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MetaComBin: combining
abundances and overlaps for
binning metagenomics reads

Francesco Tomasella and Cinzia Pizzi*

Department of Information Engineering, University of Padova, Padua, Italy

Introduction: Metagenomics is the discipline that studies heterogeneous
microbial samples extracted directly from their natural environment, for
example, from soil, water, or the human body. The detection and quantification
of species that populate microbial communities have been the subject of many
recent studies based on classification and clustering, motivated by being the
first step in more complex pipelines (e.g., for functional analysis, de novo
assembly, or comparison of metagenomes). Metagenomics has an impact on
both environmental studies and precision medicine; thus, it is crucial to improve
the quality of species identification through computational tools.

Methods: In this paper, we explore the idea of improving the overall quality
of metagenomics binning at the read level by proposing a computational
framework that sequentially combines two complementary read-binning
approaches: one based on species abundance determination and another one
relying on read overlap in order to cluster reads together. We called this
approach MetaComBin (metagenomics combined binning).

Results and Discussion: The results of our experiments with the MetaComBin
approach showed that the combination of two tools, based on different
approaches, can improve the clustering quality in realistic conditions where the
number of species is not known beforehand.
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1 Introduction

Microbes influence everyday life in countless ways, from helping modulate
the atmosphere to keeping animals (including humans) and plants in a healthy
status and helping detect environmental pollution and disease spread. Traditional
genomic-based approaches require prior clone and laboratory culturing for further
investigation (Felczykowska et al., 2012). However, not all bacteria can be cultured in
a laboratory, as they might require habitat conditions that cannot easily be reproduced.
Moreover, in a laboratory culture, the presence of multiple species, which is the norm in
living environments, is usually considered contamination, thus preventing holistic study.

The advent of metagenomics has revolutionized the field of microbiology
by shifting the focus from the individual microbe study to that of a complex
microbial community. Metagenomics is the study of heterogeneous microbial
communities by directly sampling the natural environment in which they live
and sequencing the entire microbial community it contains (Kang et al., 2015).
Samples can be taken from a variety of environments (e.g., soil, water, or the
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human gut or saliva, etc.) with the primary goal of determining
the taxonomic identity of the microorganisms that are present in
the samples (Staley and Konopka, 1985). Microbial studies play
a prominent role in both environmental studies and precision
medicine. In fact, among the advantages of metagenomics is
the possibility of studying interactions among microbes living
in the same environment (Shreiner et al., 2015) and comparing
samples taken from similar environments or at different points
in time for environmental monitoring or health screenings (e.g.,
Ondov et al., 2016; Pellegrina et al., 2020).

Alongside opening new research perspectives, metagenomics
brings both experimental challenges for correct environmental
sampling and computational challenges for quality control,
assembly, and taxonomic and functional classification of large-scale
complex communities (Bharti and Grimm, 2021). In particular,
the detection and quantification of the species in a metagenomics
sample is of paramount interest both as a challenging computational
problem per se and as the first step in complex pipelines for
functional analysis and sample comparisons (Mande et al., 2012).
Despite extensive studies, accurate identification at the read
level remains challenging (Sczyrba et al., 2017; Comin et al.,
2021). Supervised methods can obtain high precision levels,
but they rely on reference database completeness. Moreover,
the construction of a k-mers DB usually requires computing
capabilities with large amounts of RAM and disk space. Another
drawback is the inherent incompleteness of available databases:
most bacteria found in environmental samples are unknown
and cannot be cultured and separated in the laboratory; thus,
their genome is not yet present in reference databases. For
these reasons, the number of unassigned reads can be very
high when using supervised methods (Lindgreen et al., 2013;
Girotto et al., 2017a).

On the other hand, unsupervised classification tools, also known
as metagenome binning algorithms, are based on the observation
that the k-mer distributions of the DNA fragments from the same
genome are more similar than those from different genomes. Thus,
without using any reference genome, one can determine if two
fragments are from genomes of similar species based on their k-
mer distributions. In this study, we will focus on the unsupervised
detection of species in a samplewithout the use of reference genomes
and consider the short reads provided by the sequencing process as
fragments.

One of the major problems when processing metagenomic
data is the fact that the proportion of species in a sample,
that is, the abundance rate, can vary greatly. Some tools, for
example, AbundanceBin (Wu and Yuzhen, 2011), explicitly exploit
this variability, clustering reads based on their abundance ratio.
Although this approach works well if all the species in the sample
have a different abundance, the approach struggles to distinguish
among species with the same abundance. Approaches based on
exploiting read overlaps and subsequently clustering them are
capable of better distinguishing among single species, even if their
abundance is similar. In recent years several such approaches
have been proposed, mainly differing in the techniques used for
feature extraction and the distance measure they use to define
similarity (Wang et al., 2012; Vinh et al., 2015; Girotto et al., 2016;
Andreace et al., 2021; Balvert et al., 2021).

