovations, such
as scalingmethods (Abad et al., 2022) andCP extensions for efficient
transformer inference (Abad et al., 2022), address these challenges.
Lastly, the choice of the underlying model profoundly impacts CP
outcomes, as the model’s predictive performance directly affects the
non-conformitymeasure and, consequently, the quality of prediction
intervals. Selecting well-calibrated and high-performing models
tailored to specific applications is essential in building effective
conformal prediction frameworks.

1.4 Distribution shift

A major concern in ML applications is the deviation of the
properties and distribution of the new, unseen data compared
to those of the training set. The so-called distribution shift is
frequently observed in real-world predictive models, when the
joint distribution of inputs and outputs differs between training
and test stages. Covariate shift occurs when there is a discrepancy
between the distributions of input points in the training and the
test datasets, even though the conditional distribution of output
values given input points remains consistent (Sugiyama et al.,
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2007). The weighted CP proposed by Tibshirani et al. (2019) can
handle covariate shift by weighting each non-conformity score by a
probability that is proportional to the likelihood ratio of the new
data distribution to those used to build the model. The maximum
mean discrepancy (MMD), proposed by Borgwardt et al. (2006),
is a kernel-based statistical test used to determine whether two
samples are drawn from different distributions. In contrast to
typical measures like Kolomogorov-Smirnov test that can only be
applied in vectors, MMD is applicable in multivariate data that are
frequently met in genomic data analyses. The null hypothesis in
MMD statistical test states that there is no difference between the
distributions of the two datasets and therefore that the datasets are
drawn from the same distribution.

The label or prior probability shift, refers to a shift in the
distribution of class variables. A variation of CP named Mondrian
CP (MCP) can remedy this difference between the train and
validation samples. In MCP, each class is evaluated independently
to determine the confidence of assigning an instance to that class.
Predictions for the calibration set produce non-conformity scores
for each class. MCP ensures controlled error rates by categorizing
training sets based on features or their combinations and defining
significance for each category (Vovk et al., 2005; Boström et al.,
2021). It compares non-conformity scores only within the same
category, making it suitable for poorly distributed datasets. Label
ConditionalMondrian Conformal Prediction (LCMCP) is a specific
case of MCP where the category of each instance is determined
by its label. Under the same scope, Bostrom et al. proposed
the Mondrian conformal regressors handling the range of the
prediction interval (Boström and Johansson, 2020).

Recent work suggests CP as an effective framework that can
handle distribution shifts. Cai et al. utilized an Inductive Conformal
Anomaly Detection (ICAD) approach for online detection of
distribution shifts onhigh-dimensional datawith low computational
cost and efficiency (Cai et al., 2021). Hernandez et al. demonstrated
the robustness of conformalized models in predicting the activities
of novel molecules on cancer cell lines, offering valuable insights
for drug discovery under strong distribution shifts (Hernandez-
Hernandez et al., 2024). However, in real world applications,
distribution shifts are commonly encountered with unexpected
results in model performance. For large scale datasets, black-
box model architectures or hidden distribution shifts, predictions
must undergo careful examination before being applied in clinical
decision making. To prove this Kasa et al. examined how those
shifts affect CP and concluded that the performance degrades and
the coverage guarantees are frequently violated, highlighting the
challenges and the need for further elaboration on these issues (Kasa
and Taylor, 2023).

2 Conformal modelling in genomic
medicine

2.1 Current application landscape in
biomedicine

In principle, CP coupled with any traditional learning model
can be used to address uncertainty in a wide range of scientific
domains. In medical applications, it is crucial for any predictive

model to generate predictions tailored to each individual patient
rather than relying on generalizations from a broader population.
Hence the definition of the confidence intervals for individual
predictions is critical especially when these models are adopted
in clinical environments (Vazquez and Facelli, 2022). In such
clinical applications CP is used to intuitively express the uncertainty
of a prediction and to facilitate the model’s transparency and
robustness (Lu et al., 2022a). For example, CP has been employed
in medical imaging applications for subgroup analysis, distribution
shift estimation, and for the elimination of prediction errors in
safety-critical applications (Lu et al., 2022b; Millar et al., 2024).
Using microscopic biopsy images Olsson et al. implemented an
effective CP-based model for diagnosis and grading of prostate
cancer (Olsson et al., 2022). Additionally, Kapuria et al. proved that,
using CP, clinicians can make informed decisions and minimize the
risk of colorectal cancer polyps misdiagnosis (Kapuria et al., 2024).
In non-cancer applications, CP was used by Lu et al. to develop a
deep learning model for grading the severity of spinal stenosis in
lumbar spine MRI (Lu et al., 2022a) and Wieslander et al. combined
deep learning methods with CP to predict tissue sub-regions using
hierarchical identification on rat lung slides (Wieslander et al., 2020).

