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Background: Diabetes remains a leading cause of morbidity and mortality
due to various complications induced by hyperglycemia. Inhibiting Aldose
Reductase (AR), an enzyme that converts glucose to sorbitol, has been studied
to prevent long-term diabetic consequences. Unfortunately, drugs targeting AR
have demonstrated toxicity, adverse reactions, and a lack of specificity. This
study aims to explore African indigenous compounds with high specificity as
potential AR inhibitors for pharmacological intervention.

Methodology: A total of 7,344 compounds from the AfroDB, EANPDB,
and NANPDB databases were obtained and pre-filtered using the Lipinski
rule of five to generate a compound library for virtual screening against
the Aldose Reductase. The top 20 compounds with the highest binding
affinity were selected. Subsequently, in silico analyses such as protein-ligand
interaction, physicochemical and pharmacokinetic profiling (ADMET), and

Abbreviations: ADMET, Absorption, Distribution, Metabolism, Excretion, and Toxicity; AR, Aldose
Reductase; ARI, Aldose Reductase Inhibitor; AUC, Area Under the Curve; CHARMM, Chemistry at
HARvard Molecular Mechanics; DUD-E, Directory of Useful Decoys, Enhanced; PASS, Prediction of
Activity Spectra for Substances; RCSB, Research Collaboratory for Structural Bioinformatics; RMSD,
Root Mean Square Deviation; RMSF, Root Mean Square Fluctuation; ROC, Receiver Operating Curve;
RoG, Radius of Gyration; SPC, Simple Point Charge; UFF, Universal Force Field; MM-PBSA, Molecular
Mechanics Poisson-Boltzmann Surface Area.
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molecular dynamics simulation coupled with binding free energy calculations
were performed to identify lead compounds with high binding affinity and
low toxicity.

Results: Five natural compounds, namely, (+)-pipoxide, Zinc000095485961,
Naamidine A, (−)-pipoxide, and 1,6-di-o-p-hydroxybenzoyl-beta-d-
glucopyranoside, were identified as potential inhibitors of aldose reductase.
Molecular docking results showed that these compounds exhibited binding
energies ranging from −12.3 to −10.7 kcal/mol, which were better than the
standard inhibitors (zopolrestat, epalrestat, IDD594, tolrestat, and sorbinil) used
in this study. The ADMET and protein-ligand interaction results revealed that
these compounds interacted with key inhibiting residues through hydrogen and
hydrophobic interactions and demonstrated favorable pharmacological and low
toxicity profiles. Prediction of biological activity highlighted Zinc000095485961
and 1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside as having significant
inhibitory activity against aldose reductase. Molecular dynamics simulations and
MM-PBSA analysis confirmed that the compounds bound to AR exhibited high
stability and less conformational change to the AR-inhibitor complex.

Conclusion: This study highlighted the potential inhibitory activity of 5
compounds that belong to the African region: (+)-Pipoxide, Zinc000095485961,
Naamidine A, (−)-Pipoxide, and 1,6-di-o-p-hydroxybenzoyl-beta-d-
glucopyranoside. These molecules inhibiting the aldose reductase, the key
enzyme of the polyol pathway, can be developed as therapeutic agents to
manage diabetic complications. However, we recommend in vitro and in vivo
studies to confirm our findings.

KEYWORDS

diabetes mellitus, aldose reductase, molecular docking, pharmacokinetics, molecular
dynamics simulations

1 Introduction

Diabetes Mellitus (DM) is a chronic metabolic disorder
characterized by hyperglycemia due to absolute lack, inadequate
insulin production, or insulin resistance (i.e., the cells of the
body become unresponsive to the insulin’s effects) (Sapra and
Bhandari, 2021). Globally, the incidence of diabetes mellitus
has surged to epidemic levels, especially in lower and middle-
income countries. According to the 2021 International Diabetes
Federation (IDF) report, DM affects approximately 575 million
adults (20–79 years), who make up 10.5% of the world’s population,
and is the seventh leading cause of death worldwide (Vos et al.,
2012; IDF Diabetes Atlas, 2021). The complications associated with
diabetes include micro- and macrovascular damage (such as
diabetic nephropathy), retinopathy, and neuropathy. In addition
to these common complications, emerging issues like cancer,
liver disease, and cognitive disability also contribute to deaths
associated with diabetes (Tomic et al., 2022). Previous studies have
examined possible factors linked to the risk of type 1 diabetes
(Abolo et al., 2024). High glucose levels in both type 1 and
type 2 diabetes activate several metabolic pathways, producing
toxic byproducts, which cause pathological and functional changes
in various tissues (Forbes and Cooper, 2013). One of the
metabolic pathways identified to contribute to the development of
many diabetic consequences is the polyol pathway (Srikanth and
Orrick, 2022).

The polyol pathway is a two-step metabolic pathway involved
in converting glucose to sorbitol through the action of aldose
reductase (AR), followed by the conversion of sorbitol to fructose
via sorbitol dehydrogenase (Low, 2005). Usually, below normal
glucose concentrations, most cellular glucose is directed toward
the glycolytic pathway, with only a fraction entering the polyol
pathway. However, in hyperglycemic conditions, such as that
observed in diabetes, there is a notable increase in the flux through
the polyol pathway, accounting for over thirty percent of glucose
metabolism (Tang et al., 2012). This heightened activity of the
polyol pathway under elevated glucose levels results in a substantial
diversion of glucose towards sorbitol production, facilitated by
AR, at the expense of cellular nicotinamide adenine dinucleotide
phosphate (NADPH), which is a cofactor of AR (Singh et al., 2021a;
Gupta, 2023). Given the essential role of NADPH in generating
glutathione (GSH), an intracellular antioxidant, the depletion
of NADPH by the AR can compromise the cellular antioxidant
defense mechanism. Subsequently, sorbitol is converted to fructose
by sorbitol dehydrogenase, accompanied by the generation of
nicotinamide adenine dinucleotide (NADH), which may contribute
to increased reactive oxygen species (ROS) production via NADH
oxidase. This cascade of events, including sorbitol accumulation
and oxidative stress, is implicated in the pathogenesis of diabetic
complications (Tang et al., 2012). The significance of oxidative
stress in diabetic complications is highlighted by increased
levels of oxidized DNA, proteins, and lipids, which have been
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extensively studied (Wiernsperger, 2003). Targeting the polyol
pathway, specifically by inhibiting AR using aldose reductase
inhibitors (ARIs), has emerged as a potential therapeutic strategy
for managing diabetic complications (Julius and Hopper, 2019).
Clinical studies have demonstrated that AR inhibitors such as
sorbinil, tolrestat, and zopolrestat reduce the occurrence of various
diabetic complications, including atherothrombotic cardiovascular
disease, myocardial ischemia, retinopathy, nephropathy, and
neuropathy (Hotta, 2010; Gamal and Munusamy, 2017; Chang et al.,
2019; Gopal et al., 2023). However, despite promising preclinical
data, the clinical effectiveness of ARIs remains uncertain, and
concerns persist about adverse effects such as hepatic damage and
neuropathy (Hotta, 2010).

Natural compounds derived from plants, microorganisms,
and marine organisms have shown diverse biological activities
and unique chemical structures, making them a promising basis
for developing new therapeutics (Mishra and Tiwari, 2011).
The advancement of genomics, transcriptomics, and proteomics
has been crucial in studying biomarkers and genes related to
the development of complex traits (Wesonga and Awe, 2022;
Nzungize et al., 2022; Chikwambi et al., 2023; El Abed et al., 2023;
Nyamari et al., 2023; Ogbodo et al., 2023; Omar et al., 2024;
Alaya et al., 2024; Aribi et al., 2024). Natural products have long
been an important source of potential drugs for various diseases and
conditions. Approximately 35% of modern medicines are estimated
to be derived from natural products. Examples include the anti-
cancer drug Taxol from the Pacific yew tree and the anti-malarial
drug artemisinin from the Artemisia annua plant (Calixto, 2019).
Bioinformatics and in silico approaches have experienced huge
developments, thereby enabling their applications in various fields
such as in identifying potential lead compounds (Enejoh et al.,
2025; Hanson et al., 2024), comparative genomics (Awe et al., 2023;
Mwanga et al., 2023; Obura et al., 2022) and pipeline development
(Ather et al., 2018; Die et al., 2019) and protein structure prediction
(Pawar et al., 2024). Natural compounds from Africa present a
rich resource for discovering active pharmaceutical ingredients. For
example, metformin, a widely used oral antidiabetic drug, originates
from Galegaofficinalis, a plant traditionally used across North
Africa, the Middle East, and Europe to alleviate diabetes symptoms.
The discovery of galegine, an active compound extracted from
Galegaofficinalis, led to the development of metformin as an active
ingredient (Witters, 2001; Brasileira De Farmacognosia et al., 2006).

