
TYPE Methods
PUBLISHED 23 January 2025
DOI 10.3389/fbinf.2024.1489704

OPEN ACCESS

EDITED BY

Ali Kadhum Idrees,
University of Babylon, Iraq

REVIEWED BY

Soham Sengupta,
St. Jude Children’s Research Hospital,
United States
Bhavika Mam,
Independent Researcher, Palo Alto, CA,
United States

*CORRESPONDENCE

Anas Al-okaily,
aa.12682@khcc.jo

RECEIVED 01 September 2024
ACCEPTED 26 December 2024
PUBLISHED 23 January 2025

CITATION

Al-okaily A and Tbakhi A (2025) A novel
lossless encoding algorithm for data
compression–genomics data as an exemplar.
Front. Bioinform. 4:1489704.
doi: 10.3389/fbinf.2024.1489704

COPYRIGHT

© 2025 Al-okaily and Tbakhi. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A novel lossless encoding
algorithm for data
compression–genomics data as
an exemplar

Anas Al-okaily1* and Abdelghani Tbakhi2

1Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan,
2Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada

Data compression is a challenging and increasingly important problem. As the
amount of data generated daily continues to increase, efficient transmission and
storage have never been more critical. In this study, a novel encoding algorithm
is proposed, motivated by the compression of DNA data and associated
characteristics. The proposed algorithm follows a divide-and-conquer approach
by scanning the whole genome, classifying subsequences based on similarities
in their content, and binning similar subsequences together. The data is then
compressed into each bin independently. This approach is different than the
currently known approaches: entropy, dictionary, predictive, or transform-based
methods. Proof-of-concept performance was evaluated using a benchmark
dataset with seventeen genomes ranging in size from kilobytes to gigabytes.
The results showed a considerable improvement in the compression of each
genome, preserving several megabytes compared to state-of-the-art tools.
Moreover, the algorithm can be applied to the compression of other data
types include mainly text, numbers, images, audio, and video which are being
generated daily and unprecedentedly in massive volumes.

KEYWORDS

compression, Huffman encoding, LZ, genomics, BWT

1 Introduction

The importance of data compression, a fundamental problem in computer science,
information theory, and coding theory, continues to increase as global data quantities
expand rapidly. The primary goal of compression is to reduce the size of data for subsequent
storage or transmission. There are two common types of compression algorithms: lossless
and lossy. Lossless algorithms guarantee exact restoration of the original data, whereas lossy
algorithms do not. Such losses are caused, for instance, by the exclusion of unnecessary
information, such as metadata in video or audio that will not be observed by users.

Data exist in different formats including text, numbers, images, audio, and video.
Several coding algorithms and the corresponding variants have been developed for textual
data, the main focus of this paper. This includes the Huffman Huffman (1952), Shannon
Shannon (2001), Shannon-Fano Fano (1949), Shannon-Fano-Elias Cover (1999), Lempel-
Ziv (LZ77) Ziv and Lempel (1977), Burrows-Wheeler transform Burrows and Wheeler
(1994) and Tunstall (1968) algorithms. The Huffman algorithm includes several variants:
minimum-variance Huffman, canonical Huffman, length-limited Huffman, nonbinary
Huffman, adaptive Huffman, Faller-Gallager-Knuth (an adaptive Huffman) Knuth (1985),

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2024.1489704
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2024.1489704&domain=pdf&date_stamp=2025-01-20
mailto:aa.12682@khcc.jo
mailto:aa.12682@khcc.jo
https://doi.org/10.3389/fbinf.2024.1489704
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1489704/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1489704/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1489704/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1489704/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Al-okaily and Tbakhi 10.3389/fbinf.2024.1489704

