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Background: Small cell carcinoma of the esophagus (SCCE) is a rare form of
esophageal cancer, which also belongs to the category of neuroendocrine
malignant tumors, with a low incidence but high aggressiveness, and a very
poor prognosis for patients. Currently, there is a lack of unique staging
and treatment guidelines for SCCE. Therefore, a deeper understanding
of the therapeutic targets and the mechanisms underlying its occurrence
and development is of great importance for early diagnosis, identification
of potential therapeutic agents and improvement of the prognosis
for patients.

Methods: Firstly, the dataset of SCCE was downloaded from the GEO
database and GEO2R tool was employed for the analysis of differentially
expressed genes (DEGs). GO and KEGG analysis of DEGs were carried
out by using the Bioinformatics and OmicStudio tools. Then, up- and
down-regulated genes were intersected with the oncogenes and the tumor
suppressor genes respectively, to obtain the differentially expressed onco/tumor
suppressor genes in SCCE. The STRING database was employed to conduct
protein-protein interaction (PPI) analysis of differentially expressed onco/tumor
suppressor genes, the network was further constructed in Cytoscape, and
hub genes of the network were obtained through the Cytohubba plugin.
In addition, miRDB, miRwalk, Targetscan, OncomiR, starbase, Lncbase were
used to predict miRNAs and lncRNAs that regulate hub genes, the ceRNA
network was built based on this. Transcription factor-miRNA co-regulatory
network was analyzed in the NetworkAnalyst database and embellished in
Cytoscape. Finally, drugs that may target hub genes were searched through
the DGIdb and ConnectivityMAP, and docking verification was performed using
Schrodinger.

Results: A total of 820 genes were upregulated and 716 were downregulated,
of these, 54 were identified as oncogenes and 85 as tumor suppressor
genes. Seven hub genes were identified from the PPI network, which were
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AURKA, BIRC5, CDK1, EZH2, FOXM1, KLF4 and UBE2C. Furthermore, a total
of 38 drugs were searched and filtered in DGIdb and ConnectivityMAP, in the
molecular docking results of drugs with hub genes, the docking score of AURKA,
CDK1, and EZH2 with multiple drugs were low (<6). In addition, crizotinib with
AURKA, lapatinib with CDK1, rucaparib with EZH2, rucaparib with UBE2C were
the lowest energy of all molecular docking results.

Conclusion: AURKA, BIRC5, CDK1, EZH2, FOXM1, KLF4 and UBE2C are the hub
genes of SCCE, among them, AURKA, CDK1 and EZH2may be used as targets of
multiple drugs. Crizotinib, lapatinib, and rucaparib can act on the above targets
to inhibit the progression of SCCE and play a therapeutic role.

KEYWORDS

bioinformatics, small cell carcinoma of the esophagus, CDK1, AURKA, DGIdb,
ConnectivityMAP, anti-tumor drug

1 Introduction

Small cell carcinoma of the esophagus (SCCE) is a rare
histological type of esophageal cancer, which belongs to the category
of neuroendocrine malignant tumors, and accounts for 0.5%–5.9%
of all esophageal cancers in China (Law et al., 1994; Chen et al.,
2011; Li et al., 2010a; Li et al., 2010b). Some existing studies
(Chen et al., 2011; Hudson et al., 2007; Ku et al., 2008) have shown
that SCCE has rapid progression, high metastasis, and extremely
poor prognosis. Analysis of clinical data revealed that the tumor size,
invasion depth, and metastasis rate of SCCE are significantly higher
than those of esophageal squamous cell carcinoma and esophageal
adenocarcinoma of the same period (Cai et al., 2019). Most patients
die within 2 years of diagnosis, and their median survival is
only 8–13 months (Wang et al., 2018). Clinically, SCCE is mainly
diagnosed by imaging examinations and endoscopic pathological
tissue biopsy, and its immunohistochemistry can detect endocrine
markers (ZHANG et al., 2019). The occurrence and development
of SCCE is a multi-factor, multi-stage dynamic process. Its specific
mechanism is still unclear, but existing studies have revealed some
relevant aspects. PTEN is a common tumor suppressor gene in
the human body. It can inhibit the PI3K-AKT signaling pathway
to cause cells to arrest in the G1 phase or induce apoptosis of
tumor cells. Zhang et al. detected the mutation of genes such as
EGFR, KRAS, PIK3CA and PTEN, and found that the incidence of
PTEN mutation in Chinese PSCCE patients is higher than that of
other esophageal cancer histological subtypes (Zhang et al., 2014).
In addition, the functional status of PTEN will also affect the
tumor immune microenvironment. In terms of cell origin, SOX2
is a transcription factor that maintains the pluripotency of tumor
stem cells, studies have found that in PSCCE, SCLC and embryonic
esophageal tissue, SOX2 gene is overexpressed and tumor suppressor
gene Rb1 is expressed at a low level, but in poorly differentiated
squamous cell carcinoma, the opposite is true, suggesting that
PSCCE may be derived from embryonic stem cells. Mutation of the
Rb1 gene is one of the early molecular changes in PSCCE (Ishida,
2017). In addition, the occurrence of SCCE is also related to DNA
damage repair. Some studies have found that PAK1 is overexpressed
in PSCCE and is positively correlated with the DNA damage
marker γH2AX, suggesting that PAK1 may be involved in the DNA
damage/repair process of PSCCE and promote the invasion of SCCE

cells. Moreover, overactivation of PAK1 is closely related to tumor
location, lymph node metastasis, and overall survival. The OS of
patients with overactivated PAK1 will also be significantly reduced.
PAK1 has the potential to become a direct target for the treatment of
PSCCE (Gan et al., 2015). Through the study of genomic expression
profiles, it was found that mutations in TP53, RB1 and NOTCH
family are widely present in PSCCE and SCLC, while mutations in
PDE3A, CBLN3 and PTPRM3 genes have never been reported in
esophageal cancer. Mutations in these three genes may be specific
molecular markers in the development of PSCCE. Changes in Wnt
pathway and NOTCH signaling pathway are also important events
in the development of SCCE (Wang et al., 2018). In recent years,
studies on the tumor immune microenvironment have also found
that the immune checkpoint receptorTIGIT and its ligandCD155 of
SCCE are widely upregulated in PSCCE and are significantly related
to distant metastasis, Ki-67 index, prognosis (Zhao K. et al., 2020).