Buildingontheunderstandingofaldosereductase’s role indiabetic
mechanisms and the potential of natural compounds as therapeutic
agents, this study utilized computer-aided drug design methods to
identify potential inhibitors. These techniques are valuable tools in
pharmaceutical research andallow for cost-effective identification and
optimization of potential drug candidates, bypassing the limitations
of traditional laboratory-based approaches (Zuhri et al., 2022). We
employed a virtual screening approach to screen a database of
African natural compounds against aldose reductase to identify the
most appropriate inhibitors that could serve as potential therapeutics
to treat diabetes and its consequences. The molecular docking
approach enabled us to assess the binding affinity and interactions
between the selected compounds and the enzyme. To validate the
reliability of these interactions, molecular dynamics simulations were
performed to provide insights into the stability of the protein-
ligand complex over time.

2 Methods

This study employed a systematic methodology to identify
potent aldose reductase (AR) inhibitors using computational
techniques (Figure 1). The process begins with the preparation
of the AR protein and a diverse compound library sourced
from AfroDB, NANPDB, and EANPDB. The docking protocol
was validated by redocking the experimental ligand and
receiver operating characteristic (ROC) curve analysis. Virtual
screening was conducted via molecular docking to identify
compounds with significant interaction potential for inhibiting AR.
Following the initial screening, selected compounds underwent
pharmacological evaluation, including ADMET (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) predictions and
analysis of protein-ligand interactions to ensure favorable drug-like
properties.To further investigate the interactions,moleculardynamics
simulations, and MM-PBSA calculations are performed to assess the
stability and binding free energies of the selected complexes.

2.1 Preparation of the aldose reductase
protein

The three-dimensional (3D) x-ray diffraction structure
of the human AR protein was retrieved from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data
Bank (PDB) (https://www.rcsb.org/structure/1us0; PDB ID: 1US0)
(Berman et al., 2000). The 1US0 structure resolved at 0.66 Å was co-
crystalized with its cofactor, the Nicotinamide-adenine dinucleotide
phosphate (NADP+), and the inhibitor IDD 594 (Howard et al.,
2004). The existing inhibitor and water molecules were removed
from the protein’s structure using the PyMOL version 3.0.0 software
(DeLano, 2002) and saved in the. pdb format. The SwissPDB viewer
(Guex et al., 2009) was used to check and resolve the missing
residues. Energy minimization was carried out using GROMACS
version 2024 (Abraham et al., 2015), and the output. gro file was
converted to a PDB file using PyMOL.

2.2 Preparation of compound library

The compounds used for this study were retrieved from the
AfroDB Database (Ntie-Kang et al., 2013), the Northern African
Natural Products Database (NANPDB), and the East African
Natural Product Database (EANPDB) (Ntie-Kang et al., 2017). The
AfroDB is a library of natural products containing diverse and highly
potent molecules from African medicinal plants. The NANPDB
and EANPDB are databases comprising natural products from
Northern African and Eastern African sources, respectively. A total
of 7,344 compounds obtained from combining the databases were
pre-filtered based on Lipinski’s rule of five (Lipinski, 2004) using the
Data Warrior software (v.06.01.00) (Sander et al., 2015). Lipinski’s
rule of five includes a molecular weight of approximately 500 Da, a
partition coefficient (cLogP) of less than five, and the ability to form
hydrogen bonds (with no more than five hydrogen bond donors
and ten hydrogen bond acceptors). Five standard aldose reductase
inhibitors (ARIs), namely, zopolrestat, epalrestat, IDD594, tolrestat,
and sorbinil were obtained from the chemistry database PubChem
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FIGURE 1
A graphic illustration of the study’s methodology. The methods involved pre-filtering ligands using Lipinski’s rule of five. Molecular docking,
pharmacokinetics profiling by assessing the absorption, distribution, metabolism, excretion, and toxicity (ADMET), protein-ligand interaction analysis,
and biological activity predictions were used to identify promising leads.

(https://pubchem.ncbi.nlm.nih.gov) and incorporated into the pre-
filtered compound libraries.

2.3 Validation of docking protocol

2.3.1 Superimposition of co-crystallized protein
structure with re-docked complex

In order to validate the docking protocol, the ligand IDD594
was extracted from the co-crystallized structure of aldose reductase
obtained fromPDB (1US0) and re-docked into the binding site using
Autodock Vina software. The docked binding pose of the IDD594
ligand was then superimposed with the experimentally determined

pose of the co-crystallized structure by LigPlot+ (v2.2) (Laskowski
and Swindells, 2011) and PyMOL.

2.3.2 Receiver operating characteristics (ROC)
curve analysis

To further validate the docking protocol,250 decoys of five
aldose reductase inhibitors were obtained from the Directory of
Useful Decoys and enhanced (DUD-E) web server to generate
the ROC curve (Mysinger et al., 2012). Decoys and compounds
have similar physicochemical properties but different 2D topologies
to the selected inhibitors. The inhibitors comprised mycretin,
tolrestat, IDD594, epalrestat, and sorbinil. The area under the
curve (AUC) for the ROC curve was generated by screening a
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total of 250 decoys and five inhibitors against AR using easyROC
version 1.3 (Goksuluk et al., 2016).

2.4 Virtual screening of the compound
libraries

Virtual screening of the pre-filtered compounds and the
standard ARIs was performed using the Autodock Vina interface
via PyRx software v0.8 (Trott and Olson, 2010; Dallakyan and
Olson, 2015). The pre-filtered compounds were obtained as
3D data files (sdf) and then uploaded to PyRx’s Open Babel
Converter (O’Boyle et al., 2011). The compounds were energy
minimized using the default parameters of the Universal Force
Field (UFF) and conjugate gradients for the optimization procedure,
which consisted of 200 steps. The. sdf files were then converted
to protein data bank partial charge and atom type (.pdbqt) files
using Open Babel Converter. The energy-minimized AR protein
in. pdb format was also imported into PyRx and converted to.
pdbqt. A grid box with dimensions of X = 29.3 Å, Y = 25.1 Å,
and Z = 28.4 Å, centered at coordinates X = 40.03 Å, Y = 35.18 Å,
and Z = 35.97 Å was used to cover the binding site precisely.
The exhaustiveness parameter was maintained at its default value
of 8 to ensure efficient docking. The protein was kept in a rigid
conformation during the docking process while the ligands were
treated as flexible entities during the docking simulations, allowing
AutoDock Vina to generate up to 9 conformers for each compound.
Five standard AR inhibitors namely, epalrestat, IDD594, sorbinil,
tolrestat, and zopolrestat were docked against the AR protein to
serve as a benchmark. After virtual screening, compounds that
performed better than the standard inhibitors were chosen for
further investigation.

2.5 Absorption, distribution, metabolism,
excretion, and toxicity (ADMET) prediction

SwissADME (Daina et al., 2017) and AdmetSAR
(Cheng et al., 2012a; Yang et al., 2019) tools were used for
Absorption, Distribution, Metabolism, Excretion, and Toxicity
(ADMET) predictions. Ligands in SMILES format were used to
generate pharmacological profiles. SwissADME and AdmetSAR
provided access to parameters and predictive models for the
computation of pharmacokinetics, physicochemical properties,
drug-likeness, and toxicity of the preselected compounds.

2.6 Protein-ligand interaction

Thehydrogen andhydrophobic interactions betweenARand the
molecules that passed the ADMET test were assessed by LigPlot +
using default settings. The protein-ligand complexes generated by
PyMOL were saved as. pdb and loaded into Ligplot + to generate 2D
schematic representations of the structures and their interactions.