In preclinical settings, CP has been applied in drug discovery,
mainly to predict the biological activity of compounds based on
their chemical structure. CP-based methods have been used as
an alternative approach to traditional QSAR models, to predict
target-ligand binding that are enriched with uncertainty estimates
(Xu et al., 2023; Bosc et al., 2019). For example, Alvarsson
et al. used CP on top of random forest models to classify three
different ATP transporters (Alvarsson et al., 2021). The authors
concluded that the higher the level of confidence the larger the
prediction interval or set of predictions, and they suggested CP
as an effective method for drug discovery applications. Toccaceli
et al. demonstrated the application of an Inductive Mondrian
Conformal Predictor to predict the biological activities of chemical
compounds by addressing challenges such as the large number
of compounds, the high dimensionality of the feature space,
the sparseness, and the class imbalance (Toccaceli et al., 2017).
In the same context, CPSign proposed a conformal predictor
that is applied to chemical descriptors for chemoinformatics
modeling (McShane et al., 2023) while several other applications
in biomolecular design proposed sophisticated methods to handle
covariate shift, enabling the computation of distribution-free
prediction intervals (Fannjiang et al., 2022; Laghuvarapu et al.,
2024). Similar CP approaches have been extensively applied in
modeling chemical compound toxicity (Forreryd et al., 2018;
Fagerholm et al., 2022; Geylan, 2021; Zhang et al., 2021).

2.2 Existing conformalized models in
genomic medicine

Despite their widely recognized contribution to medical
imaging and drug discovery, conformal predictors have not been
sufficiently used in joint applications of genomics and medicine.
Genomic medicine is an emerging medical discipline and a rapidly
evolving field of predictive modeling applications. In areas such
as oncology, pharmacology, rare or undiagnosed diseases, and
infectious diseases genomic medicine has a transformative impact
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on improvingmedical decisions, and advancingmedical knowledge,
and healthcare delivery.

In the field of genomic medicine only few CP uncertainty-
aware models have been reported in the literature. Ianevski et al.
used patient-derived single-cell transcriptomic data to train a
gradient boosting model that prioritizes multi-targeting therapeutic
compounds for stratified cancer treatment (Ianevski et al., 2023).
In this ex vivo drug testing methodology the conformalized model
was built using subclone-specific differentially expressed genes and
helped to filter out predictions with low conformity scores. Single-
cell transcriptomic data was also used by Sun et al. to identify
subtypes within the neural stem cell lineage (Sun et al., 2024). In this
work, CP is part of a general framework for estimating uncertainty
in spatial gene expression predictions and is applied to calculate
the calibration score that links the cell-centric variability to the
prediction error.

In a different setting, Sun et al. proposed a method to address
personalized genetic risk assessment for complex diseases that relies
on a Mondrian cross-conformal prediction model to estimate the
confidence bounds of the polygenic risk score prediction (Sun et al.,
2021). The proposed method showed that using the predicted
risk of each individual to classify as a case or control is more
clinically relevant than group-wise assignments to high-risk or
low-risk groups based on an arbitrary selection of the extreme
scoring samples.

On the protein level, conformal predictions have recently been
employed as an effective approach to detect protein homologies
enabling the discovery of new proteins with likely desirable
functional properties (Boger et al., 2024). The method provides
statistical guarantees of the homology searches of a query protein
against a lookup database -instead of protein pairs- and functional
annotations by leveraging the vast amount of protein structures
produced by algorithms such as Alphafold (Jumper et al., 2021).
The proposed conformalized proteinminingmethod has potentially
significant implications in genomic medicine including drug
repurposing utilizing proteins with unique and desirable features,
the development of therapeutic enzymes or monoclonal antibodies
for personalized disease treatment and engineering proteins for
enhanced stability, activity, or binding affinity, creating more
effective therapeutics.

In pharmacogenomics, prediction error estimates have been
employed in a CP model to predict drug sensitivity and prioritize
drugs using gene expression levels of cancer cell lines (Lenhof et al.,
2024). The prediction outcomes show substantial improvement of
CP prediction accuracy and highlight the importance of developing
more sophisticated methods that incorporate multi-omics data,
to address not only monotherapies but also combinatorial
drug delivery.

2.3 Pitfalls and challenges

To advance clinical applications, genomicmedicinemodelsmust
deal with a variety of uncertainty-inducing and safety-critical issues
that are mainly caused by the inherent complexity and variability of
the biological systems, the inter-individual heterogeneity in genetic
profiles, environmental exposure, and lifestyle as well as the non-
linearity of the interactions within the patients data. Uncertainty

manifests in various steps of genomic analysis, and particularly
for ML applications has different dimensions. Uncertainties might
involve the ambiguity, complexity, or deficiency of the data, as well as
the unpredictability of the models. It is important to understand the
dimensions of uncertainty, however, it is also important to recognize
that uncertainty is not always problematic (Barlow-Stewart, 2018).
Uncertainty estimates can help acknowledge the complexity of
molecular events and account for the data variability in a model
recalibration.