Due to the low prevalence of SCCE, there is a lack of clinically
relevant studies, usually retrospective studies or a few case-report
studies, and there is no unique staging and grading system and
treatment guidelines for reference. Some clinical data analyses have
shown that patients with SCCE have difficulty benefiting from
surgical treatment alone, whichmay be related to the highmetastasis
rate accompanying their diagnosis (Hudson et al., 2007; Cai et al.,
2019). Compared with surgery, radiotherapy and chemotherapy are
more meaningful for the whole treatment of SCCE, especially for
patients with extensive lesions (Hudson et al., 2007; Xiao et al.,
2019), which can significantly prolong the survival of patients. In
the treatment plan for patients with extensive lesions, chemotherapy
should be used as the basis of the entire treatment (Song et al.,
2009; Vos et al., 2011; Ding et al., 2013; Xie et al., 2015), while for
patients with limited lesions, radical surgical resection combined
with postoperative radiotherapy and chemotherapy are the main
treatment tools (Chen et al., 2011; Zhu et al., 2014). SCCE and
small cell lung cancer have many similar histological and clinical
pathological features, so internationally, its staging and treatment
strategies are mostly based on the staging and treatment protocol
of small cell lung cancer. The treatment guidelines for small cell
lung cancer are generally platinum-based, in combination with
other commonly used chemotherapy agents, such as etoposide
or irinotecan (Amarasena et al., 2015; Ito et al., 2021). However,
chemotherapy drugs are usually accompanied with tumor resistance
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and their effectiveness is reduced, and there are very few studies
on emerging targeted therapy and immunotherapy in SCCE.
In terms of treatment, it refers to the treatment experience of
small cell lung cancer and neuroendocrine tumors (Cicin et al.,
2007). More experimental results are still needed to confirm their
effectiveness in SCCE. In summary, exploring the occurrence and
development mechanism of SCCE, clarifying its tumor biological
characteristics at different stages and its prognostic factors are
of great significance for finding new drugs to treat SCCE or
overcome chemotherapy resistance and then formulate the optimal
comprehensive treatment strategy.

Since SCCE is extremely invasive, progresses rapidly, and has
limited treatment options, early diagnosis and early treatment are
essential. Many databases now share disease-related microarray data,
which can identify gene expression profiles under different disease
states. Biomarkers of a specific disease are often expressed differently
in different physiological and pathological states, especially in disease
states, which are extremely different fromnormal physiological states.
Therefore, finding and evaluating these genes based on expression
profiles may be an effective way for diagnosis and monitoring the
prognosis of the disease (Huang et al., 2010). In addition, taking
corresponding measures against hub genes in SCCE is a powerful
method to manage and alleviate disease prognosis. Therefore, this
studyaims tomine specificmarkers forSCCEthroughgeneexpression
data in the database, and tofind suitable candidate drugs for hub genes
through systems biology methods.

2 Materials and methods

2.1 Acquisition of differentially expressed
genes in SCCE

Searching for “Small cell carcinoma of the esophagus” in the
Gene Expression Omnibus (GEO) database, only one dataset,
GSE111299, was sequenced from the genomes of patients with
SCCE, which was eligible to be screened in this study (Liu et al.,
2018). The platform tool GEO2R was used for online analysis, the
GPL570 platform was selected and the samples were grouped into
“SCCE” and “ctrl” according to their source, with three samples
each. After online analysis, a complete table of expression of genes
was obtained. The conditions for screening differentially expressed
genes (DEGs) were: |log2FC| ≥ 2, P. Value < 0.01, removing the
blanks and duplicates of “Gene. Symbol”, if there is more than one
expression value for a gene, the maximum value is taken as the final
value. Finally, the list of DEGs was obtained, the volcano map and
heat map were performed using the OmicStudio tools (https://www.
omicstudio.cn/tool) (Lyu et al., 2023).

2.2 GO and KEGG enrichment analysis of
DEGs in SCCE

In order to elucidate the biological functions and pathways
associated with the identified DEGs, a functional enrichment
analysis was conducted using the Gene Ontology (GO) database.
Additionally, the Kyoto Encyclopedia of Genes and Genomes
database (KEGG) database was employed to examine the

signaling pathways with significantly enriched differential
genes. Enrichment analysis was performed by https://www.
bioinformatics.com.cn, an online platform designed for analysis
and visualization of data (Tang et al., 2023). P < 0.05 in the
enrichment results is considered significant. The GO enrichment
analysis diagram was automatically generated and visualized in the
bioinformatics platform. The top10 signal pathways were selected
based on the P value of the KEGG enrichment analysis results and
visualized in the OmicStudio tools.

2.3 Onco and tumor suppressor genes and
their PPI network in SCCE

Human oncogenes and tumor suppressor genes (TSGs) were
downloaded from oncogene database (https://bioinfo-minzhao.
org/ongene/) (Liu et al., 2017) and TUMOR SUPPRESSOR
GENE DATABASE (https://bioinfo.uth.edu/TSGene/index.
html) (Zhao et al., 2016), respectively. Then VENNY2.1.0 was
used to intersect oncogenes with upregulated genes and TSGs
with downregulated genes, to gain upregulated oncogenes and
downregulatedTSGsinSCCE.Next, thePPInetworkofoncogenesand
TSGs in SCCEwas built and visualized in a search tool for the retrieval
of interacting genes/proteins (STRING) (https://cn.string-db.org/)
version 12.0 and Cytoscape (https://cytoscape.org/) version 3.10.0.

2.4 Identification of hub genes from PPI
network

In order to further screen hub genes in SCCE, the cytohubba
plugin (https://apps.cytoscape.org/apps/cytohubba) was used in
the cytoscape and its’ 12 topological analysis methods (MCC,
DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness,
Radiality, Betweenness, Stress, ClusteringCoefficient) were utilized
to calculate.The top 10 genes in eachmethod were obtained, and the
genes that were in the top 10 in six or more algorithms were selected
and considered to be hub genes in SCCE.

2.5 Survival analysis of hub genes

To further verify the obtained hub genes, we used the GEPIA
database for gene expression analysis and survival analysis (Tang et al.,
2017). Data from TCGA and GETx were used to first explore the
expression of hub genes in ESCA, and then explore the association
between survival probability and the expression of hub genes. We
focused on ESCA patients and evaluated overall survival (OS) and
disease free survival (DFS). Plots with a median cutoff of 50% and
hazard ratios with 95% confidence intervals were generated, with
statistical significance both set at P < 0.05.

2.6 Construction of ceRNA and TF-miRNA
co-regulatory network

In order to explore the regulatory network related to hub genes
and better clarify the role of hub genes, the upstream miRNAs of
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seven hub genes were predicted through three databases: miRwalk
(http://mirwalk.umm.uni-heidelberg.de/), miRDB (https://mirdb.
org/), and Targetscan (https://www.targetscan.org/vert_80/), and
the overlapping data of the three were taken; in the OncomiR
(https://oncomir.org/oncomir) database, select ESCA as a cancer
type to obtain relevantmiRNAs.The significantmiRNAs that appear
in the four databases at the same time were considered to be the
miRNAs that regulate hub genes. The filtered miRNAs were entered
into starbase (starBase or ENCORI: Decoding the Encyclopedia of
RNA Interactomes (rnasysu.com)) and Lncbase (https://dianalab.
e-ce.uth.gr/html/diana/web/index.php?r=lncbasev2) for search, the
results obtained were paired one by one with miRNA-lncRNA into a
set of data, duplicates were removed. After sorting the correlation
data of hub genes, miRNAs, and lncRNAs, the ceRNA network
visualization analysis was performed in Cytoscape.