2.7 Prediction of biological activity and
structural similarity

The Prediction of Activity Spectra for Substances (PASS)
(Filimonov et al., 2014) was employed to predict the biological
activities of the selected compounds based on Bayesian models.
PASS uses a training set of 26,000 compounds with known activities
to generate the probability of activity (Pa) and inactivity (Pi) for
each compound on a scale from 0.000 to 1.000 (Parasuraman,
2011; Agyapong et al., 2021). A compound with Pa > Pi
is considered to have a higher likelihood of the predicted
activity. The biological activities assessed in this study were
aldose reductase inhibition, antidiabetic, anti-inflammatory, and
antioxidant properties. Additionally, structural similarity analysis
was conducted using the DrugBank tool (Knox et al., 2024), which
provides comprehensive drug data, including over 7,800 drugs, to
identify compounds with structural similarities to FDA-approved
and experimental drugs. This analysis helped determine whether
the selected compounds share common structural features with
known bioactive molecules, suggesting potential pharmacological
properties.

2.8 Molecular dynamics simulation

Molecular dynamics (MD) simulations were conducted for
100 nanoseconds (ns), employing the CHARMM36 all-atom
force field (July 2022) and the CHARMM-modified three-point
transferable intermolecular potential (TIP3P) water model, within
the GROMACS software platform, version 2024 (Abraham et al.,
2015). The simulations were executed on the high-performance
computing (HPC) infrastructure hosted at the West African
Centre for Cell Biology of Infectious Pathogens (WACCBIP),
at the University of Ghana. The initial MD simulation focused
on the unbound aldose reductase protein, utilizing the aldose
reductase raw coordinate file obtained from the Protein Data
Bank (PDB) as the starting configuration. Subsequently, MD
simulations were conducted for the five docked complexes of aldose
reductase. Each simulation employed a dodecahedron box with
dimensions of 1.0 nm and was solvated with the SPC water model,
which was pre-neutralized. Topology files of the compounds were
generated using the CHARMM General Force Field (CGenFF)
(Vanommeslaeghe and MacKerell, 2012). Energy minimization
was performed over 1,000 steps using the Steepest Descent (SD)
algorithm. Position restraints were applied to the AR protein
and the ligands, followed by temperature equilibration at 300 K
and pressure equilibration at 1 bar, each conducted for 50,000
picoseconds. Subsequently, production MD runs were carried out
for 100 nanoseconds, with temperature and pressure maintained
at 300 K and 1 bar, respectively. After MD, the output files were
visualized and analyzed for the radius of gyration (Rg), root mean
square deviations (RMSD), and root mean square fluctuations
(RMSF) of the atoms for each amino acid residue using XMGRACE,
Version 5.1.19 (Turner, 2005).
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2.9 Molecular mechanics poisson-
boltzmann surface area (MM-PBSA)
calculations

The Molecular Mechanics Poisson-Boltzmann Surface Area
(MM-PBSA) technique was utilized to compute the binding free
energies of the protein-ligand complexes (Wang et al., 2017).
Molecular mechanics and continuum solvent models are combined
in MM-PBSA to yield the binding energy components and the
individual energy contributions of the AR residues.The graphs from
the MM-PBSA computations were then plotted using the RStudio
programming software version 2023.6.0.421 (Posit team, 2023).

3 Results

3.1 Preparation of AR protein

In this study, we considered the aldose reductase (AR) protein
structure 1US0 with the lowest structure resolution of 0.66 Å and an
R-value of 0.094 compared with other AR proteins in the protein
database. The selected AR structure was compared with equally
solved structures such as 4IGS, 1PWM, and 4LBS, with resolutions
0.85, 0.92, and 0.76 Å, respectively, and R-values of 0.143, 0.129,
and 0.134, respectively. A highly resolved structure has well-defined
substructures and features, including the active site region, bond
density, and significant deviations from standard stereochemistry
(Howard et al., 2004). The AR protein with PDB ID: 1US0 exists as a
37.4 kDamonomeric protein with 316 amino acids and an active site
that is bound to cofactor NADP+ and inhibitor IDD594 which were
removed to make the active site available for molecular docking of
the compounds in this study.

3.2 Preparation of compound library

In preparing the EANPDB, NANPD, and AfroDB compound
libraries for molecular docking, Lipinski’s rule of five was applied
to pre-filter compounds eliminating those that failed to meet
Lipinski’s criteria. Lipinski’s rule of five is a widely accepted
method for evaluating the drug-likeness of compounds. It combines
computational and experimental techniques to assess the likelihood
of absorption or permeation of the compound (Mahgoub et al.,
2022). The rule states that a compound is more likely to be a
viable drug candidate if it satisfies certain criteria, which include
having less than five hydrogen bond donors, less than 10 hydrogen
bond acceptors, a molecular weight greater than 500, and a
calculated Log P (cLogP) value exceeding five (or MlogP > 4.15)
(Lipinski, 2004; Devadasu et al., 2018). After pre-filtering, 2,968 out
of 7,344 compounds in compound libraries satisfied the rule and
were therefore considered for docking.

3.3 Validation of the docking protocol

Validation of a docking protocol is a crucial step in any in silico
study that utilizes molecular docking. Several studies have shown
that the validation process is useful for assessing the accuracy and

robustness of a chosen protocol for the specific system being studied
(Shivanika et al., 2022; Granchi et al., 2015). Validation is generally
achieved using various procedures some of which include, re-
docking, super-imposition, use of docking decoys, comparison with
other docking programs, and so on (Hevener et al., 2009). However,
for this study, validation by superimposition and validation by
ROC curve analysis using docking decoys were used to assess the
docking protocol.

3.3.1 Validation by superimposition
This validation method involves extracting the inhibitor

(IDD594) from the experimental crystal (1US0) and re-docking
it into the binding site of the aldose reductase protein. The re-
docked structure was superimposed using PyMOL (v.3.0.0) on the
co-crystallized protein-ligand complex resulting in an RMSD of
0.211Å (Figure 2A). Using LigPlot (v.2.2.8), IDD594 was observed
to bind into the binding site via hydrogen bonding with His110,
Trp111, Tyr48, Thr113 and hydrophobic interactions with Trp20,
Trp219, Phe122, and Leu300 as shown in Figure 2B. The validation
process with an RMSD of 0.000 is indicative of a very high degree
of similarity between the docked ligand pose and the reference
ligand pose (Hevener et al., 2009), thereby suggesting a high degree
of accuracy in predicting the ligand’s binding pose with similarity
in hydrogen and hydrophobic bond interactions.

3.3.2 Validation by ROC curve analysis
To further validate the docking protocol used in the study,

the Area under the curve (AUC) of the Receiver Operating
Characteristic (ROC) curve was used. This is an indicator for
assessing a dockingmodel’s capacity to differentiate between docked
decoys and active ligands (Bowers and Zhou, 2019). When tested
against the aldose reductase protein (1US0), the ROC curve depicts
the overall docking performance in distinguishing between active
and decoy ligands (Figure 3). An AUC of ROC closer to 1 indicates
that the model can differentiate between active ligands and decoys
more effectively (Guterres and Im, 2020). The results showed an
AUC value of 0.773 for the ROC curve when evaluating the 5
active inhibitors and 250 decoys independently against the aldose
reductase model 1US0.

3.4 Molecular docking of compounds

Molecular docking is a method for predicting the binding mode
and binding affinity of a small molecule compound to the binding
site of a target protein based on its structural properties (Guterres
and Im, 2020; Khan et al., 2023). The binding affinities for the 2,968
pre-filtered compounds ranged from −12.3 to −3.6 kcal/mol. The
more negative the affinity score, the stronger the bond between
the compound and the protein. Zopolrestat, a standard inhibitor,
had the highest binding affinity of −9.9 kcal/mol and was used
as the benchmark for selecting the best compounds. This resulted
in the selection of 105 compounds (Supplementary Table S1).
However, due to computational limitations, only the best 20
compounds were selected for downstream analysis. The molecular
docking results for the top 20 compounds and 5 standard aldose
reductase inhibitors are shown in Table 1. The affinity scores
of these 20 compounds ranged between −12.3 kcal/mol and
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FIGURE 2
Validation of docking protocol by superimposition (A) Superimposed image showing the structural alignment of the docked complex of native IDD594
ligand (green) and re-docked ligand (blue) with protein represented in cartoon and ligand represented in sticks. (B) LigPlot+ of superimposition
between the co-crystallized ligand of aldose reductase (1US0) and the re-docked IDD594 ligand. Red circles represent the superimposed molecular
interactions between the co-crystallized and the re-docked ligands.
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FIGURE 3
An ROC curve generated after screening 255 compounds consisting
of five inhibitors and 250 decoys against the 3D model of the aldose
reductase. An acceptable AUC of 0.773 was obtained.