In this paper1, we explore the idea of improving the overall
quality of metagenomics binning at the read level by proposing
a metagenomic combined binning framework, MetaComBin,
that sequentially combines two complementary read-binning
approaches. Read binning is intrinsically more difficult than contig
binning, especially when short reads are used due to the limited
length that can be exploited to compute statistics on the read
itself. The authors of AbundanceBin tried a similar approach,
combining their tool with MetaCluster. However, their experiments
assumed that the exact number of species in the sample was known
beforehand. Motivated by the curiosity of testing this idea on a
more realistic framework, we paired AbundanceBin with MetaProb,
which has the capability of estimating the number of species and
proved in separate experiments Girotto et al. (2016) to outperform
MetaCluster.

We run experiments on three datasets with several species,
some of which, but not all, occur in the sample with the same
abundance. The datasets we chose were among the most difficult to
cluster by state-of-the-art methods for read binning, according to
previous studies (Girotto et al., 2016). Our experiments suggest that
our intuition is correct and that the combination of complementary
tools can indeed be beneficial for metagenomic binning at the read
level in more realistic, unsupervised settings.

2 Materials and methods

In this section, we will describe MetaComBin, the combined
framework we used for our analysis, starting with the
methodological details of the two tools we used: AbundanceBin
(Wu and Yuzhen, 2011) and MetaProb (Girotto et al., 2016).

2.1 AbundanceBin

AbundanceBin is a tool for metagenomic binning based on
abundance estimation. One of its strengths is its ability to produce
satisfactory binning results even when the reads are very short
(approximately 75 bp). The tool can work in an unsupervised
manner, not requiring any information regarding the number
of bins, similar to the data obtained in real and non-simulated
situations when we do not know the composition of the samples.
The working hypothesis of AbundanceBin is that the distribution of
reads follows the Lander–Waterman model, whereby the coverage
of the various nucleotide positions is modeled via a Poisson
distribution. The metagenomics sequencing procedure can be
viewed as a set of Poisson distributions, each of which represents
a different species. In the presence of m different species, therefore,
it is possible to identify m Poisson distributions. The mean of each
of these distributions represents the abundance of the species and is,
therefore, the element that must be calculated to obtain an estimate
of their abundance.

AbundanceBin thus solves an optimization problem using an
expectation-maximization (EM) algorithm. Once the EM algorithm
has converged, it is possible to calculate the probability of assigning

1 A preliminary version was presented at ICCABS2023.
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a read to a bin, even if there is the possibility that the read remains
unassigned.The EM algorithm requires the number of bins as input.
To solve this problem, AbundanceBin adopts a recursive approach
that is based on dividing the dataset into two bins, subsequently
iterating the process until bins with very different abundances are
obtained. AbundanceBin performs well in situations in which the
abundance of species is different, although not less than a 1:2 ratio.
In cases with less variability when the species have a comparable
abundance, AbundanceBin is no longer an optimal choice and shows
very high error rates because it will most likely group different
species with a similar abundance in the same bin.

2.2 MetaProb

MetaProb is a two-step approach formetagenomic read binning.
The reads are first grouped together based on their overlap,
measured in terms of the number of shared q-mers, with q = 31 by
default.The output of this phase is a relatively large number of small
groups of very connected reads that are, therefore, likely to belong
to the same species. Next, within each group, a set of representative,
not overlapping (to avoid redundancy) reads is chosen, and from
it, an l-mer profile (l = 5 by default) is extracted and normalized to
obtain a group signature. Such signatures are finally given in input
to the k-means clustering algorithm that will group signatures (and
their corresponding groups of reads) to obtain the final clusters that
represent the different species in the sample.

Similarly to EM, the k-means algorithm also requires previous
knowledge of the number k of clusters to obtain. MetaProb can both
accept this parameter as input or estimate the value of k by exploiting
the Kolmogorov–Smirnov test.

2.3 Combined framework: MetaComBin

The idea of our framework is a two-step approach. First, in Step
1, we partition the reads so that all the reads of species with the same
abundance are clustered with the AbundanceBin abundance-based
algorithm.

Next, in Step 2, the MetaProb overlap-based approach is applied
to each of the obtained clusters in order to separate the species
within it. Figure 1 (top) shows the ideal pipeline of our approach.
In reality, especially if the final number of expected species is
not known and given, the combination of the two tools is not as
smooth as in the ideal pipeline. In addition to the fact that none
of the currently available read-binning algorithms is capable of
perfect clustering, AbundanceBin, unlike most read-binning tools
(including MetaProb), has not been designed to take into account
paired-end reads. This means that it is possible that reads that
are paired (and thus belong to the same species) are assigned by
AbundanceBin to different clusters. This raises the problem of how
to deal with paired-end reads that have been wrongly separated
by AbundanceBin. In addition to being a conceptual error from
AbundanceBin, this also creates a practical problem at the following
step because MetaProb needs sets of paired-end reads as input.
Possible options include deleting all unpaired reads or designing a
reassignment strategy. However, determining the destination cluster
for each read is complex, requiring a case-by-case evaluation based

on the obtained results and the overall composition of the clusters.
In our experiments, we explored two possible approaches: i) the
reassignment of unpaired reads only from clusters with a very high
percentage of unpaired reads; ii) the reassignment of unpaired reads
starting from the cluster with the highest percentage of unpaired
reads, and iteration of the reassignment until no more unpaired
reads remain.