FIGURE 1
A flowchart illustrating the compression algorithm

and Vitter (an adaptive Huffman) Vitter (1987). The LZ algorithm
also includes several variants, such as LZ78 Ziv and Lempel
(1978), Lempel-Ziv-Welch (LZW) Welch (1984), Lempel-Ziv-Stac
(LZS) Friend (2004), Lempel-Ziv-Oberhumer (LZO) Oberhumer
(2008), Lempel-Ziv-Storer-Szymanski (LZSS) Storer and Szymanski
(1982), Lempel–Ziv-Ross-Williams (LZRW) Williams (1991), and
the Lempel–Ziv–Markov chain algorithm (LZMA) Ranganathan
and Henriques (1993). Additional techniques involve arithmetic
encoding Langdon (1984), range encoding Martín (1979), move-
to-front encoding (also referred to as symbol ranking encoding)
Ryabko (1980); Bentley et al. (1986), run-length encoding Capon
(1959), delta encoding, unary encoding, context tree weighting
encoding Willems et al. (1995), prediction by partial matching
Cleary and Witten (1984), context mixing Mahoney (2005),
asymmetric numeral systems (also called asymmetric binary
encoding) Duda (2013), length index preserving transform Awan
and Mukherjee (2001), and dynamic Markov encoding Cormack
and Horspool (1987).

Compression algorithms can be classified based on the
methodology used in the algorithm, such as entropy, dictionary,
predictive, and transform-based methods. These methods have
been described extensively in several recent studies Gopinath and
Ravisankar (2020); Kavitha (2016); Uthayakumar et al. (2018);
Kodituwakku and Amarasinghe (2010), however, a brief description
for each method is provided in the Supplementary Material.

Genomics (DNA/RNA) data is a type of textual information
with several unique characteristics. First, the alphabet consists only
of A, C, G, and T characters representing the four nucleotides:
adenine, cytosine, guanine, and thymine, respectively. Second, DNA
data contain repeat sequences and palindromes. Third, the size of
genomics data can be very large, relative to most media files. The
human genome, for instance, consists of more than three billion
nucleotides (specifically 3,272,116,950 bases (https://www.ncbi.nlm.
nih.gov/grc/human/data?asm=GRCh38.p13) requiring more than
3 gigabytes of storage), and the sequencing is typically conductedwith
high depth (30–100x) to sequence the same region several times for
more accurate reading. As such, sequencing genomic data (especially
for humans) is currently being performed for research and diagnostic

purposesindailybasis(thenumberofbasessequencedfromDecember
1982 through August 2024 was 29,643,594,176,326 (https://www.
ncbi.nlm.nih.gov/genbank/statistics/)). Several algorithms have been
developed to compress these data, which can be divided into vertical
and horizontal techniques Grumbach and Tahi (1994). Vertical mode
algorithms utilize a reference genome/source, while horizontal mode
algorithms are reference-free.

Genomic data are stored in different formats, including FASTA
Lipman and Pearson (1985), FASTQ Cock et al. (2010), and SAM
Li et al. (2009), with FASTA being the most common and also
the primary focus of this paper. Several comparative studies for
compressing FASTA files have been published in recent years
Kryukov et al. (2020); Hosseini et al. (2016); Mansouri et al. (2020);
Bakr and Sharawi, 2013; Jahaan et al. (2017). Genomic sequences
typically consist of millions or billions of sequenced reads, with
lengths in the hundreds, stored with the quality of each base in a
primarily FASTQ format. A common DNA data processing strategy
involves aligning the sequenced reads with a reference genome.
The output is the reads themselves, with their base qualities and
alignment results for each read, stored in a SAM format. Surveys
of compression tools for SAM and FASTQ data are available in the
literature Bonfield and Mahoney (2013); Hosseini et al. (2016).

The small alphabet found in DNA data simplifies the
compression process. However, the problem remains challenging
due to the discrete, uniform distribution (frequencies) of bases in
DNA data. Efficient compression relies mainly on repetitiveness in
the data and encoding as few characters/words as possible, since
encoding more characters costs more bits-per-character. If the
characters are uniformly distributed in the text, their repetitions will
also be distributed uniformly and encoding only a fraction of them
(to decrease the bits-per-character) will lead to low compression
outcomes. The application of Huffman encoding, for instance,
produces 2-bit assignments for each base. The algorithm will then
produce an inefficient/suboptimal compression result that does not
utilize repetitions found in the DNA data. Motivated by this issue,
we introduce in this work a lossless and reference-free encoding
algorithm.