NetworkAnalyst (https://www.networkanalyst.ca/) version 3.0
can embed the target gene into the biological network of 15 different
databases and extract the genes/proteins, miRNAs, drugs, chemicals
or diseases that are most closely related to the uploaded genes
(seed genes) (Zhou et al., 2019). Enter the hub genes’ name in
the NetworkAnalyst, and select TF-miRNA coregulatory interaction
database, the TF-miRNA co-regulatory network related to the hub
genes was obtained after analysis, then visualized in Cytoscape.

2.7 Construction of GeneMANIA-based
functional association network

To further identify genes related to the functions of hub
genes, we used a novel approach from the GeneMANIA database
to find additional 10 genes with the strongest associations for
each hub gene (Rajadnya et al., 2024).This analysis selected three key
parameters, namely, co-expression, gene interactions, and physical
interactions, to improve the accuracy of target identification.
Subsequently, all newly discovered genes were merged with the
initially obtained hub genes to create a GMFA-based SCCE target
expansion database network. Finally, GO and KEGG enrichment
analysis were performed on these expanded genes.

2.8 Screening for drug candidates

DGIdb (https://www.dgidb.org/) version 5.0.6 is an
open source search engine for drug-gene interactions and
druggable genomes (Cannon et al., 2024). In order to find potential
therapeutic drugs for SCCE, a search was conducted in the DGIdb.
Hub genes were used as input to predict the drugs targeting them,
anti-tumor drugs approved by the FDA were screened as drug
candidates in this study.

Based on information about differences in gene expression,
the ConnectivityMAP (https://clue.io/) uses a pattern matching
algorithms to infer whether there is a functional correlation between
drugs, genes and diseases. Its query application can be used to
find positive and negative connections between the gene expression
features of interest and all features in ConnectivityMAP (Lamb,
2007). The upregulated oncogenes and downregulated TSGs were
input and queried in the Query tool of ConnectivityMAP. In the
results, a negative value of “raw_cs” indicates that the compound

may be effective against the disease. Therefore, the top 10
compounds were selected as drug candidates based on the sorting
and screening of FDA-approved anti-tumor drugs.

2.9 Molecular docking

The structures of drug candidates were sourced from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Firstly,
imported these drug structures into the Schrodinger software
version 2024.01 to establish a database, following hydrogenation,
structural optimization, and energy minimization, the resulting
ligand molecules were saved for use in molecular docking. The
target protein AURKA (PDB ID: 4UYN), BIRC5 (PDB ID: 7LBQ),
CDK1 (PDB ID: 6GU2), EZH2 (PDB ID: 5HYN), FOXM1 (PDB
ID: 3G73), KLF4 (PDB ID: 6VTX), UBE2C (PDB ID: 4YII)
structures were sourced from the RCSB database (https://www.
rcsb.org/), then protein structures were processed on the Maestro
(version 2024.01) platform, and the proteins were processed
using the ProteinPreparationWizard of Schrodinger. Finally, the
proteins were minimized and the geometry structures were
optimized. The receptor underwent pre-processing, optimization,
and minimization (with the OPLS4 force field being utilized
for constrained minimization). The LigPrep module’s default
settings were followed in preparing the compound structures. The
constructed receptor was imported, the protein’s natural ligand
was selected as the target’s active site center, and the active site
positionwas generated in the receptor grid for screening in theGlide
module. Lastly, the molecular docking was carried out using the
recognized standard dockingmethodology (Standard Precision, SP)
(Friesner et al., 2004; Rajeswari et al., 2014; Fazi et al., 2015). The
Schrödinger software support was provided by Nanjing University
of Chinese Medicine.

3 Results

3.1 Identification and enrichment analysis
of differentially expressed genes

Theprocess of this study is shown in Figure 1. In the GSE111299
dataset, a total of 1,536 differentially expressed genes in SCCE
(|log2FC| ≥ 2 and P. Value < 0.01) were screened, 820 genes
were upregulated and 716 genes were downregulated. The volcano
plot shows the distribution of these DEGs (Figure 2A), and the
clustering heat map of DEGs is shown in Figure 2B, GSM3020874,
GSM3020876, and GSM3020878 are tumor tissues of patients with
SCCE, while GSM3020875, GSM3020877, and GSM3020879 are
normal tissues of the corresponding patients. It can be seen that
the gene expression of tumor and normal tissues is significantly
different.

To gain insight into the biological classification of the identified
DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed.
Figure 2C shows the enrichment analysis results of biological
processes, which show that DEGs are particularly enriched
in aspects such as mitotic nuclear division, organelle fission,
chromosome segregation, etc. DEGs also significantly enriched
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FIGURE 1
Workflow of the analytical process performed in this study.

cellular components such as chromosome, centromeric region,
spindle, kinetochore. In terms of molecular functions, DEGs
are mainly related to microtubule binding, tubulin binding, and
DNA helicase activity. etc. Bar length represents the enrichment
score of each GO term. Figure 2C shows the top 10 results for
biological processes (BP), cellular components (CC), and molecular
functions (MF).

In the KEGG pathway analysis, several important pathways
were identified, including cell cycle, Chemical carcinogenesis-

receptor activation, p53 signaling pathway, and so on. The
left side of Figure 2D shows the interaction between representative
genes and these 10 KEGG pathways in the form of a Sankey
diagram. The size of the bubble chart circle on the right side
indicates the number of differentially enriched genes in the
pathway, and the color of the circle indicates the enrichment
p-value of DEGs in each pathway. The darker the color,
the higher the enrichment p-value. The X-axis indicates the
enrichment score of each pathway.
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FIGURE 2
Identification and enrichment analysis of differentially expressed genes in the GSE111299 datasets. (A) Volcano plot, the red dots represent upregulated
genes, the green dots represent downregulated genes, and the gray dots represent genes with no significant difference in expression. (B) Heat map of
the DEGs, the left of the heat map shows clustering of the DEGs, red represents upregulated genes, and green represents downregulated genes (n = 3).
(C) Top 10 Gene Ontology (GO) terms related to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). The length of the bars
reflects the enrichment score of each GO term. (D) Sankey Bubble Plot of top 10 KEGG pathways and related genes. The size of the bubble represents
the number of DEGs enriched in a pathway, and the color of bubble represents enrichment P-value of DEGs in each pathway, brown colors represent
relative high enrichment p-values, while yellow colors represent relative low enrichment P-values. The X-axis represents rich factor of each pathway.