More formally, let D = {rij|i = 1,…n, j = 1,2} be the input
dataset of paired-end reads, and let (ri1, ri2) be the paired-end
couple i, |D| = 2n. Let C = {C1,C2,…,Cm} be the set of clusters
obtained by AbundanceBin. Because AbundanceBin considers each
read separately, it is possible for a pair p (rp1, rp2) that rp1 ∈ Ch and
rp2 ∈ Ck with h ≠ k. Let Ui be the subset of unpaired reads in Ci. The
two approaches we tested are:

1. Static reassignment: given a threshold T. For each cluster Ci
with |Ui|/|Ci| ≥ T, move each read in Ui in the cluster of its
paired read; that is, if rp1 ∈ Ci and rp2 ∈ Ct, move rp1 in Ct.

2. Iterative reassignment: sort the clusters in C by decreasing
number of unpaired reads. Starting from C1, the cluster with
the highest number of unpaired reads, reassign its unpaired
reads in U1 to the clusters where their paired read is. Iterate
the process by considering C2 and continue until there are no
more unpaired reads.

In Figure 1 (bottom), we can see a more realistic pipeline with
the added intermediate processing.

3 Results and discussion

In this section, we will describe the dataset composition and
the clustering quality measures used to assess the methods. Then,
we will discuss the results obtained for the analysis of each of the
considered datasets. The two tools, AbundanceBin and MetaProb,
were run with default parameters. We did all the experiments
without giving the number of expected clusters in input to mimic
a more realistic context. All the experiments were performed on a
machine with Intel(R) Xeon(R) Gold 5220 CPUs @ 2.20/3.90 GHz
and 2TB of RAM.

3.1 Datasets

For our analysis, we chose three datasets used in several
previous papers onmetagenomic read binning (Girotto et al., 2017a;
Vinh et al., 2015; Girotto et al., 2016; Andreace et al., 2021).
We chose the datasets S7, S9, and MIXK, which are suitable for
verifying our hypothesis, that is, whether using multiple clustering
phases leads to improved results compared to using a single
read-binning tool.

The datasets S7 and S9 were produced by Vinh et al. (2015), and
they were downloaded by MetaProb repository2. The S7 dataset is
composed of short paired-end reads and includes five species with
abundance ratios 1:1:1:4:4 and with phylogenetic distance at the
order and genus levels. The dataset was simulated using MetaSim,

2 https://bitbucket.org/samu661/metaprob/src/master/
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FIGURE 1
Ideal pipeline of the MetaComBin combined framework (top figure) and a more realistic pipeline (bottom figure).

TABLE 1 Details of the dataset S7.

Species Name Coverage Paired reads

Species 1 Actinobacillus pleuropneumoniae serovar 5b str. L20 10 141,928

Species 2 Aliivibrio salmonicida LFI1238 10 75,183

Species 3 Haemophilus somnus 129PT 10 126,183

Species 4 Pasteurella multocida 36950 40 588,088

Species 5 Vibrio choleraeM66-2 40 722,168

a tool for generating metagenomic reads, using the Illumina error
profile with an error rate of 1%. Details of the dataset composition
are given in Table 1.

The S9 dataset was also simulated using MetaSim and obtained
according to the same error profile. However, it was reduced in
size with respect to the original file because AbundanceBin was not
capable of analyzing it. From the original S9 dataset, we selected 10
species with abundance ratios 1:1:2:2:2:2:3:3:3:3. Their phylogenetic
distance was at either the phylum or the family level. We called
this dataset S9red. Details of the dataset composition are given in
Table 2.

The MIXK dataset was derived from a synthetic dataset
originally produced by the authors of the popular Kraken
metagenomic classifier (Wood and Salzberg, 2014). The reads in
this dataset were not simulated but were obtained by combining real
sequences obtained from projects that sequenced isolated microbial

genomes. When creating these synthetic metagenomes, they used
data sequenced by the Illumina HiSeq sequencing platform, which
is available either at the GAGE-B project or on the NCBI Sequence
Read Archive (details are on the Kraken paper). The MIXK dataset
contains the reads of the species listed in Table 3 with an abundance
ratio of 1:1:1:1:1:1:2:2:3:6.

3.2 Evaluation metrics

To evaluate the quality of the results of the binning tools
involved in this study, we used four popular performance evaluation
metrics (namely, precision, recall, F-measure and ARI) as defined
in other read-binning papers (Girotto et al., 2017a; Vinh et al.,
2015; Girotto et al., 2016; Andreace et al., 2021; Balvert et al., 2021;
Girotto et al., 2017b) and displayed in Equations 1–4. Let n be the
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TABLE 2 Details of the reduced dataset S9red.