2 Methods

The following observations can be inferred from a careful
analysis of DNA. First, many regional (local) sub-sequences (assume
a length of 100 bases) contain non-uniform or skewed distributions.
Second, similar sub-sequences (which provide better compression
results if encoded together) are often distant from each other. This
distance is typically longer than the length of sliding windows
(usually in kilobases/kilobytes) commonly used in algorithms such
as LZ or far apart fromprevious sequence/symbol used in prediction
models such as context weighting tree, predictive partial matching,
or dynamicMarkov compression. Even if these sequences are located
within the same sliding window or previous sequences/symbols,
they are often sufficiently distant from each other, which leads
to inefficient compression and encoding. These two observations
were the motivation behind the design of the following encoding
algorithm.

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1489704
https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh38.p13
https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh38.p13
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Al-okaily and Tbakhi 10.3389/fbinf.2024.1489704

Algorithm 1. Compression algorithm.

Algorithm 2. Decompression algorithm.

2.1 Compression algorithm

Given a string T of length t, containing characters from
a fixed alphabet of length Σ, and a window-length w, the
description of the proposed algorithm is stated in algorithm 1 and
is illustrated in Figure 1.

2.2 Decompression algorithm

Decompression algorithm is the inverse of compression
algorithm and is described in algorithm 2. As the total length of
the sequences in all bin is O(t) and the total length of L is also O(t)
(as described in algorithm 1), the decompression of all bins will cost
nomore than t. Hence, the time andmemory costs of decompression
all bins and L is linear.

This algorithm can be applied not only to DNA or textual
data, but to archiving processes and other data types namely
numbers, images (binning for instance similar pixels instead of
similar subsequences as in text), audio (binning for instance similar
subbands/frequency-ranges), and video (binning for instance
similar images)). Sub-binning or nested-binning processes can also
be applied.

This design facilitates organizing and sorting the input data
using a divide-and-conquer method by creating bins for similar
data and encodes/compresses data in the same bin that are better
if compressed together, to achieve better compression results with a
minor increase in time costs. In the case of more random/divergent
input data, which is the common case, this algorithm avoid relying
on a single encoding or compression technique (as in entropy
methods), being dependent on the previous sequences and their
randomness (as in prediction methods), requiring construction of

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1489704
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Al-okaily and Tbakhi 10.3389/fbinf.2024.1489704

dictionaries dependent also on the previous sequences and their
randomness (as in dictionary methods), or potentially introducing
inefficient transformation due to the randomness of the data (as in
transformmethods). In contrast, the proposed algorithmdivides the
data into groups of similar segments, regardless of their position in
the original sequence, which decreases the randomness in the data
and contributes in organizing the input data by binning the similar
data together to ultimately handling the compression process more
efficiently.

Note that the continued application of sub-binning processes
will eventually reduce the randomness/divergence of the data
and improve the compression results, by obtaining data that are
optimal or suboptimal for compression.These processes will require
additional time costs, but these costs will still be practical at low sub-
binning depth and feasible at high sub-binning depths, especially
for small data or the compression of large data for archiving.
Therefore, sub-binning will eventually provide more control,
organization, and possibly a deterministic solution to encoding and
compression problems. Further analysis and investigations are also
provided in the Supplementary Material.

The encoding algorithm is named after both authors and
Pramod K. Srivastava (Professor in the Department of Immunology,
University of Connecticut School of Medicine) for honoring him
as he was an advisor to the first author. As such, it is named the
Okaily-Srivastava-Tbakhi (OST) algorithm.

2.3 OST-DNA

This is the first implementation of the OST algorithm which
accepts DNA data as input which can be denoted as OST-DNA. Bin
labels are computed using a Huffman tree encoding. The reason for
selecting Huffman algorithm since the label of larger bin must be
more frequent in L, hence encode this label with shorter codes (while
the label of smaller bins with longer codes).