By definition, CP estimates uncertainty when making
personalized decisions and leverages the evidence linking each
individual’s genetic makeup to zero-tolerance applications such as
medical decision-making, diagnosis, risk assessment, and treatment
strategies. In this context, CP-enriched models can greatly benefit
from the availability of massive amounts of trainable multi-omics
data derived from high-throughput sequencing technologies and
they can in turn contribute to improved generalizability and
calibration of rare events of the learning models. However, ML
applications that do not integrate uncertainty measures face
significant challenges. The inability to quantify uncertainty can
result in overconfident predictions, which pose risks in high-stakes
scenarios like personalized diagnostics and tailored treatment
planning. Without uncertainty estimates, models may struggle
to convey the reliability of their predictions, leading to potential
errors in decision-making. Furthermore, such models often fail to
adapt to novel scenarios, especially under distributional shifts or
when encountering rare events. The lack of uncertainty measures
also limits trust and transparency in clinical contexts, where
interpretability and confidence in the model’s outputs are of
paramount importance (Chua et al., 2023; Begoli et al., 2019).

2.4 Potential applications in genomic
medicine

CP can be an essential component for a much wider range
of genomic medicine applications combining predictive modelling
and high-risk decision-making. Genomic ML applications with
clinical relevance can greatly benefit by uncertainty estimates in the
following fields.

2.4.1 Variant calling and prioritization
The diagnosis and disease risk assessment in genomic medicine

is most often based on the presence of genetic variants. In
next-generation sequencing studies, genetic variants are detected
by complex deep neural network architectures, e.g., DeepVariant
(Poplin et al., 2018) and DeepSNV (Gerstung et al., 2012).
However, accurate variant calling is not a straightforward process
and is often error-prone, especially for tumor samples with high
heterogeneity and low purity, or for genomic regions that are
difficult tomap (Olson et al., 2022). To be able not to take the risk of a
prediction could be of great clinical significance, particularly while
trying to distinguish between somatic and germline variants or to
prioritize rare variants. In addition to variant calling, prioritizing
the detected variants based on their functional effect introduces
challenges that can be of clinical relevance when sorting neutral or
deleterious variants among those of unknown significance.
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2.4.2 Immunotherapy response prediction
In a similar setting, the mutational load of tumor DNA samples,

known as tumormutational burden, is a strong predictor of response
to immunotherapy. However, several issues, including the variability
of response levels by cancer type and the lack of a standardized
method for calculating variant burden, limit the reproducibility
and reliability of the predictions. In this context, conformalized
learning models are suitable for estimating the uncertainty of the
immunotherapy response predictions, and to avoid to take the risk
of a prediction in inconclusive cases.

2.4.3 Pharmacogenomics
Besides predicting immunotherapy responses, the genetic

makeup is a mainstay of research in pharmacogenomics to
tailor therapeutic solutions either by identifying biomarkers of
pharmacological response or by developing learning models.
ML-based applications develop strategies to prioritize candidate
anti-cancer drug compounds, or predict the sensitivity levels of a
particular compound, yet out of the context of reliability testing
and uncertainty estimates (Adam et al., 2020; Kardamiliotis et al.,
2022). Recently, Lenhof et al. developed a conformalized approach
that predicts and prioritizes drug sensitivity on cell line-based
monotherapy responses, based on gene expression profiles and user-
defined certainty levels (Lenhof et al., 2023). Compared to cell lines,
patient-derived profiles are preferred in the development of clinical
pharmacogenomic models however, they introduce additional
complexities that increase the uncertainty and risk of an erroneous
prediction. In addition, novel approaches demonstrate the need to
integrate multi-omics data in drug response predictions, including
mutations, copy number variations and proteomics. Multi-omics
data can be particularly informative and, when combined with
uncertainty estimates, could facilitate safer predictions and
decipher the physical/functional gene-drug interactions. These
potential applications collectively demonstrate the need to establish
robust genomic medicine frameworks capable of evaluating the
predictability in clinical applications and enhancing reproducibility.

2.4.4 Reverse vaccinology
Reverse vaccinology (RV) is a rapidly evolving approach

in vaccine development against pathogens that utilizes genome
sequences to predict antigens that can elicit strong immune
responses. RV workflows include several analysis steps
(Trygoniaris et al., 2024) in which ML models are often used to
predict B-cell and T-cell epitopes based on the pathogen’s genomic
and proteomic features (Clifford et al., 2022). In addition, predictive
models are used to assess and prioritize vaccine candidates based
on factors like antigenicity, immunogenicity, conservation across
strains, and homology to host proteins to avoid autoimmune
reactions (Ong et al., 2020). A critical step in RV is the integration
of 3D modelling algorithms to predict the folded 3D structure of the
vaccine construct and the development of multi-epitope vaccines.
Considering the poor quality of the training data and the difficulties
in experimental screening, being able to quantify uncertainties in
each ML-based analysis would greatly advance model calibration
and validation (Goodswen et al., 2023). In this context, CP models
can be particularly useful in validating ML predictions by ensuring
that the specified coverage probability is maintained across different
datasets and pathogen-host application scenarios.