Species Name Coverage Paired reads

Species 1 Ehrlichia canis str. Jake 10 82,012

Species 2 Desulfovibrio vulgaris DP4 10 216,912

Species 3 Bartonella clarridgeiae 73 5 5 47,629

Species 4 Caldicellulosiruptor lactoaceticus 6A 10 167,267

Species 5 Lactobacillus amylovorus GRL1118 15 177,691

Species 6 Streptococcus thermophilus JIM 8232 15 181,562

Species 7 Helicobacter cetorumMIT 00-7128 15 182,576

Species 8 Bifidobacterium animalis subsp. lactis B420 5 60,623

Species 9 Mesotoga primaMesG1.Ag.4.2 15 279,117

Species 10 Geobacter sulfurreducens PCA 10 238,138

TABLE 3 Details of synthetic dataset MIXK.

Species Name Coverage Paired reads

Species 1 Streptococcus pneumoniae TIGR4 20 91,532

Species 2 Xanthomonas axonopodis pv. Manihotis UA323 60 308,021

Species 3 Bacillus cereus VD118 10 59,775

Species 4 Aeromonas hydrophila SSU 10 51,766

Species 5 Mycobacterium bscessus 6G-0125-R 10 54,252

Species 6 Rhodobacter sphaeroides 2.4.1 20 97,723

Species 7 Pelosinus fermentans A11 10 52,623

Species 8 Bacteroides fragilis HMW 10 56,146

Species 9 Vibrio cholerae CP1032(5) 30 167,707

Species 10 Staphylococcus aureusM0927 10 60,455

TABLE 4 Clusters compositions generated by AbundanceBin on the dataset S7.

Cluster Total reads Paired reads Unpaired reads % Unpaired reads

Cluster 1 2,405,443 2,152,948 252,495 10.5%

Cluster 2 786,613 453,664 332,949 42.33%

Cluster 3 115,044 20,506 94,538 82.18%

number of species in the simulated dataset, and let C be the number
of clusters returned by the algorithm.Aij is the number of reads from
species j assigned to cluster i, Ai is the sum over all j of the values Aij
for each given i, and similarlyAj is the sum over all i of the valuesAij

for each given j:

Precision =
∑C

i=1
maxjAij

∑C
i=1
∑n

j=1
Aij

, (1)
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TABLE 5 Number of reads per species in the clusters generated by AbundaceBin on the dataset S7.

Cluster Species 1 Species 2 Species 3 Species 4 Species 5

Cluster 1 10,000 18,723 8,097 1,065,139 1,303,484

Cluster 2 225,827 108,303 203,762 109,648 139,073

Cluster 3 48,029 23,340 40,507 1,389 1,779

TABLE 6 Detailed composition of Cluster 1 obtained from
AbundanceBin on S7.

Species Reads % Reads Paired Unpaired

Species 1 10,000 0.42% 30.04% 69.96%

Species 2 18,723 0.78% 27.98% 72.02%

Species 3 8,097 0.34% 30.04% 69.96%

Species 4 1,065,139 44.30% 90.62% 9.38%

Species 5 1,303,484 54.16% 90.30% 9.70%

TABLE 7 Detailed composition of Cluster 2 obtained from
AbundanceBin on S7.

Species Reads % Reads Paired Unpaired

Species 1 225,827 28.70% 80.51% 19.49%

Species 2 108,303 13.77% 74.09% 25.91%

Species 3 203,762 25.90% 81.82% 18.18%

Species 4 109,648 13.94% 9.90% 90.10%

Species 5 139,073 17.69% 10.10% 89.90%

TABLE 8 Detailed composition of Cluster 3 obtained from
AbundanceBin on S7.

Species Reads % Reads Paired Unpaired

Species 1 48,029 41.75% 18.46% 81.54%

Species 2 23,340 20.29% 17.93% 82.07%

Species 3 40,507 35.21% 18.40% 81.60%

Species 4 1,389 1.21% 0% 100%

Species 5 1,779 1.55% 0% 100%

Recall =
∑n

j=1
maxiAij

∑C
i=1
∑n

j=1
Aij +#unassignedreads

, (2)

TABLE 9 Cluster 1 (from AbundanceBin on S7) partitioning obtained
running MetaProb on it after unpaired reads reassignement.

Cluster Species Paired reads

Cluster 1.A

Species 1 4,370

Species 2 15,285

Species 3 3,211

Species 4 541,144

Species 5 22,428

Cluster 1.B

Species 1 4,077

Species 2 812

Species 3 3,649

Species 4 37,410

Species 5 110,605

Cluster 1.C

Species 1 51

Species 2 7

Species 3 21

Species 4 3,967

Species 5 581,932

The reads of the dominant species in the cluster have been highlighted in bold.

F−measure = 2
∗Precision∗Recall
Precision+Recall

, (3)

ARI =
∑

ij
(
Aij

2 )− [∑i
(Ai
2 ) ×∑j

(
Aj

2 )]/(
n
2)

0.5× [∑
i
(Ai
2 ) +∑j

(
Aj

2 )]− [∑i
(Ai
2 ) ×∑j

(
Aj

2 )]/(
n
2)
. (4)

3.3 Experimental analysis of dataset S7

3.3.1 Step 1: clustering of reads based on
abundances

We obtained three different clusters from AbundanceBin, one
more than expected. From Table 4, we can see the actual partition,
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TABLE 10 Cluster 2 (from AbundanceBin on S7) partitioning obtained running MetaProb on it after unpaired reads reassignement.