3.2 Onco and tumor suppressor genes in
SCCE and protein-protein interaction

The intersections between upregulated DEGs and oncogenes
and between downregulated DEGs and TSGs were analyzed
using Venny 2.1.0. The results are shown in Figures 3A, B,
among the 820 upregulated genes and 716 downregulated genes,
there were 54 upregulated oncogenes and 85 downregulated
TSGs. The protein interactions of upregulated oncogenes and
downregulated TSGs showed 136 interaction nodes, 407 edges,
an average node degree of 5.99, and an average local clustering
coefficient of 0.411 (Figures 3C, D).The protein interaction network
was visualized using Cytoscape and sorted by degree value. The
larger the circle and the darker the color, the higher degree
of the protein. It is in a key position in this interaction
network and is the core of the entire network. It can be
considered as a key target for SCCE.

3.3 Identification of hub genes from PPI
network

Further analysis of the PPI network by 12 different topological
analysis methods found that seven genes (AURKA, BIRC5, CDK1,
EZH2, FOXM1,KLF4,UBE2C) appeared repeatedly at top 10 among
at least 50% of the topological analysis methods (Figure 4; Table 1).
They are considered to be the hub genes of SCCE, which may have
certain value in the diagnosis, treatment and prognosis of SCCE.
However, the effectiveness of these hub genes still needs further
experimental verification.

3.4 Survival analysis of hub genes

Since we lack clinical survival data for SCCE, and considering
that SCCE is a subtype of esophageal cancer, we used the data
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FIGURE 3
The differentially expressed oncogenes and tumor suppressor genes of small cell esophageal carcinoma and their protein-protein interactions.
Intersection of (A) Upregulated differentially expressed genes vs. Oncogenes and (B) downregulated differentially expressed genes vs. Tumor suppressor
gene. (C, D) Protein-protein interactions of differentially expressed oncogenes and TSGs. Each node represents a gene, and the colors of nodes in (D)
indicates the significance of genes. Red colors represent relative high significance of genes, while yellow colors represent relative low degrees.

of ESCA in TCGA and GETx for analysis. Using GEPIA, we first
analyzed the expression of seven hub genes in ESCA and found that
their expression was roughly similar to that in SCCE, and there was
no statistically significant difference in the expression of EZH2 and
KLF4 (Figure 5A).The overall survival (OS) and disease free survival
(DFS) of the hub genes were then analyzed, with a median cutoff
value of 50% and a 95% confidence interval for the hazard ratio. In
the OS analysis, with the progression of ESCA, high expression of
BIRC5, EZH2, FOXM1, and UBE2C promoted patient death, while
high expression of KLF4 prolonged patient survival (Figure 5B). In
DFS analysis, high expression of BIRC5, EZH2 and UBE2C will
reduce the survival rate of patients, on the contrary, high expression
of KLF4 will significantly improve the survival rate of patients, with
significant statistical significance (p (HR) = 0.0087) (Figure 5C).
These results indicate that the expression differences of the hub
genes are largely associated with the prognosis of ESCA patients,

further suggesting that hub genes have a certain significance for the
prognosis of SCCE.

3.5 Construction of ceRNA and TF-miRNA
co-regulatory network

In order to better understand the hub genes and their
associated regulatory mechanisms, relevant miRNAs, lncRNAs
(Supplementary Figure S1), and transcription factorswere predicted
from the database, the ceRNA and TF-mRNA regulatory networks
based on hub genes were constructed, as shown in Figure 6,
including 15 miRNAs (Table 2) and 27 relevant lncRNAs. These
miRNAs, lncRNAs and transcription factors may have certain
regulatory capabilities for the expression or function of hub genes,
which is worthy of further study.
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FIGURE 4
Protein-Protein interaction of hub genes using different topological methods. (A) MCC, (B) DMNC, (C) MNC, (D) Degree, (E) EPC, (F) Bottleneck, (G)
EcCentricity, (H) Closeness, (I) Radiality, and (J) Betweenness, (K) Stress and (L) Clustering Coefficient. Red colors represent relative high score, while
yellow colors represent relative low score.

3.6 Construction of GeneMANIA-based
functional association network and
enrichment analysis

To further explore genes associated with hub gene functions,
a novel analysis method of GeneMANIA was used to identify
10 additional genes for each hub gene (Figure 7A), which were
organized into the GMFA extended database (GMFA-ED),
which contains 67 genes after removing duplicates. The GMFA
method integrates co-expression, genetic interaction, and physical
interaction parameters to capture various genes that are strongly
associated with hub genes and form a network diagram, as shown in
Figure 7B. GO and KEGG enrichment analysis of GMFA-ED found
that these genes were significantly enriched in nuclear division,
mitotic nuclear division, organelle fission and the regulation of cell
cycle in BP, significantly enriched in spindle, ESC/E(Z) complex,
chromosome, centromeric region in CC, and significantly enriched
in kinase regulator activity, protein kinase regulator activity, protein

kinase activator activity, et al. in MF (Figure 7C). The pathway
enrichment results showed that, like the previous enrichment,
the most significantly enriched was still Cell cycle, but more
surprisingly, the “FoxO signaling pathway” and “Small cell lung
cancer” were enriched (Figure 7D). Based on the similarities
between small cell lung cancer and SCCE, this enrichment result
confirms that these genes are likely to play important roles in SCCE.

3.7 Searching for drug candidates targeting
hub genes

There are many databases containing information on drug
action, which can be used as a basis for predicting drugs that
may target certain genes. Through conditional screening, it
may lead to the discovery of new drugs for the treatment of
SCCE. This study used the DGIdb database to search drugs that
targeting hub genes. Rucaparib for targeting CDK1, dabrafenib and
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TABLE 1 Hub genes identified via the different topological analysis and their functional roles.