−10.7 kcal/mol. The compound 4,5-di-p-trans-coumaroylquinic_
acid had the highest binding affinity score of −12.3 kcal/mol, while
1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside had the lowest
binding affinity score of −10.7 kcal/mol. All top 20 compounds had
a higher binding affinity than the known standard inhibitors, with
binding affinity ranging between −9.9 kcal/mol and −7.7 kcal/mol.

3.5 Absorption, distribution, metabolism,
excretion, and toxicity (ADMET) prediction

ADMET predictions were performed on the top 20 compounds
to assess their drug-like properties. A potential lead compound
should have a favorable ADMET profile, including appropriate
absorption, distribution, metabolism, excretion, and toxicity
properties. The results from SwissADME describe the absorption,
distribution, and metabolism of the ligands in this study which are
illustrated in Tables 2, 3.

All the compounds including the standard inhibitors complied
with Lipinski’s rule of five as shown in Table 2, because the
compound library was prefiltered based on Lipinski’s rule of 5. The
bioavailability score is the likelihood that a substance will possess
an oral bioavailability of no less than 10% in rats and be detected
by Caco-2 permeability (Stelzl et al., 2005). This is represented by
a value range of 0–1 in SwissADME, which can be translated to a
percentage (Martin, 2005). All the ligands in this research study have
a bioavailability score of 0.55 except 4,5-di-p-trans-coumaroylquinic
acid, which has a bioavailability score of 0.11, and (+)-strigol has
0.56; this could be translated to a bioavailability score of 55%, 11%,
and 56%, respectively (Table 2). However, all the standards had a
bioavailability score of 0.55 except for epalrestat and sorbinil which
had a score of 0.56.

As indicated in Table 3, compounds that were not inhibitors
of any cytochrome P450 enzymes include 4,5-di-p-trans-
coumaroylquinic acid, Zinc000095485961, Lactupicrin, (+)-strigol,
and Zinc000095485890. These results suggest that they are less
likely to be involved in drug-drug interactions and have adequate
drug elimination properties via metabolic biotransformation. All

TABLE 1 The top 20 compounds and standard inhibitors selected after
molecular docking.

Compound name Binding affinity (kcal/mol)

Top 20 compounds (AfroDB/EANPDB/NANPDB)

4,5-di-p-trans-coumaroylquinic_acid −12.3

(+)-pipoxide −11.4

Thymelol −11.4

Zinc000095485961 −11.2

Rutamontine −11.1

(−)-tingtanoxide −11.0

Tricoccin_s13_acetate −11.0

Lactupicrin −11.0

Naamidine A −11.0

Zinc000000134782 −10.9

Sigmoidin-b-4′-methylether diacetate −10.9

(−)-pipoxide −10.9

Abyssinone_ii −10.8

(+)-strigol −10.8

Norisojamicin −10.8

Calopogonium_isoflavone_b −10.8

Isosamarcandin −10.8

(+)-pipoxide-2-methyl_ether −10.8

Zinc000095485890 −10.8

1,6-di-o-p-hydroxybenzoyl-beta-d-
glucopyranoside

−10.7

Standard inhibitors

Epalrestat −8.8

IDD594 −8.1

Sorbinil −7.4

Tolrestat −7.6

Zopolrestat −9.9

the predicted ligands exhibited high gastrointestinal absorption
except 4,5-di-p-trans-coumaroylquinic acid. Zinc000000134782,
Abyssinone II, and (+)-pipoxide-2-methyl ether compounds were
found to show potential permeability through the blood-brain
barrier among all the compounds from the SwissADME prediction.
In vivo and in vitro studies have shown that P-glycoprotein is
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TABLE 2 Drug-likeness and water solubility of the top 20 compounds and standard inhibitors.

Ligands MW #HA #HD Log P Log S Solubility LV Bio Sc

4,5-di-p-trans-coumaroylquinic acid 484.45 10 5 1.98 −3.91 Soluble 0 0.11

(+)-pipoxide 366.36 6 1 2.76 −3.56 Soluble 0 0.55

Thymelol 352.29 7 1 2.87 −4.44 Moderately soluble 0 0.55

Zinc000095485961 446.45 9 5 2.08 −3.11 Soluble 0 0.55

Rutamontine 352.29 7 1 2.87 −4.44 Moderately soluble 0 0.55

(−)-tingtanoxide 408.4 7 0 3.95 −4.02 Moderately soluble 0 0.55

Tricoccin s13 acetate 470.6 6 0 3.34 −5.62 Moderately soluble 0 0.55

Lactupicrin 410.42 7 2 1.99 −2.9 Soluble 0 0.55

Naamidine A 433.46 6 2 2.44 −4.27 Moderately soluble 0 0.55

Zinc000000134782 344.36 4 0 3.53 −5.29 Moderately soluble 0 0.55

Sigmoidin-b-4′-methylether diacetate 454.47 8 1 3.97 −5.23 Moderately soluble 0 0.55

(−)-pipoxide 366.36 6 1 3.25 −3.56 Soluble 0 0.55

Abyssinone_ii 324.37 4 2 2.83 −4.68 Moderately soluble 0 0.55

(+)-strigol 346.37 6 1 2.89 −2.65 Soluble 0 0.56

Norisojamicin 364.35 6 1 3.51 −4.71 Moderately soluble 0 0.55

Calopogonium_isoflavone_b 348.35 5 0 3.64 −4.86 Moderately soluble 0 0.55

Isosamarcandin 400.51 5 2 3.47 −5 Moderately soluble 0 0.55

(+)-pipoxide-2-methyl_ether 380.39 6 0 3.08 −3.91 Soluble 0 0.55

Zinc000095485890 438.47 7 0 3.01 −3.64 Soluble 0 0.55

1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside 420.37 10 5 1.25 −2.66 Soluble 0 0.55

Standard Inhibitors

Epalrestat 319.4 4 1 2.73 −2.77 Soluble 0 0.55

Zopolrestat 419.38 8 1 2.66 −4.83 Moderately soluble 0 0.56

Sorbinil 236.2 4 2 1.39 −2.06 Soluble 0 0.55

Tolrestat 357.35 6 1 2.42 −4.29 Moderately soluble 0 0.56

IDD49 416.24 5 2 2.4 −4.69 Moderately soluble 0 0.56

where # HA, Number of hydrogen bond acceptors; # MW, Molecular weight; # HD, Number of hydrogen bond donors; # Bio Sc, Bioavailability Score; # LV, Lipinski’s rule violations.

important for drug absorption and clearance in the liver and kidney.
In the brain, it also acts as a rate-limiting factor for drug uptake
from blood circulation into the brain; in the intestinal lumen, it
is a binding agent for drug absorption into epithelial cells (Lin
and Yamazaki, 2003). Drugs that bind to P-glycoprotein (Pgp) are
regarded as Pgp substrates. 4,5-di-p-trans-coumaroylquinic acid,
Zinc000095485961, Tricoccin_s13_acetate, Lactupicrin, Naamidine

A, Isosamarcandin, and 1,6-di-o-p-hydroxybenzoyl-beta-d-
glucopyranoside show potential to bind to P-glycoprotein from
the SwissADME prediction. Log Kp (expressed in cm/s) represents
a crucial indicator of a drug or ligand’s ability to permeate the skin,
especially if the mode of administration is transdermal (Chen et al.,
2018). A compound is typically considered to have limited skin
permeability when its log Kp is greater than −2.5 cm/s (Pires et al.,
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TABLE 4 The toxicology of the ligands is based on the linear regression model prediction from admetSAR. The negative symbol (−) indicates a negative
prediction of being toxic while the positive symbol (+) indicates a negative prediction of being non-toxic.