Cluster Species Paired reads Cluster Species Paired reads

Cluster 2.A

Species 1 4,698

Cluster 2.F

Species 1 554

Species 2 20,952 Species 2 30,002

Species 3 12,111 Species 3 0

Species 4 3,449 Species 4 1

Species 5 1,853 Species 5 0

Cluster 2.B

Species 1 6,508

Cluster 2.G

Species 1 133

Species 2 64 Species 2 585

Species 3 6,628 Species 3 5

Species 4 757 Species 4 441

Species 5 72 Species 5 2,087

Cluster 2.C

Species 1 2,381

Cluster 2.H

Species 1 1,608

Species 2 258 Species 2 3,111

Species 3 91,188 Species 3 299

Species 4 53 Species 4 345

Species 5 1 Species 5 3,039

Cluster 2.D

Species 1 3,178

Cluster 2.I

Species 1 98,564

Species 2 1,246 Species 2 0

Species 3 2,235 Species 3 1,079

Species 4 347 Species 4 0

Species 5 86 Species 5 0

Cluster 2.E

Species 1 268

Cluster 2.J

Species 1 11,104

Species 2 766 Species 2 2

Species 3 1,257 Species 3 774

Species 4 114 Species 4 60

Species 5 24 Species 5 41

The reads of the dominant species in the cluster have been highlighted in bold.

and, in particular, we can notice the presence of paired reads that
have been assigned to different clusters and their abundance in the
cluster. The three resulting clusters highlight an effective grouping
of the species with the highest abundance, that is, Species 4 and 5
(as illustrated in Table 5), which are mainly located within Cluster
1. The three species with lower abundance are instead distributed
between Cluster 2 and Cluster 3, the latter mainly characterized
by the presence of unpaired reads.

Although the obtained number of clusters differs from the
actual one, when looking in more detail at the composition of the
clusters, we can state that the partitioning of the species within the
clusters is congruent with the expected abundance, demonstrating
the effectiveness of AbundanceBin in identifying and grouping
species with the same abundance in dataset S7.

Tables 6–8 highlight how many of the associated reads are
actually paired or unpaired for each species within each cluster. The
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TABLE 11 Cluster 3 (from AbundanceBin on S7) partitioning obtained
running MetaProb on it after unpaired reads reassignement.

Cluster Species Paired read

Cluster 3.A

Species 1 3,281

Species 2 303

Species 3 564

Species 4 0

Species 5 0

Cluster 3.B

Species 1 708

Species 2 519

Species 3 1,502

Species 4 0

Species 5 0

Cluster 3.C

Species 1 445

Species 2 1,271

Species 3 1,660

Species 4 0

Species 5 0

The reads of the dominant species in the cluster have been highlighted in bold.

% Read column also displays the structure of the cluster and the
percentages of the constituent species.

As can be seen, more than 90% of the reads of the species with
the highest abundance are included in Cluster 1. The remaining
10%, mainly composed of unpaired reads, are distributed between
Clusters 2 and Cluster 3. The reads of the species with lower
abundance are mainly distributed between Cluster 2 and Cluster 3,
with some smaller quantities erroneously assigned to Cluster 1. For
each of these three species, it is noteworthy that the vast majority of
reads are assigned toCluster 2 as a pair of paired-end reads, while the
opposite trend is observed within Cluster 3, in which the prevalence
of reads for each species consists of unpaired reads.

The computed values of precision, recall, and F-measure for
AbundanceBin are 0.47, 0.87, and 0.61, respectively, in line with
those obtained by Girotto et al. (2016). The low value of precision is
expected because the AbundanceBin principle is to cluster together
reads with the same abundance that, in our case study, can belong
to different species. Similarly, we expect a high recall value because
most reads of the same species will be included in the same cluster.

3.3.2 Step 2: partitioning of the abundance
clusters

Before applying MetaProb to each of the clusters obtained with
AbundanceBin, processing was needed to avoid the presence of
unpaired reads. We tried two approaches:

1. Reassign all unpaired reads of clusters with a composition of
unpaired reads above a threshold T (we chose T = 80%) to the
cluster of their paired read;

2. Reassign all unpaired reads of the cluster with the highest
percentage of unpaired reads; iterate the process until no more
unpaired reads are left.

In practice, in our case study, with Approach 1, we simply
reassigned the unpaired reads of Cluster 3 to their counterparts
in Cluster 1 and Cluster 2 and then removed any other unpaired
reads that were left. With Approach 2, we did not remove any reads,
which resulted in more than 250,000 reads re-paired with respect
to Approach 1. We report here in detail only the results of the
iterative Approach 2 because it appears to be the most effective one,
as we will discuss later. The details of this processing are shown in
Tables 9–11.