2.4.5 Antimicrobial resistance
Antimicrobial resistance (AMR) is a serious public health

threat that is responsible for prolonged hospitalizations and more
than one million deaths per year (Murray et al., 2022). The
availability of millions of whole genome sequencing data annotated
with diverse AMR phenotypes enabled the development of ML
methods that predict AMR using pathogens features, mainly
genomic variability (Kim et al., 2022; Nguyen et al., 2018) and
biochemical information (Kavvas et al., 2020). However, the
reliability of the predictions is subjected to several confounding
factors, e.g., biased sampling and poor genome assembly quality
due to increased contamination rates, poor coverage and low read
depth. Erroneous predictions of AMR against antibiotic compounds
can be life-threatening and therefore uncertainty guarantees in
either supervised classification (sensitivity/resistance prediction) or
regression problems (quantification of the minimum inhibitory
concentration values) can be particularly valuable. In this context,
conformalized models can be important preventive measures
offering safer clinical decision making, while also helping in
deciphering the molecular mechanisms underlying AMR.

In this study, we rigorously explore the potential of conformal
predictors in genomic medicine and demonstrate their pivotal
role in yielding more reliable predictions using three application
scenarios. Specifically, we evaluated CP-enriched models on a
binary classification, on a multi-class classification problem under
distribution shift and a regression-based application aiming to gain
further insights into how conformalized predictive modeling can be
practically integrated into genomic medicine. The study discusses
further the strengths and challenges and highlights the main issues
that should be addressed in order to unequivocally ensure patient
safety when pivotal decisions are delegated to clinically deployed
AI systems.

3 Experimental setting and results

To practically assess the applicability of CP in genomic
medicine we sought to examine how ML models can benefit
from conformalized predictions in two example classification
problems and one regression problem. The objective was to
cover both binary and multi-class predictions, small and larger
datasets, different application domains and both inductive and
transductive frameworks. First, a TCP-based pharmacogenomic
learning model was implemented to demonstrate the impact
of conformal predictors in tailoring personalized therapeutic
decisions. Transcriptomic profiles of rheumatoid arthritis and
Crohn’s disease patients undergoing infliximab treatment were used
to estimate the uncertainty of the drug sensitivity predictions
(Figure 2). In the multi-class setting, an inductive conformal
predictor was built to assess the diagnostic predictions for patients
with different transcriptional subtypes of diffuse large B-cell
lymphomas (Figure 2). Finally, in the regression setting, an inductive
conformal predictor was used to predict the pharmacological
response of cancer cell lines to afatinib. Both classification models
used publicly available gene expression datasets deposited in
Gene Expression Omnibus under the accession IDs GSE42296
for rheumatoid arthritis and Crohn’s disease (Mesko et al., 2013)
and GSE181063 for diffuse large B-cell lymphoma samples. To
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FIGURE 2
Overview of the classification study design. First, the ML model produces singleton predictions for the binary (responder/non-responder patients to
infliximab) and the multiclass (MHG, GCB and ABC subtypes of diffuse large B-cell lymphomas) problems. Singleton predictions are given without any
indication of their accuracy and reliability. In the second step, CP is applied on the results of the ML models to estimate the uncertainty of each
prediction. In the binary classification, TCP produces a prediction region that contains the true class with high probability and detects the uncertain
(UNC) predictions. In the multiclass setting ICP identifies unreliable predictions among the samples classified by the non-conformalized model.

train the regression model, data from the Genomics of Drug
Sensitivity in Cancer (GDSC) database was used. In all use
cases, we applied MRMR (Maximum Relevance - Minimum
Redundancy) feature selection and statistical tests to assess the
validity of the i.i.d. assumption (Peng et al., 2005). It should
be noted that although the application scenarios address real-
world research problems, the prediction results are not intended to
produce novel research findings as this is out of the scope of this
perspective review.

3.1 Responder prediction to infliximab

In their study, Mesko et al. correlated the pharmacological
response of rheumatoid arthritis and Crohn’s disease patients to
infliximab using their transcriptomic profiles (Mesko et al., 2010).
The study includes 44 Crohn’s disease patients and 34 rheumatoid
arthritis patients of which 40 responders and 38 non-responders.
Affymetrix Human Gene 1.0 ST array quantified the expression
levels of each sample in 33,297 target probes. The objective was to
identify subsets of genes that can act as drug sensitivity biomarkers.
In our experiment we sought to compare non-conformal and
conformalizedmodels in the binary setting using anMLmodel and a
TCP framework to estimate the uncertainty of the model. TCP was
selected as a favorable framework because it avoids the extra split
for the calibration set which is preferable for small sample sizes. To

evaluate TCP, we utilized the empirical coverage (Angelopoulos and
Bates, 2021), which measures the frequency of the true class within
the prediction region. We then assessed the error rate threshold,
ensuring it did not exceed the specified significance level of the
conformal predictor.