Ligands Hepatotoxicity Acute oral toxicity Nephrotoxicity Carcinogenicity Ames mutagenesis

4,5-di-p-trans-
coumaroylquinic acid

+ − − − −

(+)-Pipoxide − − - − −

Thymelol − − + − −

Zinc000095485961 − − - − −

Rutamontine − − + − −

(−)-Tingtanoxide − − + − −

Tricoccin S13 Acetate - − + − −

Lactupicrin + − + − −

Naamidine A − − - − −

Zinc000000134782 − − + − +

Sigmoidin b 4′-methylether
diacetate

− − − − −

(−)-Pipoxide − − − − −

Abyssinone_ii + − + - −

(+)-Strigol − − - − −

Norisojamicin + − + − −

Calopogonium Isoflavone B + − + − −

Isosamarcandin − − − − −

(+)-Pipoxide-2-methyl
Ether

+ − − − −

Zinc000095485890 + − + − −

1,6-di-o-p-hydroxybenzoyl-
beta-d-glucopyranoside

− − − − −

Standard Inhibitors

Epalrestat − − − − −

Zopolrestat + − + − −

Sorbinil + − + − −

Tolrestat − + + − −

IDD49 − − − − −

2015). In the study, all the predicted compounds have values
ranging from −8.43 to −5.20 cm/s, indicating extremely low skin
permeability.

The prediction of the toxicological properties of the ligands used
for docking was achieved using admetSAR 2.0 (Cheng et al., 2012b).

Hepatotoxicity, acute oral toxicity, nephrotoxicity, carcinogenicity,
and mutagenicity toxicological properties were recorded, as shown
in Table 4. The results from the admetSAR also showed that none of
the ligands is carcinogenic (Table 4). The compounds that exhibited
positive toxicology predictions for hepatotoxicity, acute oral toxicity,
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TABLE 5 This table depicts the interactions between AR binding site residues and the top 20 compounds via hydrogen bonding and hydrophobic
interactions. The length of the hydrogen bonds’ interactions is also shown.

Compound Hydrogen bonds Hydrogen bond length (Å) Hydrophobic interactions

(+)-pipoxide His110
Trp111

3.01
3.03

Trp309, Lue300, Thr114, Cys303,
Phe122, Phe115, Trp79, Val47, Gln183,
Tyr209, Asp43, Tyr48, Ile3260, Ser210,
Trp20, Cys298

Zinc000095485961 Trp20
Ile260
His110
Thr113

2.81
2.78
3.03
2.87

Cys303, Phe122, Tyr309, Trp111, Trp79,
Leu300, Tyr48, Asp43, Lys262, Ser210,
Tyr209, Cys298, Trp219, Phe115

Naamidine A Trp20
Thr113

3.01
2.93

Ala299, Phe115, Tyr209, Tyr48, Cys298,
His110, Trp111, Val47, Trp219, Trp79,
Leu300, Cys303, Tyr309

Sigmoidin B 4′-methylether diacetate Gln183
Ser210
Trp20

2.42
2.83
2.99, 3.14

Lys262, Tyr209, Lys77, His110, Trp111,
Phe115, Leu300, Cys298, Phe122,
Ala299, Phe122, Trp219, Tyr48, Lys21

(−)-pipoxide His110
Cys298

2.87, 3.27
3.33

Trp111, Trp79, Phe115, Tyr309, Val 47,
Tyr48, Tyr209, Ser210, Asp43, Trp20,
Gln183, Phe122, Leu300, Thr113,
Cys303

(+)-strigol Trp111, Asn160 3.16
3.05

Cys298, Tyr48, Phe122, Trp219, Val47,
Trp20, Lys262, Gly18, Tyr209, Ser210,
His110

Isosamarcandin - - Arg69, Tyr103, Asp105, Arg69, Tyr103,
Asp105, Ile58, Leu62, Arg69, Leu72,
Lys100, Leu101, Asp102, Tyr103,
Lys154

1,6-di-O-p-hydroxybenzoyl-beta-D-
glucopyranoside

Thr113
His110
Trp111
Ile260

2.96
3.29
2.78
3.31

Phe122, Phe115, Tyr209, Gln183,
Ser210, Trp20, Trp48, Asp43, Leu300,
Trp79, Tyr309, Ala299, Cys303

Epalrestat (Standard Inhibitor) - - His110, Val47, Trp111, Phe122, Trp79,
Trp219, Tyr48, Asp43, Ile260, Ser210,
Tyr209, Gln183, Trp20, Cys298

nephrotoxicity, carcinogenicity, and mutagenesis were eliminated
leaving eight compounds namely, (+)-pipoxide, Zinc000095485961,
Naamidine A, Sigmoidin B 4′-methylether diacetate, (−)-pipoxide,
(+)-strigol, Isosamarcandin, and 1,6-di-O-p-hydroxybenzoyl-beta-
D-glucopyranoside. These selected compounds stand out due to
their high bioavailability, minimal Central Nervous System (CNS)
side effects, low drug-drug interaction potential, and excellent
safety profiles across key toxicological endpoints, making them
promising candidates for targeting aldose reductase in managing
diabetic complications. Additionally, epalrestat and IDD549, where
the standard inhibitors showed no toxicity for the selected
toxicity profiles.

3.6 Protein-ligand interactions

The eight compounds and the standard inhibitor (epalrestat)
identified through the ADMET studies underwent analysis to assess

their interactions with the active site of the aldose reductase
protein (Table 5). The amino acids comprising this active site were
determined from literature reviews, as follows: His110, Asp43,
Lys77, Cys298, and Tyr48 (Tarle et al., 1993); and Trp111, Trp20,
Phe122, Thr113, Leu300, Ser210, and Trp219 (Ashik et al., 2022).
Notably, 1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside, (+)-
pipoxide, and (+)-strigol exhibited hydrogen bonding interactions
with residue Trp111, with bond lengths of 3.03, 3.16, and 3.29,
respectively. Naamidine A formed hydrogen bonds with Trp20
and Thr113, with bond lengths of 3.01 and 3.13, respectively.
Moreover, 1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside and
Zinc000095485961 were observed to interact with Ile260, His110,
and Thr113 via hydrogen bonds (Table 5). However, Sigmoidin-b-
4′-methylether diacetate and (+)-strigol, despite forming hydrogen
bonds, did not interact with the crucial residues of the aldose
reductase active site, leading to their exclusion from further studies.
Isosamarcandin was also excluded due to its lack of interaction with
any residues via hydrogen bonding. Selection of compounds solely
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FIGURE 4
Epalrestat docked firmly in the binding pocket and interacting with critical residues. (A) Surface view of the AR protein and epalrestat (blue). (B) 2D
diagram of the protein-ligand interaction generated using LigPlot+.The ligand is colored in purple, and hydrophobic contacts are represented as red
spoke arcs.

based on interactions with only the critical residues of the aldose
reductase active site resulted in five compounds being selected as the
top compounds. Notably, the standard inhibitor interacted with the
active site solely through hydrophobic interactions implying that our
selected compounds may form stronger interactions when bound to
AR than the standard epalrestat (Table 5; Figure 4).

3.7 Prediction of biological activity and
structural similarity of the 5 lead
compounds

The PASS software predicted the biological activities of the
five selected compounds. Zinc000095485961 and 16-di-o-p-
hydroxybenzoyl-beta-D-glucopyranoside were predicted to possess
all four biological activities which were aldose reductase inhibition,
antidiabetic, anti-inflammatory, and antioxidant with high Pa
values for each activity (Table 6). Zinc000095485961 had Pa values
of 0.679 for antioxidant, 0.636 for anti-inflammatory, 0.596 for
antidiabetic, and 0.109 for aldose reductase inhibition, all greater
than their Pi values (Table 6). Similarly, 16-di-o-p-hydroxybenzoyl-
beta-D-glucopyranoside exhibited Pa values of 0.724 for anti-
inflammatory, 0.681 for antioxidant, 0.568 for antidiabetic, and
0.205 for aldose reductase inhibition, also showing strong potential
for these activities. (+)-Pipoxide and (−)-Pipoxide were predicted to
have anti-inflammatory (Pa = 0.327) and antioxidant (Pa = 0.162)
activities, although they were not predicted to have aldose reductase
inhibitory or antidiabetic properties. Naamidine A did not exhibit
significant activity in any of the assessed biological categories
according to the PASS predictions, but its known anticancer
properties suggest other potential uses.

In the structural similarity analysis (Table 6), Zinc000095485961
showed a high similarity score with Acteoside (0.891)
and Echinacoside (0.887), both of which are known
bioactive compounds. Also, 16-di-o-p-hydroxybenzoyl-beta-D-
glucopyranoside exhibited notable structural similarity to Beta-
12346-Penta-O-Galloyl-D-Glucopyranose (0.873) and Tannic Acid
(0.739). These findings suggest that these compounds may share
pharmacological properties with known drugs. In contrast, (+)-
Pipoxide, (−)-Pipoxide, and Naamidine A did not demonstrate
significant structural similarity to any known drugs in the
DrugBank database.