3.3.2.1 Analysis of Cluster 1
In ideal conditions, Cluster 1 generated by AbundanceBin

should have contained only reads from the two most abundant
species. However, as previously shown in Table 5, some noise from
other species was also introduced. Nonetheless, the results confirm
thatMetaProb is able to effectively identify two sub-clusters covering
about 90% of the reads of Cluster 1 and containing the majority
of the reads from these two species: 92% of Cluster 1.A contains
reads that belong to Species 4, while more than 99% of Cluster 1.C
contains reads from Species 5. The remaining Cluster 1.B covers
only 11% of the total reads of Cluster 1. Of these, 70% belong
to Species 5, and 24% of reads belong to Species 4, with the
remaining 6% consisting of reads from the minority species. The
size and mixture of this cluster are, therefore, those of a “spurious”
cluster possibly produced by the noise introduced byAbundanceBin,
by a wrong estimate number of clusters from MetaProb, or by a
combination of both.

It is important to highlight that MetaProb is naturally better
suited to working with clusters that contain species with similar
abundances. This is evident in the correct classification of Species 4
and 5.However,MetaProb encounters difficulties when the variation
in species abundance ismoremarked, as in the case of Cluster 2.This
aspect motivates the approach adopted in this experiment, which
aimed to improve the performance of MetaProb by removing one of
its weak points, a limitation similar to that found in other software
based on DNA composition.

3.3.2.2 Analysis of Cluster 2
Giving the reads of Cluster 2 as input to MetaProb caused the

generation of 10 different clusters. Considering that 95% of the
reads in Clusters 2 belong to Species 1, Species 2, and Species
3, this result was somehow unexpected. However, by carefully
examining each cluster composition, we can observe that four of
these clusters (2.A, 2.C, 2.F, and 2.I) contain more than 30,000
paired reads. Specifically, reads from Species 1 and Species 3 are
mainly assigned, respectively, to Cluster 2.I and 2.C, and in both
cases, they represent about 98% of the total composition of these
clusters. Species 2 instead has been mainly split between Clusters
2.A and 2.F that together contain more than 90% of the reads of
this species.

The remaining six clusters have been assigned a smaller number
of reads and can either be seen as a relatively small erroneous
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TABLE 12 Standalone tools vs. MetaComBin combined framework on the dataset S7.

Dataset S7 MetaCluster MetaProb AbundanceBin MetaComBin

Precision 0.925 0.818 0.477 0.912

Recall 0.671 0.745 0.879 0.812

F-measure 0.778 0.780 0.618 0.859

ARI — 0.520 0.344 0.730

In bold the best performance for each metric.

TABLE 13 Detailed partitioning of Cluster 1 (after unpaired-reads reassignment on the clusters obtained by AbundanceBin on S9red) with MetaProb.
With %sp, we indicate the percentage of the majority species wrt the total number of reads for that species in the dataset (i.e., how well the group
covers the majority species in it); with %sg, we indicate the percentage of the reads of the majority species wrt the total reads in that group (i.e., how
well-defined the cluster is).

Cl1 Cl5 Cl7 Cl8 Cl10 Cl11 Cl15 Cl19 Cl21

sp1 121 79,102 6 0 7 18 0 0 0

sp2 1,541 0 0 0 102 8 0 1,291 198,707

sp3 4,768 1,064 173 0 170 513 0 1 0

sp4 3,425 1,219 121,953 44 2 30 0 0 0

sp5 20,694 2,685 135 1 141,016 514 0 0 25

sp6 46,579 832 0 1 121 109,026 0 0 0

sp7 554 250 0 175,985 0 1 0 92 0

sp8 508 0 0 0 0 9 0 325 437

sp9 1,982 0 0 0 0 6 266,944 0 0

sp10 1,661 521 101 0 0 0 0 211,589 1,557

tot 81,833 85,673 122,368 176,031 141,418 110,125 266,944 213,298 200,726

%sp 25.65 96.45 72.91 96.39 79.36 60.05 95.64 88.85 91.61

%sc 56.92 92.33 99.66 99.97 99.72 99.00 100.00 99.20 98.99

id Species 6 Species 1 Species 4 Species 7 Species 5 Species 6 Species 9 Species 10 Species 2

The reads of the dominant species in the cluster have been highlighted in bold.

TABLE 14 Standalone tools vs. MetaComBin combined framework on the reduced dataset S9.

Dataset S9red MetaProb AbundanceBin MetaComBin

Precision 0.921 0.191 0.921

Recall 0.785 0.901 0.824

F-measure 0.843 0.315 0.870

ARI 0.778 0.014 0.833

In bold the best performance for each metric.
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TABLE 15 Detailed partitioning of Cluster 1 (after unpaired-reads reassignment on the clusters obtained by AbundanceBin on MIXK) with MetaProb.
With %sp, we indicate the percentage of the majority species wrt the total number of reads for that species in the dataset (i.e., how well the group
covers the majority species in it); with %sg, we indicate the percentage of the reads of the majority species wrt the total reads in that group (i.e., how
well-defined the cluster is). Clusters with a size greater than 2% of the total size of the dataset are reported.