For example, if the Huffman tree for a subsequence produces
the following encoding schema: G:0, A:10, T:110, and C:111, then
the label will be GATC_1233 label (1 indicates G is encoded using 1
bit, A using 2 bits, and so on). The number of bits used to encode a
character gives a general indication of its frequency compared to the
other characters. The number of bins can be reduced by decreasing
the label length as follows. To produce a label length of 1, we used the
first base of the Huffman tree and its bit length. As such, the above
Huffman encoding schema will be represented by G_1. If the bin
label length is 2, then the label will be GA_12. This clearly decreases
the number of labels, but at the cost of decreasing the similarity
among sequences in the same bin therefore their compression. Note
that this classificationmethod (bin labeling) is suitable forDNAdata
as its alphabet is small. For data with larger alphabets, same or other
classification methods might be sought such as binning sequences
that contain some letter/s most frequently.

As the windows do not overlap, each base in T will be read in
O(1) time.The cost of constructing aHuffman tree for a subsequence
is then O(ΣlogΣ), requiring the construction of O(t

w
) Huffman

trees for all non-overlap subsequences in T. The total cost hence
is O(t

w
ΣlogΣ). In order to allow for the acquisition of non-uniform

distributions for the characters in Σ (the pigeonhole principal), the
value of w must be larger than that of ΣlogΣ, noting that Σ is

a constant. As such, the total cost of the compression process of
OST-DNA can be O(t).

Since the value of w is fixed in this version of OST-DNA,
Huffman trees are constructed once for each window sequence. In
the case of a variable w where the window will be extended until
the sequence label matches a bin label, it is not efficient to calculate
Huffman trees for the entire sequence at every extension, hence
adaptive Huffman trees can be applied instead.

Generally, the compressed bin files and L can be collected
into a single file using an archiver which could perform further
compression. However, this process was omitted in this study to
demonstrate the efficiency of theOST algorithmwithout any further
compression that may be produced by the archiving process.

3 Results

We implemented OST-DNA using the python language. We
used the same dataset applied to another benchmark Kryukov et al.
(2020) in order to test and compare the compression results
using OST-DNA with the tools listed in Supplementary Table S1
in Supplementary Material. The dataset consists of seventeen
genomes, as shown in Supplementary Tables S2, S3 in Supplemental
Methods, ranging in size from 50 KB to 13 GB with a total size of
16,773.88 MB, orgin from different species (virus, bacteria, protist,
fungus, algae, animal, plant), and were sequenced using Illumina,
454, SOLID, PacBio, Sanger dideoxy, or mixed technolgies.

The following preprocessing steps were applied to each
tested genome. All new lines, header lines, lowercase bases, and
bases not identified as A, C, G, T, or N, were removed. This
produced a one-line sequence for each genome, containing only
the four capitalized DNA bases and the letter “N”. Character
“N″ represents uncalled/undetermined base during sequencing
or assembling process. Assembled genomes may contain also
bases with lowercase that represent soft-masked sequences. In
compression process, these sequences are converted to capital
case with recording their start/end coordinates so that during
decompressing process their original case is restored. As the
tested genomes contain low number of soft-masked sequences
and as this study is using genomics data for testing purposes,
these sequences were just removed from the genomes. The python
script used to perform these preprocessing steps and the size of
each genome, before and after applying the script, are provided in
Supplementary Table S4 in Supplementary Material.

Compression ratio was the primary metric used for evaluating
the performance of the proposed algorithm. It is equal to the size
of the compressed file divided by the size of the uncompressed
(original) file. The original files in this study are the one-line
genome files. Other metrics include compression time (seconds),
decompression time (seconds), compression speed (the size of
the uncompressed file in MB divided by the compression time
in seconds-MB/s), and the decompression speed (the size of the
uncompressed file in MB divided by the decompression time in
seconds-MB/s).