3.8 Molecular dynamics simulation

3.8.1 Root mean square deviation (RMSD)
An RMSD plot over simulation time revealed the backbones

of the five complexes after 100 ns in comparison to the
unbound AR protein and a standard inhibitor (Epalrestat-
AR) complex (Figure 5A). The unbound protein at the initial start
of the simulation had an RMSD of 0.11 nm that gradually increased
to 0.16 nm and after 16 ns decreased steadily till 22 ns where it
attained an RMSD of 0.14 nm. A steady increase was observed
after the 22 ns time and maintained a relatively steady RMSD of
0.24 nm at 38 ns till the end of the 100 ns simulation. The standard
inhibitor (Epalrestat-AR) complex had an initial RMSD of 0.09 nm
which increased steadily to 0.17 nm at 40 ns and then decreased to
0.14 nm at 65 ns after RMSD was maintained at an average RMSD
of 0.14 nm in the remaining simulation time. Zinc0009548961-AR
complex rose from 0 nm to 0.08 nm at the start of the simulation
and then maintained an average RMSD of 0.12 nm over the
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TABLE 6 The table shows the names of the compounds and their predicted biological activity with their corresponding probability of activity (Pa) and
the probability of inactivity (Pi). Selected pharmacological activity in this study includes aldose reductase inhibition, anti-inflammatory, antidiabetic,
and antioxidant activity. Additionally, the table shows structural similarity scores for compounds compared to known drugs.

Compounds Pa Pi Pa > Pi Predicted
pharmacologic
activity

Structurally similar
drug

Similarity score

Zinc000095485961

0.679 0.004 Yes Antioxidant
Acteoside 0.891

0.636 0.025 Yes Anti-inflammatory

0.596 0.013 Yes Antidiabetic
Echinacoside 0.887

0.109 0.016 Yes Aldose reductase inhibitor

1,6-di-o-p-hydroxybenzoyl-
beta-d-glucopyranoside

0.724 0.013 Yes Anti-inflammatory

Beta-1,2,3,4,6-Penta-O-Galloyl-
D-Glucopyranose

0.7390.681 0.004 Yes Antioxidant

0.568 0.015 Yes Antidiabetic

0.205 0.005 Yes Aldose reductase inhibitor Tannic acid 0.873

(+)- Pipoxide
0.327 0.138 Yes Anti-inflammatory

None None
0.162 0.089 Yes Antioxidant

- (−) Pipoxide
0.327 0.138 Yes Anti-inflammatory

None None
0.162 0.089 Yes Antioxidant

Naamidine - - - None None None

Epalrestat

0.432 0.003 Yes Aldose reductase inhibitor

None0.407 0.042 Yes Antidiabetic

0.248 0.121 Yes Anti-Inflammatory

remaining simulation time. The 1,6-di-o-p-hydroxybenzoyl-beta-
d-glucopyranoside (1,6 DHG)-AR complex had an RMSD of 0.11
at the start of the simulation and peaked at 0.15 nm/25 ns; then it
decreased to 0.125 at a maintained RMSD. It peaked around 70 ns
and later averaged at about 0.12 nm over the remaining simulation
time. For (+)- pipoxide, the RMSD started at 0.1 nm and steadily
increased to 0.15 nm within the first 12 ns. It then declined to
0.125 nm after 25 ns. The RMSD was maintained at 0.125 nm till
50 ns where it increased to 0.18 nm and then maintained an average
RMSD of 0.18 nm till the end of the simulation. (−)- Pipoxide
initially had an RMSD of 0.15 nm at the start of the simulation
which then declined to 0.13 nm. An average RMSD of 0.13 nm was
then maintained throughout the simulation. The Naamidine-AR
complex showed the most stable conformation by maintaining an
RMSD of 0.1 nm in the 100 ns simulation.

3.8.2 Radius of gyration (Rg)
The compactness of the complexes was evaluated using

the radius of gyration (Rg). The Rg values obtained from
the simulations showed that all AR-complexes including the
unbound protein (Figure 5B) remained in their compact (folded)
form throughout 100 ns. All AR complexes maintained their Rg

from the beginning of the simulation (0 ns) to the end (100 ns)
within or fluctuations. The average Rg of the unbound protein
and AR-complexes, epalrestat, (+)-pipoxide, Zinc000095485961,
1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside, Naamidine A
and (−)-pipoxide were 1.940, 1.937, 1.929, 1.937, 1.929, 1.941
and 1.943 nm, respectively. The differences in Rg between the
AR-complexes and the standard inhibitors were small however,
Zinc000095485961, Naamidine A, and 1,6-di-o-p-hydroxybenzoyl-
beta-d-glucopyranoside had a slightly lower Rg compared to the
unbound protein and epalrestat.

3.8.3 Root mean square fluctuation (RMSF)
The stability of the individual residues was assessed using their

Root Mean Square Fluctuation (RMSF) plots (Figure 5C). All the
complexes possessed similar residue fluctuations within the same
regions, with little deviation from the unbound protein and the
epalrestat-AR complex (Figure 5C). High residue fluctuations were
observed within amino acid residues at positions 2, 8, 25, 118, 125,
173, 224, 225, 264, and 312. Residue fluctuations between 0.1 and
0.2 nm were generally observed within the residues. However, a rapid
increase to 0.5 nm RMSF within residues 205–225 was observed and
this might be indicative of the region with the highest flexibility.
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FIGURE 5
MD simulations on five selected natural compounds and the standard
inhibitor (epalrestat). A 100 ns MD simulation was performed to
analyze the structural stability and conformational changes of aldose
reductase when bound to the complexes. The parameters considered
shown in the graphs include (A) the root mean square deviation
(RMSD), (B) the radius of gyration (Rg), and (C) the root mean square
fluctuation (RMSF).

3.9 MM-PBSA calculations of
ligand-receptor complexes

The study employed the MM-PBSA approach to elucidate
the binding free energies of the top five selected compounds:

(+)-pipoxide, Zinc000095485961, Naamidine A, (−)-pipoxide, and
1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside compared to
the standard inhibitor (epalrestat). These compounds exhibited
binding free energies of −115.073, −106.483, −98.523, −93.751, and
−92.007 kJ/mol, respectively Notably, all five compounds displayed
higher binding free energy, Van der Waals energy, electrostatic
energy, polar solvation energy, and Solvent-Accessible Surface Area
(SASA) when compared to epalrestat (Table 7). Additionally, the
contribution of each residue’s energy via MM-PBSA decomposition
was determined to identify the active site residues of AR involved
in ligand binding. Residues with energy contribution exceeding
>5.0 or < −5.0 are considered critical residues for protein-
ligand binding (Kwofie et al., 2019). For Zinc000095485961 Trp20,
Trp111, and Trp219 were the identified critical residues with
binding energies of 9.453, 8.032, and 5.031 kJ/mol (Figure 6),
respectively. Asp43, a critical residue contributed a high energy
of 15.089 kJ/mol in all complexes. For 1,6-di-o-p-hydroxybenzoyl-
beta-d-glucopyranoside, Trp20, Trp111, and Leu300 were identified
as critical residues with contributed energies of −6.564, −8.187, and
5.342 kJ/mol, respectively (Supplementary Figure S1). Asp43 also
had a significantly high energy of 18.011 kJ/mol. Trp208 was not
a critical residue but contributed less than −5 kJ/mol. Regarding
(+)-pipoxide, Trp20, Trp111, and Phe122 were the critical residues
with energies exceeding 5 and below −5 (Supplementary Figure S2).
Although Trp43 is not a critical residue, it showed a significant
contribution of −5.956 kJ/mol. For (−)- pipoxide-AR complex,
Trp20 contributed low energy of −7.654 kJ/mol, with Trp48
also peaking at −9.765 kJ/mol (Supplementary Figure S3). Asp
43 contributed an energy of 9.678 kJ/mol, although it is not a
critical residue. Finally, in the naamidine-AR complex, Trp20,
Trp111, and Leu300 were the critical residues with a low
binding affinity of −6.987, −7.865, and −6.132 kJ/mol, respectively
(Supplementary Figure S4). Chemical structures for the five leads
and epalrestat are shown in Table 8.