cl1.1 cl1.2 cl1.3 cl1.4 cl1.5 cl1.6 cl1.7 cl1.8

sp1 1,584 1,950 325 556 0 0 0 418

sp2 2 0 0 0 154 264 43 1

sp3 8,260 16,298 14,599 16,913 5 0 0 552

sp4 935 296 260 276 35,558 2,368 1,879 284

sp5 18 3 0 0 3,570 28,023 4,168 27

sp6 35 50 7 0 1,723 1,991 59,940 230

sp7 23,071 8,228 5,497 9,807 91 36 4 2,280

sp8 6,354 8,284 1,835 6,014 82 74 1 17,831

sp9 1,593 812 229 144 25 29 0 317

sp10 5,504 2,266 27,820 6,600 0 0 0 7

tot 23,071 16,298 27,820 16,913 35,558 28,023 59,940 17,831

sp 43.84 27.27 46.02 28.29 68.69 51.65 61.34 31.76

sc 48.72 42.68 55.01 41.96 86.29 85.48 90.77 81.25

id Species 7 Species 3.b Species 10.a Species 3.a Species 4 Species 5 Species 6 Species 8

splitting of a species (e.g., Cluster 2.J that is almost entirely composed
of reads of Species 1, correct identification of a species that should
not have been in Cluster 2 (Cluster 2.J mainly contains reads from
Species 5), or amixture generated by the intrinsic similarity in terms
of k-mers that some species may share.

Overall, this in-depth analysis allows us to conclude that the
output of MetaProb consists of four main clusters characterized
by reads of the three species expected from this cluster, plus some
noise. We will discuss later ideas on how to further improve
this result.

3.3.2.3 Analysis of Cluster 3
Once the unpaired reads had been moved, Cluster 3 contained

only 10,253 pairs of paired-end reads, which represents less than
1% of the total number of reads in the dataset, confirming the fact
that it is a “spurious” cluster generated by AbundanceBin. Although
it exclusively contained reads from the three species with lower
abundance, given their non-representative nature, MetaProb could
not fully exploit its distinguishing power based on overlap and
composition signature. Nonetheless, as can be seen in Table 11, it
was able to clearly distinguish reads of Species 1 (80% of Cluster
3.A is composed of reads from this species), while the distinction
between Species 2 and Species 3 was more difficult. It is worth
noting that within Cluster 3, Species 1 has basically twice as many
reads as the other two species. We speculate that this could have
helped MetaProb in finding the overlaps it needs to build its
initial clusters.

3.3.3 Comparison with standalone tools
To summarize our results, we computed quality measures

of the final binning obtained with those obtained by the single
use of AbundanceBin and MetaProb. Moreover, we included the
results of the currently available version of MetaCluster (5.0),
which includes a low/high abundance partitioning phase before the
final clustering.

Results shown in Table 12 support our intuition: among
the datasets analyzed in previous studies, S7 was one of
the most challenging as AbundanceBin struggles to obtain
good precision, while MetaProb shows lower performances
in both precision and recall with respect to other datasets.
MetaCluster 5.0, which already includes a high/low abundance
partitioning, showed the highest precision but the worst recall.
Our combined approach slightly improves over MetaProb
in terms of both precision (showing results comparable to
those of MetaCluster) and recall, while it can maintain the
high recall while doubling the precision with respect to
AbundanceBin. The values of F-measure and ARI confirm
the overall better performances of the proposed combined
complementary approach.

3.4 Experimental analysis of dataset S9red

The analysis for S9red was performed similarly. We will present
the results for this dataset in a more compact way.
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TABLE 16 Detailed partitioning of Cluster 2 (after unpaired-reads
reassignment on the clusters obtained by AbundanceBin on MIXK) with
MetaProb. With %sp, we indicate the percentage of the majority species
wrt the total number of reads for that species in the dataset (i.e., how
well the group covers the majority species in it); with %sg, we indicate
the percentage of the reads of the majority species wrt the total reads in
that group (i.e., how well-defined the cluster is). Clusters with a size
greater than 2% of the total size of the dataset are reported.

cl2.1 cl2.2 cl2.3 cl2.4

sp1 19,324 60,938 5,663 0

sp2 2,292 152 103 288,161

sp3 265 1,179 1,241 1

sp4 556 50 12 30

sp5 55 4 0 39

sp6 747 96 5 227

sp7 289 437 376 0

sp8 827 860 274 2

sp9 126,308 21,444 7,717 16

sp10 652 2,181 15,355 0

tot 151,315 87,341 30,746 288,476

sp 75.31 66.58 25.40 93.55

sc 83.47 69.77 49.94 99.89

id Species 9 Species 1 Species 10.b Species 2

3.4.1 Step 1: clustering of reads based on
abundances

We do not make any assumptions about the number of clusters
when running the tools. Given S9red in input, AbundanceBin
detected two major clusters rather than the expected three. After
read pairing, we have Cluster 1 composed of 1,567,881 reads (96%
of the total) and Cluster 2 composed of 65,646 reads. Cluster 2 is
mainly composed (73%) of the two low-abundance species (Species
3 and Species 8), while Cluster 1 is composed of the great majority
of reads of the medium- and high-abundance species. Note that
high-abundance species are 1.5 more abundant than those with
medium abundance. Because the difference between these two
classes is not larger than 2, AbundanceBin is expected to struggle
to distinguish between them, and, in fact, it puts them together in a
single cluster.