Different topological
analysis

Genes Full name Function

MCC, MNC, Degree, EPC, BottleNeck,
Closeness

AURKA Aurora Kinase A The protein encoded by this gene is a
cell cycle-regulated kinase that appears
to be involved in microtubule
formation and/or stabilization at the
spindle pole during chromosome
segregation. The encoded protein is
found at the centrosome in interphase
cells and at the spindle poles in mitosis

MCC, MNC, Degree, EPC, Closeness,
Radiality

BIRC5 Baculoviral IAP Repeat Containing 5 This gene is a member of the inhibitor
of apoptosis (IAP) gene family, which
encode negative regulatory proteins
that prevent apoptotic cell death. IAP
family members usually contain
multiple baculovirus IAP repeat (BIR)
domains, but this gene encodes proteins
with only a single BIR domain

MCC, MNC, Degree, EPC, BottleNeck,
EcCentricity, Closeness, Radiality,
Betweenness, Stress

CDK1 Cyclin-dependent kinase 1 The protein encoded by this gene is a
member of the Ser/Thr protein kinase
family. This protein is a catalytic
subunit of the highly conserved protein
kinase complex known as M-phase
promoting factor (MPF), which is
essential for G2/M phase transitions of
eukaryotic cell cycle. Mitotic cyclins
stably associate with this protein and
function as regulatory subunits

MCC, MNC, Degree, EPC, BottleNeck,
Closeness, Radiality, Betweenness,
Stress

EZH2 Enhancer Of Zeste 2 Polycomb
Repressive Complex 2 Subunit

This gene encodes a member of the
Polycomb-group (PcG) family. PcG
family members form multimeric
protein complexes, which are involved
in maintaining the transcriptional
repressive state of genes over successive
cell generations. This protein associates
with the embryonic ectoderm
development protein, the VAV1
oncoprotein, and the X-linked nuclear
protein

MCC, MNC, Degree, EPC, Closeness,
Radiality

FOXM1 Forkhead Box M1 The protein encoded by this gene is a
transcriptional activator involved in cell
proliferation. The encoded protein is
phosphorylated in M phase and
regulates the expression of several cell
cycle genes, such as cyclin B1 and cyclin
D1

Degree, EPC, Closeness, Radiality,
Betweenness, Stress

KLF4 KLF Transcription Factor 4 This gene encodes a protein that
belongs to the Kruppel family of
transcription factors. The encoded zinc
finger protein is required for normal
development of the barrier function of
skin. The encoded protein is thought to
control the G1-to-S transition of the cell
cycle following DNA damage by
mediating the tumor suppressor gene
p53

(Continued on the following page)
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TABLE 1 (Continued) Hub genes identified via the different topological analysis and their functional roles.

Different topological
analysis

Genes Full name Function

MCC, MNC, Degree, EPC, Closeness,
Radiality

UBE2C Ubiquitin Conjugating Enzyme E2 C The modification of proteins with
ubiquitin is an important cellular
mechanism for targeting abnormal or
short-lived proteins for degradation.
Ubiquitination involves at least three
classes of enzymes: ubiquitin-activating
enzymes, ubiquitin-conjugating enzymes,
and ubiquitin-protein ligases. This gene
encodes a member of the E2
ubiquitin-conjugating enzyme family

tazemetostat hydrobromide for targeting EZH2, and vorinostat,
omacetaxine mepesuccinate, paclitaxel, epirubicin, doxorubicin,
erlotinib, dactinomycin, lapatinib, cisplatin, imatinib, irinotecan
hydrochloride, plicamycin, carboplatin, lonafarnib, trastuzumab,
cytarabine, arsenic trioxide, flutamide, docetaxel, INFβ-1A,
romidepsin, fluorouracil for targeting BIRC5, and that targeted
AURKA are paclitaxel, fluorouracil, cisplatin, entrectinib, sorafenib,
pazopanib, tamoxifen, and drug targeting KLF4 is hydroxyurea. In
addition, theConnectivityMAPcanquery potentially effective drugs
based on DEGs, upregulated oncogenes and downregulated TSGs
in SCCE were imported for query. After filtering, drug candidates
were selected including etoposide, valrubicin, pralatrexate, KPT-
330 (selinexor), daunorubicin, teniposide, lonafarnib, irinotecan,
cladribine, and crizotinib, as shown in Table 3. All of the above
drugs were considered as therapeutic drug candidates for SCCE,
and their effectiveness can be further verified.

3.8 Molecular docking of hub genes with
drug candidates

In order to ascertain the binding ability between drug
candidates and hub genes, molecular docking experiments were
conducted to determine the interaction between drugs and
protein residues, including hydrogen bonding, π-π interactions,
hydrophobic interactions, and so forth. The docking scores were
then referenced to infer whether the drugs exhibited specific
active effects.

In this study, 38 clinically approved anti-cancerous drug
candidates were molecularly docked with the target proteins
AURKA, BIRC5, CDK1, EZH2, FOXM1, KLF4 and UBE2C. The
molecular docking results indicated that drugs had strong binding
interactions with the target proteins and a high degree of match
(docking score less than −6). The top five compounds with the
strongest affinity for each target are listed in Table 4, and the
interactions between drugs and the highest binding affinity for each
target protein (docking score less than −6) are shown in Figure 8.
Based on the comprehensive results, AURKA, CDK1 and EZH2 may
be used as therapeutic targets for SCCE, and the docking score
of the corresponding drugs are all less than −6. In addition, the
crizotinib can form hydrogen bond interactions with the GLU-
211, ALA-213 and PRO-214 amino acids of the AURKA protein,

and can also form strong hydrophobic interactions with ASN-
261, LEU-263, LYS-162, etc., the compound forms van der Waals
interactions with the surrounding amino acids. Lapatinib can form
hydrogen bond interactions with amino acids GLN-132, SER-84
and LYS-20 of CDK1 protein, and hydrophobic interactions with
amino acids such as MET-85, ILE-10, and TYR-15, which enhance
the binding ability between the two. Rucaparib is inserted deep
into the EZH2 protein pocket, fit well with the protein pocket,
and form hydrogen bond interactions with the ARG-685, TYR-726
and LEU-666 amino acid and hydrophobic interactions with the
surrounding hydrophobic amino acids (PHE-686, TYR-641, PHE-
665, LEU-734, etc.). Similarly, rucaparib compounds are also able to
form hydrogen bonding (ILE-113, VAL-96, ALA-93), hydrophobic
(LEU-118, PRO-86) and other interactions with UBE2C proteins,
and these interactions are effective in inducing the formation
of stable complexes between small molecules and proteins. The
above hub proteins have been fully studied, and their potential
binding sites have been illustrated by researchers through molecular
docking and molecular dynamics simulations, which overlap with
the binding sites in the results of this study. In summary, the drug
candidates are able to form different kinds of interactions such
as hydrogen bonding, hydrophobic bonding, and conjugation with
protein targets, these interactions can effectively help proteins and
compounds to form stable complexes.

4 Discussion

SCCE is a rare neuroendocrine carcinoma originating from
the esophagus, studies have shown that it has a low incidence,
strong invasiveness, and poor prognosis. Precisely because of its
low incidence, there are few related studies, and most of them
are case study reports. It is difficult to study the occurrence and
development mechanism of SCCE, which leads to a single clinical
treatment method and a lack of chemotherapy drugs. Therefore,
this study aims to mine the transcriptome sequencing data of SCCE
by bioinformatics methods, analyze the hub genes of SCCE, and
then find potential therapeutic drugs, so as to establish a theoretical
basis for elucidating the molecular mechanism of SCCE, exploring
diagnostic and prognostic factors, and finding therapeutic drugs.