4 Discussion

The use of natural bioactive compounds including flavones,
flavonoids, and coumarins derived from naturally occurring plants,
for aldose reductase enzyme inhibition has gained traction in
recent years. Numerous studies have investigated the inhibitory
effects of synthetic and natural compounds on aldose reductase to
mitigate the chronic complications of diabetes, such as nephropathy,
retinopathy, and neuropathy (Gamal and Munusamy, 2017;
Dănilă et al., 2024). Compounds like epalrestat, sorbinil, tolrestat,
and fidarestat have demonstrated significant inhibitory activity
against the enzyme in animal models. However, many of these
compounds were withdrawn from the market due to adverse effects
and lack of selectivity for enzymes sharing sequence homology
with aldose reductase, such as aldehyde reductase (Antony and
Vijayan, 2015). Among them, only epalrestat, a synthetic aldose
reductase inhibitor has successfully undergone clinical trials and
is commercially available for treating diabetic neuropathy in Japan
and other regions (Zhu and Zhu, 2013). Given the rising prevalence
of diabetic complications worldwide, there is an urgent need for
alternative and more effective aldose reductase inhibitors to manage
diabetic complications. This study is thus aimed to identify natural
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TABLE 7 The table below shows the binding energies and the contributing energy terms of the AR-ligand complexes from the MMPBSA calculation. The
values are presented in average ± standard deviations in kJ/mol.

Ligands van der Waal
energy (kJ/mol)

Electrostatic
energy (kJ/mol)

Polar solvation
energy (kJ/mol)

SASA energy
(kJ/mol)

Binding energy
(kJ/mol)

Zinc000095485961 −222.393 ± 4.184 −59.714 ± 1.794 190.605 ± 3.480 −23.641 ± 0.441 −115.073 ± 3.158

1,6-di-o-p-
hydroxybenzoyl-beta-d-
glucopyranoside

−227.950 ± 1.075 −42.232 ± 1.401 185.543 ± 1.427 −21.900 ± 0.082 −106.483 ± 1.452

(+)-pipoxide −174.413 ± 1.379 −34.938 ± 1.340 130.427 ± 1.988 −19.550 ± 0.115 −98.523 ± 1.465

(−)-pipoxide −161.391 ± 2.271 −18.979 ± 0.806 105.061 ± 1.682 −18.441 ± 0.225 −93.751 ± 1.871

Naamidine A −177.856 ± 2.899 −32.891 ± 2.020 138.645 ± 2.783 −19.828 ± 0.171 −92.007 ± 2.857

Epalrestat −116.058 ± 5.800 −26.939 ± 1.639 92.795 ± 4.964 −12.995 ± 0.624 −63.471 ± 4.737

FIGURE 6
Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) plot
of binding free energy contribution per residue of AR-
Zinc000095485961 complex. Fluctuations by selected critical residues
of AR are shown in red.

compounds from the African region with inhibitory activity against
aldose reductase.

After screening the pre-filtered library of 2,968 compounds of
African origin against aldose reductase (PDB: 1US0), the predicted
binding affinities ranged from −12.3 to −3.6 kcal/mol, showcasing
a wide range of interaction strengths with the aldose reductase
protein. This range highlights the diversity of the compound library
and the ability of the docking protocol to discern variations
in binding strengths. Among the standard inhibitors screened,
zopolrestat, a known aldose reductase inhibitor, had the highest
binding affinity of −9.9 kcal/mol and was used as a benchmark.
Out of the screened library, 105 compounds displayed binding
affinities equal to or better than zopolrestat. This represents
approximately 3.5% of the screened compounds, indicating a
stringent selection process. To ensure computational feasibility, the
top 20 compounds were prioritized for further analysis. These
compounds demonstrated binding affinities ranging from −12.3 to
−10.7 kcal/mol, significantly outperforming zopolrestat. Such a clear

improvement over the benchmark compound indicates the potential
of these molecules as aldose reductase inhibitors.

The selected standard inhibitors of aldose reductase include
epalrestat, IDD594, sorbinil, tolrestat, and zopolrestat with
respective binding affinities of −8.8, −8.1, −7.4, −7.6, and
−9.9 kcal/mol, and have been shown to have considerably high
inhibitory activity both in vitro and in vivo. Based on bioactivity
studies, sorbinil has been shown to have an IC50 of 3.14 μM
(Shehzad et al., 2021). In a study involving streptozotocin
diabetic mice, zopolrestat was studied to inhibit at a low IC50
of 0.004 μM (Mylari et al., 2003). IDD594 was studied to have
an IC50 of 0.030 μM and is known to be an effective inhibitor
of AR (Podjarny et al., 2004). Tolrestat has been studied to
have an effective IC50 of 0.0012 µM in a streptozotocin-induced
diabetic rat model (Van Zandt et al., 2005). These studies suggest
that these standards exhibit notable inhibitory effects on aldose
reductase. Nonetheless, the selected top 20 compounds had a higher
binding affinity for AR binding sites than all the standard ARIs
used in this study highlighting a high potential of the selected
compounds as an ARI.

To develop innovative therapeutic agents, it is important to
have a thorough understanding of the complex pharmacokinetic
dynamics, thereby elucidating the compound’s behavior within the
biological environment. This process involves assessing Absorption,
Distribution, Metabolism, Excretion, and Toxicity (ADMET)
parameters to screen compounds for favorable physicochemical
properties (Flores-Holguín et al., 2021; Tian et al., 2015). In this
study, compounds exhibiting favorable solubility, pharmacokinetic
profiles, and toxicity profiles were meticulously selected. Based on
these stringent criteria, eight compounds, namely, (+)-pipoxide,
Zinc000095485961, Naamidine A, Sigmoidin-b-4′-methylether
diacetate, (−)-pipoxide, (+)-strigol, Isosamarcandin, and 1,6-di-
o-p-hydroxybenzoyl-beta-d-glucopyranoside, were identified as
possessing drug-like properties with suitable pharmacokinetics and
low toxicity. These compounds performed better than some of the
standard inhibitors namely, sorbinil, tolrestat, and zopolrestat used
in this study.

Intermolecular interactions like hydrogen bonding and
hydrophobic interactions play pivotal roles in stabilizing
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TABLE 8 Chemical structures of (A–E) the top 5 identified compounds and (F) Epalrestat (Standard Inhibitor).

A Zinc000095485961
B 1,6-di-o-p-hydroxybenzoyl-beta-d-glucopyranoside C (+)-Pipoxide

D (−)-Pipoxide E Naamidine A F Epalrestat

energetically favorable ligands within the open conformational
environment of protein structures (Coimbra et al., 2020;
Varma et al., 2010). These interactions enhance ligand stability
at the target site, influencing binding affinity and drug efficacy (Lou
and Martin, 2021). Specifically, (+)-pipoxide, Zinc000095485961,
Naamidine A, (−)-pipoxide, and 1,6-di-o-p-hydroxybenzoyl-
beta-d-glucopyranoside were chosen from the 8 compounds due
to their interaction with specific active site residues of aldose
reductase through multiple hydrogen bonds (Coimbra et al.,
2020). Hydrogen bonding is essential in drug design, influencing
structural stability, enzyme catalysis, and drug partitioning and
permeability. Functional groups capable of forming hydrogen
bonds in a drug increase their ability to interact with biomolecular
targets, enhancing binding and selectivity (Coimbra et al., 2020).
Hydrophobic interactions significantly improve inhibitor affinity
and selectivity in drug design, with even minor modifications such
as adding a methyl group yielding substantial effects (Lou and
Martin, 2021). The Hydroxyl groups, benzene rings, and glycosidic
linkages of these compounds catalyze the hydrogen bonding and
the interactions with the catalytic residues of AR (Lou and Martin,
2021). Zinc000095485961 and Naamidine A’s glycosidic linkage
and hydroxyl groups enable strong hydrogen bonding with His110
and Tyr48 (Kingsley et al., 2013) while 1,6-di-o-p-hydroxylbenzoyl-
beta-D-glucopyranoside benzene ring and hydroxyl group catalyzes
hydrophobic interactions with Trp111 and Trp20. The study showed
that the selected compounds have stronger interactions in the AR
binding site making them potentially higher inhibitors than the
known drug epalrestat.