Following the preprocessing step, we trained an SVM model on
the top 100 genes with the highest discriminative power according to
MRMR.Forthe20%randomlyselectedpatients includedinthetestset,
the model yielded 87% accuracy (AUC = 0.9), optimized by a grid-
based parameter tuning (Figure 2). By setting the significance level
to 95% and defining the inverse probability, 1− p(yi|xi), as the non-
conformity measure conformal predictions resulted in a 2.25% error
rate compared to 12.5% of the SVMmodel without CP (Table 1). Two
out of the 16 test cases were marked as uncertain requiring further
evaluation by an expert physician. In this case, CP eliminated the
misclassified samples by sorting out ambiguous cases, while for half
of them the ML model alone made erroneous singleton predictions.
The use of CP in this use case succeeded to reduce wrong predictions
and to identify those cases that are hard to classify and should be
forwarded for manual assessment.

Concerning the singleton predictions, TCP identified eight non-
responders and six patients who will respond to infliximab. This
group of patients is correctly classified to the actual class with an
error rate of 5%. Moreover, for two wrong predictions of the non-
conformalized SVM model, CP flagged one of them as uncertain,
which identifies this patient as a difficult-to-classify case (Table 1).
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TABLE 1 Performance of the non-conformal and the conformalized binary and multiclass models (95% confidence interval).

Experiment Non-conformal
model

Conformalized model Comparison

Model Error rate E. Coverage Error rate UNC rate Error detection

TCP (Binary) SVM 12.50% 93.75% 6.25% 12.50% 50.00%

ICP (Test) XGBoost 16.25% 95.20% 4.80% 35.60% 70.50%

ICP (Validation) XGBoost 16.35% 96.70% 3.3% 38.18% 86.82%

For this patient, the treatment decision should bemade by an expert.
Overall in these personalized therapeutic decisions, CP can stand
alongside the physicians to flag the difficult-to-predict patient cases
for further manual data curation and closer treatment monitoring,
thereby improving the decision-making time and minimizing the
risk of wrong interventions.

3.2 Predicting molecular subtypes of
diffuse large B-cell lymphoma

In the multi-class use case we used CP as a diagnostic
predictor to classify patients with diffuse large B-cell lymphoma
based on the distinct transcriptional profiles of their tumor cells.
Diffuse large B-cell lymphoma is the most common hematological
malignancy characterized by highly heterogeneous molecular
signatures. Approximately 80% of the lymphomas are curable
using R-CHOP combination therapy yet, there is a biologically
heterogeneous group of patients that differs in terms of their clinical
characteristics andprognostic factors (Painter et al., 2019).Therefore
to enable precise patient stratification in clinical trials, we first have
to distinguish patients who are likely to respond to R-CHOP alone
frompatient groupswhomay benefit from emerging therapies based
on the molecular heterogeneities of the disease (Lacy et al., 2020).

So far, diffuse large B-cell lymphoma patients are classified based
on the Cell of Origin (COO) in the activated B-cell like type (ABC)
and the germinal center B-cell like (GCB) subtypes. Recently, Sha
et al. proposed a new distinct molecular subtype with aggressive
clinical behavior called molecular high-grade B-cell lymphoma
(MHG) (Sha et al., 2019; Sha et al., 2015). Patients of this subtype
tend to not respond to R-CHOP therapy, despite the similarity
with the GCB subtype, and they may benefit from either intensified
chemotherapy or new targeted therapies. Clinical trials require the
identification of the COO to personalize therapeutic interventions
and to decipher the mechanisms of the disease pathogenesis.

In this experiment we built an inductive version of the CP
model on a gene expression dataset of 1,311 samples extracted
from formalin-fixed, paraffin-embedded biopsies (GEO Data series:
GSE181063). The RNA samples include 345 ABC, 517 GCB, and
170 MHG molecular subtypes except for 278 patients who were not
classified in any of the three classes and characterized as unclassified
(Figure 2). Illumina’s HumanHT-12WG-DASLV4.0 beadchip array
quantified the expression levels of each sample in 29,377 target
probes. Following a data cleansing and quality control step 20
probes were selected by the MRMR algorithm to build the training
feature set. The multi-class model was trained by XGboost (Chen

and Guestrin, 2016), the hinge loss function was applied as non-
conformitymeasure in the ICPmodel and the empirical coveragewas
used to evaluate the conformal predictor.

XGBoost has a classification error of 16.25%on 10%of randomly
selected patients. The conformalized XGBoost model resulted in
4.8% subtype classification error using 95% confidence level. In
addition, the inductive predictor flagged, 37 patients (35.6%) as
uncertain that are distributed in the following prediction regions:
{MHG,GCB}= 8, {MHG,ABC}= 2, {GCB,ABC}= 19, {MHG,GCB,
ABC} = 8. Non-singleton predictions involve mainly GCB samples
that are most oftenmisclassified as ABC samples. MHG has a clearly
separable profile being transcriptionally closer to the GCB subtype.
For eight patients the conformalized model was not able to exclude
any prediction region. However, the ICP model managed to avoid
the misclassification of 12 out of the 17 wrong predictions of the
XGBoost model alone. The results reinforce the reliability of the
prediction regions, as they detect the wrong assessments of the basic
algorithm and give a better view of the difficult examples, while at
the same time, they limit the range of possible classes to facilitate
the final expert decision.