The following tools were selected as they are common tools
for compressing textual data and implementing one or more
compression algorithms available in the literature. This is meant
to test compressing the resultant bins using all available encoding

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1489704
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Al-okaily and Tbakhi 10.3389/fbinf.2024.1489704

TABLE 1 Compression performance for each common tool cumulatively over all tested genomes.

Tool Compression
ratio (%)

Compression
time (s)

Decompression
time (s)

Compression
speed (MB/s)

Decompression
speed (MB/s)

bcm 20.6217 4,071 3,728 4.1203 0.9279

blzpack 37.2279 227 149 73.8937 41.9098

brotli 16.7848 62,659 103 0.2677 27.3346

bsc 20.1670 2,369 68 7.0806 49.7469

bzip2 24.8765 2,474 1,169 6.7801 3.5695

compress 25.3977 443 168 37.8643 25.3582

freeze 27.4616 6,078 233 2.7598 19.7698

gzip 26.9031 4,211 171 3.9833 26.3900

hook 21.3395 7,803 8,074 2.1497 0.4433

Huffman-codec 27.4015 1,152 401 14.5607 11.4621

lizard 34.8186 11,449 41 1.4651 142.4494

lrzip 14.6446 21,589 378 0.7770 6.4986

lz4 52.7757 161 73 104.1856 121.2677

lzfse 29.3101 1,118 130 15.0035 37.8187

lzip 17.0353 20,079 304 0.8354 9.3996

lzop 47.6212 152 106 110.3545 75.3578

LzTurbo 28.4807 157 46 106.8400 103.8548

ppm 23.8049 5,020 6,314 3.3414 0.6324

qzip 41.9873 1,556 126 10.7801 55.8960

rans 24.0431 144 91 116.4853 44.3182

rzip 24.9315 2,515 1,279 6.6695 3.2697

snzip 45.5241 159 73 105.4961 104.6048

srank 41.2318 794 778 21.1258 8.8897

xz 17.0381 18,666 266 0.8986 10.7442

zip 26.9031 4,165 173 4.0273 26.0849

zlib 26.9187 4,278 117 3.9210 38.5924

zpipe 26.9187 4,283 106 3.9164 42.5973

zstd 26.7482 251 75 66.8282 59.8227

The size of all genomes (in one-line format) is 16,773.88 MB. The tools cmix, lzb, and Nakamichi could not compress large genomes in reasonable time so their cumulative performance could not
be presented.

algorithms. The tools namely are: bcm, blzpack, brotli, bsc, bzip2,
cmix, compress, freeze, gzip, hook, Huffman-codec, lizard, lrzip, lz4,
lzb, lzfse, lzip, lzop, lzturbo, Nakamichi, ppm, qzip, rans static, rzip,

snzip, srank, xz, zlib, zip, zpipe, and zstd. Description of each tool
is provided in Supplementary Table S1 in Supplementary Material.
The cumulative compression results (for all one-line genomes) are

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1489704
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Al-okaily and Tbakhi 10.3389/fbinf.2024.1489704

TABLE 2 Compression performance for best window-length and label-length of each of the seven OST-DNA versions cumulatively over all tested
genomes.

Tool Window
length

Label
length

Compression
ratio (%)

Compression
time (s)

Decompression
time (s)

Compression
speed (MB/s)

Decompression
speed (MB/s)