Over the past few years, with the continuous development of
omics technology, researchers have analyzed the gene expression
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FIGURE 5
Survival analysis predicting the relationship between gene expression patterns of seven hub genes and patient survival outcomes in ESCA. (A)
Expression of hub genes in ESCA, (B) Overall Survival (OS) analysis, (C) Disease Free Survival (DFS) analysis.

profiles of SCCE and revealed some of the possible molecular
mechanisms.Wang et al. constructed a comprehensive genomemap
of PESC for the first time (Wang et al., 2018),They conductedwhole-
exome, SNP chip detection and high-depth targeted sequencing

analysis on 55 patients, and found three significant but not yet
reported and mutated genes PDE3A, PTPRM, CBLN2. Li et al.
conducted genome and transcriptome analysis on 65 SCCE patient
tissues and found that SCCE has RB1 destruction mediated
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FIGURE 6
Construction of a ceRNA network and a TF-miRNA coregulatory network. (A) ceRNA network, the orange circles represent the hub genes, the purple
arrows represent miRNAs, and the blue triangles represent lncRNAs. (B) TF-miRNA coregulatory network, the orange circles represent the hub genes,
the purple arrows represent miRNAs, and the blue diamond represent transcription factors, the brown circles represent other related genes.

TABLE 2 Differential expression analysis of the predicted miRNAs in OncomiR.

miRNA name Cancer
abbreviation

T-Test P-value t-Test FDR Upregulated in Tumor Log2
mean

expression

Normal Log2
mean

expression

hsa-miR-30c-2-3p ESCA 0.0237 0.082 Normal 4.40 5.19

hsa-miR-153-3p ESCA 0.029 0.0975 Normal 0.74 2.06

hsa-miR-877-5p ESCA 0.0000274 0.00129 Tumor 1.56 0.27

hsa-miR-103a-3p ESCA 0.0000615 0.00215 Tumor 14.53 13.93

hsa-miR-1301-3p ESCA 0.000128 0.00279 Tumor 3.11 1.58

hsa-miR-29b-1-5p ESCA 0.000523 0.00618 Tumor 2.79 1.48

hsa-miR-204-5p ESCA 0.00215 0.0155 Normal 0.63 3.94

hsa-miR-330-5p ESCA 0.00545 0.0289 Tumor 4.43 3.81

hsa-miR-542-3p ESCA 0.0076 0.0385 Tumor 7.35 6.54

hsa-miR-767-5p ESCA 0.0107 0.0488 Tumor 3.17 0.00

hsa-miR-423-5p ESCA 0.0113 0.0506 Tumor 6.08 5.64

hsa-miR-34a-5p ESCA 0.0218 0.0787 Tumor 7.17 6.49

hsa-miR-320b ESCA 0.0231 0.0816 Tumor 2.46 1.64

hsa-miR-330-3p ESCA 0.0251 0.0861 Tumor 1.30 0.82

hsa-miR-135a-5p ESCA 0.0347 0.113 Normal 0.87 2.30
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FIGURE 7
Construction of GeneMANIA-based functional association network and enrichment analysis. (A) GeneMANIA functional association (GMFA) network
analysis illustrating functionally related genes associated with the seven hub genes of SCCE. (B) Functional gene network of all 67 genes related to
SCCE. (C) Top 10 Gene Ontology (GO) terms related to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). The length of
the bars reflects the enrichment score of each GO term. (D) Sankey Bubble Plot of top 10 KEGG pathways and related genes. The size of the bubble
represents the number of DEGs enriched in a pathway, and the color of bubble represents enrichment P-value of DEGs in each pathway, brown colors
represent relative high enrichment p-values, while yellow colors represent relative low enrichment P-values. The X-axis represents rich factor of
each pathway.
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TABLE 3 Potential drug candidates analyzed by the DGIdb and ConnectivityMap (FDA approved anti-tumor drugs).

Databases Genes Drugs

DGIdb

AURKA Paclitaxel, Fluorouracil, Cisplatin, Entrectinib, Sorafenib, Pazopanib,
Tamoxifen

BIRC5 Vorinostat, Omacetaxine mepesuccinate, Paclitaxel, Epirubicin,
Doxorubicin, Erlotinib, Dactinomycin, Lapatinib, Cisplatin, Imatinib,
Irinotecan hydrochloride, Plicamycin, Carboplatin, Lonafarnib,
Trastuzumab, Cytarabine, Arsenic trioxide, Flutamide, Docetaxel,
INFβ-1A, Romidepsin, Fluorouracil

CDK1 Rucaparib

EZH2 Dabrafenib, Tazemetostat hydrobromide

KLF4 Hydroxyurea

ConnectivityMap 54 upregulated oncogenes and 85 downregulated TSGs Etoposide, Valrubicin, Pralatrexate, KPT-330 (Selinexor), Daunorubicin,
Teniposide, Lonafarnib, Irinotecan, Cladribine, Crizotinib

TABLE 4 Docking results of drug candidates with hub genes (top five respectively).

Target Drug Docking score Target Drug Docking score

AURKA

Crizotinib −8.025

FOXM1

Doxorubicin −5.681

Cladribine −7.87 Cladribine −5.163

Rucaparib −7.845 Daunorubicin −5.044

Pazopanib −7.578 Hydroxyurea −5.004

Valrubicin −7.35 Cytarabine −4.872

BIRC5

Pralatrexate −5.726

KLF4

Cytarabine −5.722

Cytarabine −5.586 Valrubicin −5.177

Cladribine −5.097 Pralatrexate −5.136

Valrubicin −4.882 Fluorouracil −4.959

Hydroxyurea −4.859 Entrectinib −4.887

CDK1

Lapatinib −8.505

UBE2C

Rucaparib −6.455

Valrubicin −7.76 Fluorouracil −6.336

Pazopanib −6.996 Cladribine −5.773

Rucaparib −6.93 Pralatrexate −5.091

Daunorubicin −6.891 Cytarabine −4.996

EZH2

Rucaparib −8.936

Lonafarnib −8.536

Dabrafenib −7.989

Valrubicin −7.967

Flutamide −7.449
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FIGURE 8
Three- and Two-dimensional presentation of molecular docking results. (A) AURKA-Crizotinib, (B) CDK1-Lapatinib, (C) UBE2C-Rucaparib, (D)
EZH2-Rucaparib. The purple arrowhead represents hydrogen bond interactions, the green line with both ends presents π-π stacking.

by multiple mechanisms (Li et al., 2021a). These sequencing
analyses have identified potential therapeutic targets for SCCE
from different perspectives. In addition, Okumura et al. examined
miRNA expression in SCCE tumor tissues and established a cell
line (TYUC-1), they found that eight miRNAs were significantly
associated with tumors, and validation in the cell line revealed that
downregulate MiR-625 can significantly inhibited the migration
of TYUC-1, suggesting that miRNAs may also have a role in the
diagnosis of SCCE (Okumura, 2015). Furthermore, studies have
shown that PAK1 (Gan et al., 2015),Wnt pathway (Chen et al., 2014),
tumor immune microenvironment (Zhao Q. et al., 2020), etc. also
play an important role in the development of SCCE.