Concerning the 278 unclassified patients, although there is no
class assignment ICP provides singleton predictions for 30.2% of
the samples {MHG} = 1, {GCB} = 28, {ABC} = 55 (Figure 2).
The remaining are ambiguous cases involving either two classes
{MHG, GCB} = 1, {MHG, ABC} = 9, {GCB, ABC} = 135, or all
three {MHG, GCB, ABC} = 49. Among the 194 uncertain cases,
most of them involve double predictions (145 cases) of GCB and
ABC classes, which is also inline with the principal component
analysis in Figure 3. Both single and double predictions provide
insights beyond what a non-conformalized learning approach alone
can offer and can be useful in preventing erroneous predictions that
are of major importance in clinical decision-making.

To evaluate the reliability of the prediction regions on unseen data
we sought to examine the fundamental exchangeability assumption
on an external diffuse large B-cell lymphoma gene expression dataset
(GEO Data series: GSE117556). The gene expression profiles were
produced from 789 RNA samples extracted from formalin-fixed,
paraffin-embedded biopsies using Illumina’s HumanHT-12 WG-
DASL V4.0 beadchip array. To assess the level of distribution shift we
applied the MMD measure and compared the produced probability
distributions of the two datasets. Figure 4 shows the distribution
shift between the two datasets. We computed an MMD statistic of
0.0011 and performed a permutation test to determine the p-value,
which was found to be 0.017. Since this p-value is less than the
significance level a = 0.05, we reject the null hypothesis that the two
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FIGURE 3
Principal Component Analysis (PCA). Left: PCA analysis of the samples without unclassified cases (UNC), revealing a small overlap between subtypes
ABC and GCB. Right: PCA analysis of the dataset including unclassified cases (UNC), shows the UNC class overlapping with subtypes ABC and GCB.

datasets are generated from the same distribution. The robustness
of the conformalized model in the distribution-shifted data was
examined by estimating the classification performance of the ICP
model on the external data. For a 95% significant level, the ICP
model resulted in 26 misclassifications while the XGboost model
alone failed to correctly classify 129 samples, out of the 789 samples.
The ICP model flagged 112 out of the 129 misclassified samples as
uncertaincases tobefurtherassessedbyclinicalexperts.Theerroneous
predictionsof the conformalizedmodel, limit by80%the riskof failure
on data under distributional shift. However, there is an increased
number of double predictions that mainly involve the GCB and ABC
samples accounting totally for 225 samples and 77 cases for triple
predictions.On the contrary, theMHGclass does not show significant
overlap with the GCB and ABC samples, accounting totally for 2 and
14 cases, respectively.

The results indicate that MHG has a separable transcriptional
signature while deeper investigation is needed to accurately
discriminate theGCB andABCmolecular profiles. Despite its ability
to protect from false predictions, the conformalized model is more
conservative than the XGboost model in making accurate singleton
predictions (482 in total, of which {MHG} = 32, {GCB} = 295,
{ABC} = 155). In other words CP effectively minimizes the risk of
underestimating uncertainties at the expense of a lower number of
definitive assessments.

Overall, in this generalizability test the ICPmodel achieved 96.6%
empirical coverage on the unseen dataset. In principle, we proved the
ability of our conformal classifier to generalize to data with different
distributions, a significant advantage in medical applications where
data heterogeneity is a common issue.These results, shown in Table 1,
demonstrate the robustness of the conformal classifiers in handling
data with varying distributions, but also the need to promote the
adoption of CP-based frameworks in genomic medicine to be able to
draw safer and more definitive conclusions.

FIGURE 4
Visualization of the distribution shift between the two diffuse large
B-cell lymphoma datasets based on the maximum mean
discrepancy (MMD).

3.3 Predicting pharmacological response
of cancer cell lines to afatinib

In the regression use case, we implemented an ICP approach to
predict the resistance of cancer cell lines to afatinib, an antineoplastic
agentthat isusedtotreat locallyadvancedandmetastaticnon-smallcell
lung cancer. Instead of categorizing samples into binary classes drug
responses are quantified based on continuous drug concentrations
that caused inhibition of 50% cell viability (IC50), with higher IC50
values indicating greater resistance. In this study,we sought to evaluate
the scalability and robustness of CP uncertainty-aware regression
models in predicting IC50 values using gene expression levels of
cancer cell lines. The model was trained on a dataset of 765 cancer
cell lines, each one including the expression levels of 17,613 genes and
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TABLE 2 Performance of the ICP regression model.