The integration of PASS and structural similarity analysis
provided valuable insights into the biological potential of selected
compounds. Our study focused on aldose reductase inhibition,

antidiabetic, anti-inflammatory, and antioxidant properties,
essential for managing diabetes by addressing glycemic control,
oxidative stress, and inflammation. Zinc000095485961 and 1,6-
di-o-p-hydroxybenzoyl-beta-D-glucopyranoside were predicted
to possess all four activities. Zinc000095485961, identified
as eutigoside A, is a natural product from Stereospermum
acuminatissimum, used for its hemostatic and antiseptic properties
in African countries (Leutcha et al., 2023; Sob et al., 2011).
Its antidiabetic potential may be attributed to eutigoside A
(Kingsley et al., 2013). High structural similarity to drug molecules
such as acteoside and echinacoside further supports its potential for
drug development. Similarly, 1,6-di-o-p-hydroxybenzoyl-beta-D-
glucopyranoside, derived from Tabebuia species, has been studied
to demonstrate antioxidant, anti-inflammatory, and antidiabetic
properties (Govindappa et al., 2013; Murugan et al., 2017; Jimenez-
Gonzalez et al., 2018). The lead compound (−)-Pipoxide, from
Uvaria dependens and Uvaria dependensis, traditionally used to
treat malaria, exhibited anti-inflammatory, antifungal, antioxidant,
and antiviral properties (Nkunya et al., 1993; Mayeka et al.,
2024). Similarly, its enantiomer, (+)-pipoxide, derived from
Monanthotaxis buchananii, displayed similar properties (Liang et al.,
1988; Mayeka et al., 2024). While Naamidine A did not exhibit
predicted biological activity in our selected parameters, it has been
extensively reported for its anticancer activity (LaBarbera et al.,
2009; Vaden et al., 2019; LaBarbera et al., 2009; Vaden et al., 2019).
Also, (+)-pipoxide, (−)-pipoxide and Naamidine-A showed no
significant structural resemblance to known drugs. This highlights
the novelty of these compounds and the need for further exploration
and testing.

To further validate the selected compounds as lead candidates in
this study, we performed molecular dynamics simulations (MDS).
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MDS serves as a computational tool to elucidate the impact
of atomic alterations within a molecular system (Knapp et al.,
2011). These simulations provide insights into atomic movements
and intermolecular interactions over time, capturing the dynamic
behavior and positional changes of atoms (Adelusi et al., 2022).
Post-simulation analysis conducted, such as Root Mean Square
Deviations (RMSD), Root Mean Square Fluctuations (RMSF),
Radius of Gyration (Rg), and hydrogen bonds offer valuable
insights into the stability of protein-ligand complexes throughout
the simulation period (Arthur et al., 2024; Hanson et al., 2025).
These analyses are pivotal for assessing their functional reliability
within living systems, thereby influencing the efficacy of drug
candidates, a critical aspect in drug discovery (Adelusi et al., 2022;
Ashley et al., 2024). In our molecular dynamics (MD) analysis, we
compared selected compounds to the standard aldose reductase
inhibitor, epalrestat, which is clinically approved for treating diabetic
peripheral neuropathy symptoms (Zhu and Zhu, 2013; Ramirez and
Borja, 2008).

The RootMean Square Deviation (RMSD) serves as an indicator
of the structural stability of the aldose reductase (AR)-ligand
complex (Kuzmanic and Zagrovic, 2010). This study revealed
a consistent RMSD profile throughout the 100 ns simulation,
suggesting that all the selected compounds maintain the structural
stability of the protein upon binding. Literature suggests that
RMSD values between 0.15 and 0.25 nm indicate enhanced stability
(Arnittali et al., 2021), further emphasizing the stable conformation
of all five selected compounds having an average RMSD below
0.2 nm. A stable conformation results in increased affinity to AR
thereby increasing the efficacy as a drug (Maruyama et al., 2023).
Furthermore, the Radius of Gyration (Rg) analysis highlighted
stable protein compactness, indicating that the ligands effectively
maintain the protein’s compact conformation upon binding. A
fluctuating Rg reveals the lack of compactness which may be due
to protein unfolding (Jiang et al., 2019; Kwofie et al., 2022). In this
study, all compounds showed a stable Rg and did not differ from
the unbound protein which means that the ligands can maintain
the compact conformation of aldose reductase when bound to
the binding site. Similarly, the Root Mean Square Fluctuation
(RMSF) analysis elucidates changes in conformation induced by
compound binding, particularly with specific amino acid residues of
the protein (Abdullah et al., 2023). A fluctuating or unstable binding
site results in a weak binding which increases the energy required
for effective binding, making the interaction thermodynamically
unfavorable (Du et al., 2016). The highest fluctuation was between
residues 210 to 230. Within this region is the loop region (214–230)
which exhibits significant flexibility facilitates the binding of diverse
substrates and enables conformational adjustments essential forAR’s
functional promiscuity. Notably, the observed fluctuations did not
significantly differ from those of the unbound protein and the
standard inhibitor, indicating minimal influence of the selected
compounds on protein conformation. This finding underscores the
stability of the AR-ligand complex and the potential for effective
inhibition against AR.

The MM-PBSA was calculated to elucidate the binding free
energies of five selected compounds. Results indicated high binding
free energies, which validate the docking results as the lead
compounds’ high binding free energies coincide with the molecular
docking’s high binding affinity. Van der Waals energy and the

electrostatic energy of the top-selected compounds show strong
indicators of stable binding energy to aldose reductase, with an
effect stronger than the standard inhibitor. The polar solvation
and SASA energy of the compounds are well-balanced, indicating
effective hydrophobic packing and solvent exclusion during their
inhibitory activities in biological phenomena with aldose reductase.
The top five selected ligands exhibit optimal molecular interactions,
characterized by strong binding, specificity, and stability, indicating
their potential therapeutic effectiveness in effectively inhibiting
aldose reductase.

To effectively inhibit aldose reductase, the selected compounds
should dock within the binding site and interact with critical
residues involved in protein-ligand interactions. Upon evaluating
the energy decomposition and binding interactions of the amino
acid residues of AR and the ligand complex, it was observed that
there were significant binding interactions with critical residues
such as His110, Tyr48, Trp111, Trp20, Phe122, Asp43, Cys298, and
Trp219, which have also been previously reported in literature as
active site residues of AR (Singh et al., 2021b; Ashik et al., 2022).
These interactions highlight important inhibitory mechanisms of
the selected compounds on aldose reductase. Comparatively, the
energy contribution of the critical residues of the selected five
compounds is considerably higher than that of the standard
inhibitor highlighting the potential of the selected compounds as
effective inhibitors.

5 Conclusion and next steps

In this study, out of 7,344 African compounds being studied,
(+)-pipoxide, Zinc000095485961, 1,6-di-o-p-hydroxybenzoyl-beta-
d-glucopyranoside and Naamidine A, (−)-pipoxide were concluded
as the top lead compound with molecular binding to aldose
reductase, no toxicity and inhibitory activity against aldose
reductase. Molecular docking studies predicted a low binding
energy of the successful compounds compared to the standard
ARIs, suggesting that the predicted compounds have a higher
binding affinity to the aldose reductase enzyme. These compounds
were shown to possess strong interactions with the binding
site residues through hydrogen bonding as well as hydrophobic
interactions. Also, through ADMET studies, these compounds have
revealed favorable pharmacokinetic properties with no predicted
toxicity. Molecular dynamics simulations validated these findings
by producing a lower and stable RMSD and Radius of gyration.
Equally, relatively similar fluctuations in RMSF indicate stable
amino acid residue conformation when the ligands bind to aldose
reductase. MM-PBSA analysis confirmed the docking results and
highlighted energies contributed by interacting residues when AR is
bound to the selected compound. With epalrestat, a potent known
inhibitor used as a standard and a benchmark, this study has
strongly emphasized the potential of natural African compounds
as potential therapeutics in managing diabetic complications.
While computational methods such as molecular docking and
dynamics simulations provide valuable insights, they are inherently
limited by the potential for false positives in predicting compound
efficacy. These computational predictions may not accurately reflect
the complex biological interactions in vivo, necessitating further
validation through experimental studies. In vitro and in vivo studies
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are necessary steps to prove the effectiveness of these compounds
as potential therapeutic AR inhibitors to mitigate complications in
diabetic patients.
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