In this study, data from the GEO database were used to conduct
a new analysis of the gene expression results of SCCE tissue samples
and normal tissue samples. The screening conditions for DEGs
were: |log2FC| ≥ 2, P. Value < 0.01. A total of 1,536 DEGs were
finally identified, the up- and downregulated genes were intersected
with oncogenes and TSGs, respectively, to obtain 54 upregulated
oncogenes and 85 downregulated TSGs. The functional effects
and pathways associated with these genes were confirmed by GO
and KEGG pathway enrichment analysis. The hub genes (AURKA,
BIRC5, CDK1, EZH2, FOXM1, KLF4, UBE2C) were identified by
constructing a PPI network and topological analysis methods,

and other regulatory networks that interact with hub genes were
analyzed through multiple databases. Small cell lung cancer and
SCCE are both neuroendocrine tumors, gene expression profiling
analysis found that the two have very similarmitotic andDNA repair
gene expression patterns (Liu et al., 2021). FengWang et al.'s genome
sequencing analysis and comparison of SCCE showed that SCCE
is very similar to esophageal squamous cell carcinoma, even more
similar than SCLC (Wang et al., 2018). Therefore, referring to the
relevant studies on small cell lung cancer and esophageal squamous
cell carcinoma, we may be able to obtain effective information about
SCCE. Among the hub genes, CDK1 encodes protein which is a
member of the Ser/Thr protein kinase family, it is the catalytic
subunit of a highly conserved protein kinase complex calledMphase
promoting factor (MPF), which plays a pivotal role in the G2/M
phase transition of the eukaryotic cell cycle (Fung and Poon, 2005;
Wang et al., 2023). In addition, as early as 2005, Donna E Hansel
et al. compared the gene expression profiles of normal esophageal
epithelial cell lines and esophageal adenocarcinoma cell lines and
found that CDK1 was significantly upregulated in esophageal
adenocarcinoma and was a marker of dysplasia and a drug potential
targets (Hansel et al., 2005). In SCLC, clinical studies by Kexin Han
et al. have shown that CDK1 can not only assist in the diagnosis
of SCLC, but is also very important in the differential diagnosis
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of SCLC and NSCLC (Han et al., 2024). The primary function of
EZH2 is to catalyze the methylation of the H3 histone, specifically at
residue 27 of the histone, resulting in the formation of H3K27Me3.
This process is associated with the repression of transcription of
specific genes, including tumor suppressor genes. Additionally, it
can form complexes with transcription factors or bind directly to
the promoters of target genes, thereby regulating gene transcription
(Pasini and Di Croce, 2016; Simon and Lange, 2008). The results of
Atsushi Yamada et al. showed that the changes of P53 in esophageal
squamous cell carcinoma are related to the abnormal expression
of EZH2, and the high expression of EZH2 may promote the
progression of esophageal squamous cell carcinoma (Yamada et al.,
2011). Xie rui et al.'s study showed that microRNA-30d is a tumor
suppressor factor in esophageal squamous cell carcinoma, Luciferase
reporter gene assay revealed that EZH2 is a direct target gene
of microRNA-30d. MicroRNA-30d can inhibit the movement of
cancer cells by targeting and inhibiting EZH2 (Xie et al., 2017).
In addition, upregulation of EZH2 expression enhances SCLC
progression and radioresistance (Zhai et al., 2020),Eric E Gardner
et al. found that in patient-derived xenograft models of SCLC,
adding EZH2 inhibitors to standard chemotherapy regimens can
prevent the emergence of acquired drug resistance and enhance
the chemotherapy sensitivity of SLCL (Gardner et al., 2017). More
studies have confirmed that a variety of cancers are associated with
EZH2 mutations and expression imbalance, and it is an important
target for cancer therapy, with 319 targeted drugs currently available
(Liu and Yang, 2023). The protein encoded by KLF4 belongs to
the Kruppel family of transcription factors, which play a role in
the proliferation and differentiation of epithelial cells. Additionally,
this protein is involved in regulating the G1 to S transition of
the cell cycle following DNA damage, acting as a mediator for
the p53 protein (Wei et al., 2006). KLF4 plays a significant role
in tumor development; however, its function in specific cancer
types is not uniform. For instance, it acts as a tumor suppressor
in gastrointestinal and skin squamous cell carcinoma (Leng et al.,
2020), but as a tumor promoter in skin melanoma and breast cancer
(Hu et al., 2015; Li et al., 2012). Guo Zhang et al. demonstrated
through CHIP experiments that KLF4 binds to the promoter of
surviving in esophageal squamous cell carcinoma and inhibits its
activity, which can induce apoptosis of cancer cells (Zhang et al.,
2009), KLF4 expression is also altered in neuroendocrine lung
tumors, and its downregulation may be associated with invasiveness
(Naranjo Gómez et al., 2014). Results of this research showed that
KLF4 was significantly downregulated in SCCE and act as a tumor
suppressor. BIRC5 belongs to the inhibitor of apoptosis (IAP) gene
family, which encodes negatively regulated proteins that prevent
apoptosis (Unruhe et al., 2016). Bioinformatics analysis has revealed
that BIRC5 is highly expressed in many cancers, promotes tumor
progression and is strongly associated with poor prognosis (Ye et al.,
2022). Interestingly, BIRC5 has been shown to be overexpressed in
esophageal adenocarcinoma and is one of the autophagy-related
genes, which may serve as a biomarker for the diagnosis and
prognosis of esophageal adenocarcinoma (Zhu et al., 2020). In
SCLC, BIRC5 can also be used as a new therapeutic target. Yang
Yunchu et al. knocked down BIRC5, which significantly inhibited
cell growth and migration and induced cell apoptosis (Yunchu et al.,
2024). The protein encoded by FOXM1 is a transcriptional activator
involved in cell proliferation, it undergoes phosphorylation during