Significance level α-Quantile E. Coverage

1 0.95 6.98 95.5%

2 0.90 6.77 92.6%

3 0.85 6.63 90.6%

the corresponding IC50 values were recorded 72 h after treatment.
The pre-processing steps, including outlier management and feature
selection,refinedthedatasetto677cell lineswithIC50rangingbetween
0.00316 and 675, and identified 10 significant genes, meeting the i.i.d.
assumption. A Random Forest (RF) algorithm was employed as the
baseline regression model, the absolute deviation from the ground
truth and the predicted value was used as non-conformitymeasure in
the ICP model and the empirical coverage was used to evaluate the
performance of the conformal predictor. The predicted IC50 values
of the RF regressor had a mean squared error (MSE) of 14.35 and an
R-squaredvalueof0.84for20%ofthecell lines includedinthetestdata.

As expected, the model exhibits significant deviation from the
ground truth,mainlydue to theheterogeneityof cancer types included
in the dataset. To address this issue and better capture the variability
in the data, we incorporated an inductive conformal predictor into
the decision-making process. The ICP framework was employed to
quantify theuncertainty of point predictions, providing a rangewithin
which the IC50 values are likely to fall.This approach aimed to reduce
MSE and to provide a more precise and reliable estimation of the
drug response for each cell line. By setting the significant level of 90%,
and computing the non-conformity scores for the calibration set (20%
of the training data), we found that at least 90% of the examples in
the calibration set have a deviation value from the true IC50 value
below the 6.77. The cutoff was set to 6.77 as it reflects the challenges
faced by the baseline algorithm in accurately predicting new cases.
With this value, we constructed the predicted range by adding and
subtracting this value to every RF prediction. The conformal model
constructed prediction ranges that contained the true IC50 value for
92.6% of the test set. When the same process was repeated with
significance levels of 85% and 95%, themodel achieved coverage rates
of 90.6% for an a-Quantile of 6.63% and 95.6% for an a-Quantile of
6.98, as shown in Table 2. These results highlight the scalability of CP
and its ability to meet user-defined coverage levels. Additionally, the
a-Quantile in each case defined the size of the prediction intervals,
with larger ranges corresponding to higher desired coverage levels
and smaller ranges to lower ones.

Overall, the regression conformal model effectively mitigated
the inaccuracies of the baseline predictions by replacing individual
point estimates with prediction intervals that achieve 92.6%
coverage. This improvement is particularly significant in clinical
settings, where constraining the index value to a high probability
interval providesmore actionable information than a single estimate
with substantial potential deviation. Furthermore, instances where
the true value falls outside the prediction interval serve as important
indicators for further investigation, alerting experts for unusual
cases that may require additional scrutiny.

4 Discussion

As AI is increasingly adopted into real-world problems the
trustworthiness of ML applications in clinical environments is
progressively acknowledged. However, denying taking a prediction
risk when confronted with unusual cases is still not part of the
mainstream procedures when building a model. CP is a powerful
tool for estimating uncertainties as it combines favorable features
such as i.i.d. assumption, the model-agnostic mode of application,
and the adjustable prediction regions. CP addresses reliability
concerns that often arise when dealing with imbalanced datasets,
insufficient conditional coverage, and domain shifts (Mehrtens et al.,
2023). Particularly in the genomics era, CP can overcome domain
shifts caused by overlooking the heterogeneity introduced during
data acquisition processes or data themselves, e.g., differences in the
prevalence of a phenotype across populations. Coupled with larger
or new representative calibration datasets under domain shift, CP
provides adequate flexibility to keep coverage guarantees.

Another important feature is that CP can effectively lie on the
top of both Deep Learning (DL) and simpler ML models. The
fundamental basis is that CP helps to quantify and communicate
the model’s uncertainty effectively depending on the underlying
model’s predictions. Traditional ML models typically deal with
lower-dimensional features and simpler decision boundaries. These
models typically provide clear decision rules or margins, which
CP can straightforwardly translate into probabilistic measures of
uncertainty. In contrast, DL operates on high-dimensional spaces
with complex decision boundaries, capable of capturing intricate
patterns and relationships in the data, which CP can use to generate
more detailed and refined prediction intervals. The complexity of
DL models allows CP to handle a wider range of applications
in DL, such as image processing (Rouzrokh et al., 2024), natural
language processing (Randl et al., 2024) graphs or big data models
(Norinder and Norinder, 2022; Park, 2022). Thus, CP can adapt
to the nature of the underlying model, utilizing the strengths of
both traditional ML and DL to enhance the interpretability and
trustworthiness of the predictions.

On the other hand, interpretability is another major concern,
particularly in complex and black-box deep learningmodels. CP has
been acknowledged for its ability to provide guaranteed prediction
sets and intervals that can be easily understood and communicated,
offering a clear way tomeasure uncertainty. In addition, theminimal
assumptions about the data distribution enhance interpretability by
avoiding strict and probably unrealistic assumptions. However,
the extent to which a conformalized prediction is interpretable
partially depends on the interpretability of the underlying
models themselves. For example, rule-based models, and decision
trees offer a straightforward interpretation of their predictions
contrary to deep neural networks and non-linear gradient
boosting methods.