3.4.2 Step 2: partitioning of the abundance
clusters

When applying MetaProb to Cluster 1, again without specifying
the number of expected clusters k, we obtain many groups,
specifically 21. However, eight such groups have a number of reads
that is less than 1% of the size of the cluster and can be considered

noise. If we focus on the nine groups that contain at least 5%
of the reads in Cluster 1 (details in Table 13), we have that eight
contain more than 99% of reads of the same species, and seven
of those eight cover more than 70% of the reads of the same
species (more than 88% for Species 1, 2, 5, 7, 9, and 10, and about
73% for Species 4). Species 6 is mainly split between two groups,
covering about 60% and 26%, respectively. The remaining group,
Cl7, shown in the table, coversmost of the remaining reads of Species
4 (about 26%).

Among the remaining groups with a size between 1% and 5% of
Cluster 1 (not shown in the table because of space constraints), we
have one well-defined group (about 86% of reads in it) covering 44%
of Species 8, another well-defined group with 33% of the reads of
Species 3, and a less well-defined groupmostly composed by residual
reads of Species 10.

When applying MetaProb to Cluster 2, we obtain five groups.
Two of them are composed of 90% of reads from Species 8,
covering together 39% of the reads of the species. The other two
well-defined groups cover about 42% of Species 2. The remaining
group is less well defined. The majority species in it, Species 10,
covers 44% of the group. However, considering that Cluster 2
is much smaller than Cluster 1, these results can be considered
noise as they represent only 2% of the reads of that species,
which is much better represented by the groups Cl19 obtained
in Cluster 1.

To summarize our finding, after applying our pipeline, we
were able to identify the high- and medium-abundance species
with both very high precision and recall. The reads of the low-
abundance species were split between the two clusters found
by AbundanceBin (57%–43% For species 3 and 54%–46% for
Species 8). It is possible that the phylogenetic closeness of
some species made their reads difficult to partition based on
abundance only. However, when applying the second step of our
analysis, the reads of these species were well separated from
the others.

3.4.3 Comparison with standalone tools
Table 14 shows the result of the comparison of our pipeline with

respect to those of the two tools run separately. Unfortunately, we
were not able to run MetaCluster on our computer system. Because
we needed to reduce S9 to be able to run AbundanceBin, we could
not refer to MetaCluster to results appearing in previous papers, as
we did for the analysis of S7.

3.5 Results on the synthetic dataset MIXK

The results of the application of our pipeline to the synthetic
dataset MIXK are shown in Table 15 and in Table 16 for each of the
two clusters, Cluster 1 and Cluster 2, detected by AbundanceBin and
then partitioned by MetaProb. For ease of visualization, we report
only the cluster with a size larger than 2% of the dataset.

It is interesting to note that among the bigger clusters, it is
possible to associate a distinct species to each cluster, except for
Species 3 and Species 10, which were split between two clusters.
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TABLE 17 Standalone tools vs. the MetaComBin combined framework on the synthetic dataset MIXK.

Dataset MIXK MetaProb AbundanceBin MetaComBin

Precision 0.657 0.377 0.787

Recall 0.654 0.928 0.684

F-measure 0.656 0.536 0.732

ARI 0.458 0.253 0.740

In bold the best performance for each metric.

Finally, we report the comparison between AbundanceBin
and MetaProb, which are run separately and as a
pipeline, in Table 17. Even for this dataset, the combined
approach showed generally better behavior than the tools run
separately.

4 Conclusion and future work

This study explored the combined use of complementary
tools for metagenomics read binning in order to improve the
overall quality of the binning process when some species have the
same abundance ratio, and no knowledge of the actual number
of species is given, as in a realistic context. Our results on
three datasets that were difficult to analyze with other popular
read-binning tools showed that a combined framework could
exploit the strengths of different read-binning approaches to
obtain better values in terms of clustering quality metrics than
a single tool. Moreover, although we did our test with two
specificmetagenomic read-binning approaches based on abundance
and overlaps (AbundanceBin and MetaProb), in principle, our
framework can potentially combine any two tools with these
characteristics.

Our analysis also pointed out some aspects that can be the
subject of future studies: for example, the total number of clusters
produced by the current pipeline is larger than the exact number
of clusters. Although some over-estimation is expected because
the exact estimation of the number of clusters is a challenge
itself, and the problem is common to all the tools when k is not
given in input, it would be interesting to see if and to which
extent this estimation can be improved. Two directions we plan
to investigate aim at: i) the reduction of the noise introduced by
AbundanceBin not taking into consideration paired-end reads by
developing a strategy that clusters paired-end reads together or
by adopting other strategies for reads reassignment, and ii) the
further merge of “minor” clusters by adding a post-processing step
to our pipeline.
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