the M phase of the cell cycle and regulates the expression of
multiple cell cycle-related genes (Laoukili et al., 2005). Research
by L Gai et al. found that the protein expression of FOXM1 is
significantly upregulated in esophageal squamous cell carcinoma,
knockdown the FOXM1 can inhibit the migration and invasion
ability of cancer cells, and is significantly positively correlated with
lymph node metastasis, clinical stage, and tumor infiltration depth
(Gai et al., 2016). Epigenomic analysis by Benjamin Ziman et al.
found that FOXM1 plays an important role in the development
of esophageal adenocarcinoma and regulates anti-tumor immune
response in esophageal adenocarcinoma (Ziman et al., 2024).
FOXM1 is also upregulated in SCLC and is significantly associated
with poor prognosis. Knockdown of FOXM1 induces apoptosis of
SCLC cells and enhances chemotherapy sensitivity, and can be used
as a prognostic biomarker (Liang et al., 2021). A large number
of studies have shown that FOXM1 can promote the progression
and metastasis of various cancers, as well as induce chemotherapy
resistance, and has become a target for the treatment of various
cancers (Khan et al., 2023). UBE2C is a member of the E2 ubiquitin
ligase family, the encoded protein is required to disrupt mitotic
cell cycle proteins and cell cycle progression. It has been reported
to have pro-carcinogenic effects in esophageal, lung, colorectal,
ovarian and liver cancer (Bavi et al., 2011; Pagano, 1997). Previous
studies have shown that UBE2C is highly expressed in esophageal
squamous cell carcinoma and plays different roles in different
stages of esophageal squamous cell carcinoma, mainly affecting
the biological function of esophageal squamous cell carcinoma
through synergistic effects with CDK1, PTTG1 and SKP2 (Li et al.,
2021b; Palumbo et al., 2016), its upstream ECRG4 downregulates
the expression of UBE2C in ESCC cells through NF-κB signal
transduction, and UBE2C is involved in anti-proliferation and pro-
apoptosis functions (Li et al., 2018). High expression of UBE2C
and sensitivity of tumor cells after silencing UBE2C were also
detected in esophageal adenocarcinoma (Lin et al., 2006). Through
bioinformatics and identification of patient tissue samples, it was
found that UBE2C expression was also upregulated in SCLC and
was identified as a hub gene (Chen et al., 2020). In addition, studies
have shown that UBE2C is a transcriptional target of FOXM1, and
the two are closely related (Nicolau-Neto et al., 2018). The protein
encoded by AURKA is a cell cycle-regulated kinase that promotes
the formation and/or stabilization of microtubules at both poles
of the spindle during chromosome segregation. It may contribute
to the development of tumors by participating in the proliferation
of cancer cells, epithelial-mesenchymal transition (EMT), apoptosis
and cancer stem cell self-renewal (Du et al., 2021). Previous studies
have shown that AURKA can cooperate with TPX2 to regulate
the progression of esophageal squamous cell carcinoma through
EGFR/PI3K/Akt pathways (Du et al., 2023; Du et al., 2020), it can
also regulate the expression and phosphorylation level of JAK2 to
promote the activity of STAT3, this mechanism plays an important
role in gastric cancer and esophageal cancer (Katsha et al., 2014).
In addition, knockdown of AURKA can enhance the ferroptosis
effect of esophageal squamous cell carcinoma cells (Mi et al.,
2024). AURKA has been shown to be an important factor in the
development of SCLC, Knockdown of AURKA can induce SCLC
cell cycle arrest and apoptosis, thereby inhibiting the progression of
SCLC (Lu et al., 2014). Yixiang Li et al. found that some SCLCs are
highly sensitive to AURKA inhibitors, but the persistence is poor,
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the combination of specific AURKA inhibitors and PD-L1 showed
a lasting inhibitory effect (Li et al., 2023). In summary, the seven
genes found in our study were not only identified as hub genes in
this study, but also played an important role in similar esophageal
squamous cell carcinoma, esophageal adenocarcinoma, and small
cell lung cancer, which also shows that the conclusions drawn in
this study have a certain degree of reliability. However, they must
play different roles in different types of cancer, and clinical analysis
can be performed to further study whether they can be used as
differential diagnostic markers for several similar types of cancer.
There is no overlap between the hub genes identified in this study
and those found in other bioinformatics studies on SCCE, as the
selection of hub genes would differ when using different analysis
processes.

Using hub genes and DEGs for prediction in the database, a
total of 38 drug candidates were screened, including commonly
used cancer chemotherapy drugs such as etoposide, cisplatin,
fluorouracil, and cladribine. The 38 small molecule compounds
were molecularly docked with seven hub genes, and the results
showed that most drugs had good binding affinity with AURKA,
CDK1 and EZH2 proteins, and had the potential to become
inhibitors of the corresponding targets, thereby playing a role in
the treatment of SCCE. Hub genes obtained in this study have
been previously demonstrated by a large number of literature
to be oncogenes or tumor suppressor genes, and they play an
important role in various cancers. However, this is the first time
that they have been reported in SCCE, and may be related to
certain mechanisms of SCCE pathogenesis. Later, more correlation
analysis of clinical pathological characteristics may further reveal
more mechanisms of SCCE pathogenesis, and can also verify the
value of these genes as SCCE diagnosis or prognosis. The anti-
tumor drugs predicted based on these genes were also reported
for the first time in SCCE. Clinically, there are very limited
drugs used to treat SCCE, and most chemotherapy drugs have
a certain degree of drug resistance in patients. Therefore, some
new drugs are urgently needed, and completely new drugs take
a long time and consume a lot of resources from research and
development to final clinical application. Our research provides
drugs that have not yet been used in SCCE but have been used
in other tumors clinically, studies have shown that they have
great potential for treating SCCE. This study further explored the
specific sites of action between drugs and targets, providing the
possibility of studying these drugs in the direction of targeted
therapy, which may have surprising discoveries. Preclinical and
clinical studies on their safety and efficacy may enable them to be
used in clinical practice as soon as possible, alleviating the current
clinical dilemma.

However, the dataset used in this study only has three
samples, the sample size is small, and due to the rarity of
SCCE, it was difficult to experimentally verify the reliability of
hub genes. Therefore, whether these drugs are truly effective
for SCCE still requires a large number of in vitro and in vivo
experiments to confirm. The present study offers a novel approach
to investigating the etiology of rare diseases and identifying
prospective pharmaceutical agents.

5 Conclusion

In summary, it can be concluded that AURKA, BIRC5, CDK1,
EZH2, FOXM1, KLF4 and UBE2C may be the hub genes closely
associated with the development of SCCE. In addition, crizotinib
with AURKA, lapatinib with CDK1, rucaparib with EZH2 and
UBE2C have good binding affinity, suggesting that these drugs may
work against the aforementioned targets. CDK1, EZH2, AURKA
proteins have good binding ability with several drugs, further
suggesting that targeting these three genes to find drugs may be
a powerful approach for the treatment of SCCE. However, it is
necessary to validate these conclusions through in vitro and in vivo
experiments.
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