Although integrating CP into AI models seems compelling,
there are a few limitations to be considered. Distribution-free
uncertainty quantification methods, such as CP, are gaining interest
among researchers due to their ability to provide reliable uncertainty
estimates without assuming specific data distributions. CP ensures
that, on average, can cover the correct class with a certain probability
(marginal coverage). However, CP cannot provide guarantees for
individual instances or structured subgroups of the data (conditional
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coverage). Practically, a conformalized model with a 90% marginal
coverage guarantee ensures that the predictive set covers the correct
class with 90% probability on average. This does not mean that
each prediction covers the actual class with 90% probability for each
individual instance or subgroup of the data.This limitation is crucial
especially when dealing with specific subsets of data of particular
interest, such as rare disease cases orminority classes in classification
tasks. In such cases, researchers must be cautious when interpreting
predictions, especially in scenarios where precise classification for
individual instances is crucial.

In addition, challenges such as class imbalance, variance, and
distribution shifts between training and validation data must be
examined. These issues are mainly resolved by recalibrating the data
using various combinations of attributes and classes with new data
or by the adjustment of the existing calibration dataset with weights.
Still, obtaining new and especially rare data to train the model with,
in real-world scenarios can be challenging.

A reasonable question is how informative a conformal classifier
can be in a binary classification settingwhen an uncertain prediction
contains all the possible labeling options. Krstajic et al. question the
utility of CP frameworks in binary classification scenarios (Krstajic,
2021). They reasonably wonder why someone should choose CP
when a good binary classification model is built and how is it
possible to include as correct coverage the predictions in which CP
identifies both classes. In this work, we sought to highlight another
aspect that is related to the detection of erroneous cases of the
underlyingmodel. In high-risk genomicmedicine predictions, when
specialists want to rely on the predictions of an ML model it is
important to give them all the possible views of these predictions.
For example, relying on a good binary classification model without
any other guarantee of the resulting prediction may be a deterrent
to incorporating such models into clinical decision-making. As we
proved in the applications of this study, CP managed to detect the
erroneous predictions of the underlying algorithm and classify them
as uncertain cases. In clinical terms, these cases are translated as
difficult to classify and consequently, the decision is risky to be taken
by the ML model. In these cases, the contribution of an expert is
necessary to avoid any misconduct.

In our point of view, the behavior of the conformal predictors
can be a good step forward in bridging the trust between themedical
community and the predictive modelling applications, since the
latter can work side by side with the experts in the clinical decision-
making process as a powerful and informative tool leaving the final
decision to be deployed by experts in ambiguous cases. Additionally,
a singleton prediction mathematically guarantees a safe decision
with high confidence.

Overall, while conformal prediction offers valuable insights and
uncertainty estimates for high-stake decision-making processes,
it comes with several limitations and challenges. Ensuring the
reliability of a prediction requires addressing issues such as
distributional shifts in feature variables and labels, as well as
the availability of representative calibration data. The need for a
separate calibration set, may lead to data inefficiency by reducing
the data available for training. This constraint can be particularly
challenging in scenarios where data is limited or costly to obtain.
Cross-validation-based CP or integrating calibration within the
training phase can help optimize data usage, ensuring that model
performance is not significantly compromised. Another critical

challenge lies in selecting an appropriate confidence level, as
it usually requires domain expertise and directly influences the
practical utility of the prediction sets. If the confidence level is too
low, the resulting prediction sets may be overly narrow, potentially
excluding the correct outcomes. Conversely, an excessively high
confidence level can lead to overly broad intervals, reducing
their interpretability and practical usefulness. To address this,
adaptive techniques such as empirical tuning based on validation
performance or automated selection using Bayesian optimization
can be employed. These methods enable dynamic confidence level
adjustments, improving both model interpretability and decision-
making accuracy. Although solutions such as recalibration and
careful dataset management exist, they may not always be feasible,
particularly in settings with limited data availability or where rare
conditions are involved. Moreover, the effectiveness of conformal
prediction depends on the quality and representativeness of the
training data. Insufficient or biased datasets can lead to unreliable
predictions, especially in cases of class imbalance or rare events.
Strategies like data augmentation, synthetic data generation, and
active learning can help mitigate these limitations by enhancing
model robustness. Despite these challenges, the interpretability
and robustness of conformal prediction make it a promising
tool in domains such as healthcare, where the consequences of
incorrect decisions can have a life-threatening impact and the
ethical use of the models is mandatory. In-depth research and
practical applications will be essential to address these challenges
and to fully leverage the potential of conformal prediction in
real-world scenarios. It is anticipated that as ML and genomic
medicine are progressively infiltrating healthcare environments,
CP will support more sophisticated approaches and enhance the
range of uncertainty-informed multi-omics applications in clinical
environments.
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