bcm
OST-DNA-bcm

-
250

-
4

20.6217
20.1603

4,071
12,026

3,728
4,388

4.1203
1.3948

0.9279
0.7707

brotli
OST-DNA-

brotli

-
750

-
4

16.7848
15.9477

62,659
72,315

103
318

0.2677
0.2320

27.3346
8.4121

bsc
OST-DNA-bsc

-
250

-
5

20.1670
19.7688

2,369
10,355

68
2,160

7.0806
1.6199

49.7469
1.5352

bzip2
OST-DNA-

bzip2

-
250

-
2

24.8765
24.6689

2,474
10,132

1,169
1,230

6.7801
1.6555

3.5695
3.3642

lrzip
OST-DNA-lrzip

-
1,000

-
1

14.6446
14.5728

21,589
31,911

378
432

0.7770
0.5256

6.4986
5.6584

lzip
OST-DNA-lzip

-
750

-
2

17.0353
16.8067

20,079
30,691

304
472

0.8354
0.5465

9.3996
5.9728

xz
OST-DNA-xz

-
750

-
2

17.0381
16.7898

18,666
29,098

266
393

0.8986
0.5765

10.7442
7.1662

provided in Table 1, while the compression results for each one-
line genome are listed in Supplementary Table S6. The most efficient
tools in terms of compression ratio were lrzip (saved 14,317.40 MB
out of 16,773.88 MB), brotli (13,958.42 MB), lzip (13,916.39 MB), xz
(13,915.92 MB), bsc (13,391.09 MB), and bcm (13,314.83 MB). In
addition, comparing the results of the commonly used tools (bzip2
and gzip) indicated bzip2 was better, saving 12,601.12 MB.

Next, seven versions of OST-DNA were implemented. In each
version, one of the seven most efficient tools (bcm, brotli, bsc, lrzip,
lzip, xz, and bzip2) is used to compress the bins generated by the
OST-DNA algorithm. The command used by each tool to compress
the one-line genomes is the same used to compress the bins. Each
of these seven versions was applied to each one-line genome. The
compression and decompression commands used to run each tool
are provided in Supplementary Table S5 in Supplementary Material.
The default options for each tool were used to compress the one-
line genomes. The same commands (default options) were used to
compress the bins. No parallel processing was applied. If a tool
apply parallel processing by default, the options were modified to be
single/sequential processing. In addition, each of the seven versions
were run over window lengths of 25, 50, 100, 125, 150, 250, 500,
750, 1,000, 2,500, 5,000, and 10,000 to investigate the compression
results over each of these lengths. Lastly, each of the seven versions
were run across label lengths of 1, 2, 3, 4, and 5 to investigate also
the results over each of these lengths. The best result in terms of
compression ratio over all pairs of window lengths and label lengths
and cumulatively (over all 17 one-line genomes) achieved by each
OST-DNA version is shown in Table 2. A comparison of the results
produced by each OST-DNA version indicated OST-DNA-bcm
saved an additional 77.38 MB compared to bcm, OST-DNA-brotli:
140.41 MB, OST-DNA-bsc: 66.79 MB, OST-DNA-bzip2: 34.83 MB,
OST-DNA-lrzip: 12.05 MB, OST-DNA-lzip: 38.34 MB, and OST-
DNA-xz: 41.65 MB. This demonstrates that the proposed algorithm

can improve compression results compared to the corresponding
standalone tools. Moreover, the tools that are based on LZ algorithm
(OST-DNA-brotli, OST-DNA-lrzip, OST-DNA-lzip, andOST-DNA-
xz which are dictionary based algorithms and perform better when
the input data is more redundant and the redundancies are closer
to each other as the case of the input data in the bins) performed
better than the other tools (OST-DNA-bcm, OST-DNA-bsc, and
OST-DNA-bzip2 which are based on block sorting and BWT).

The best tool in terms of compression ratio was lrzip, yet
OST-DNA-lrzip saved an additional 12.05 MB more than lrzip. In
terms of compression time, bsc was the fastest tool. OST-DNA-
bsc could save an additional 66.79 MB more than bsc with a
practical increase in the compression/decompression times (hence
corresponding decrease in compression and decompression speeds).
These increases are a result of the time needed for classifying
and binning sequences during compression, as well as the need
to collect and restore the original genome during decompression.
However, they can be decreased significantly as follows. First, the
OST-DNA script was not optimized for implementation as it is
intended in this study to provide proof of concept. Additional
improvements to the script can reduce both the compression and
decompression times by increasing the corresponding speeds. In
addition, parallel processing, which could further reduce run-time,
was not applied during the binning, compression, or decompression
steps of OST-DNA. Finally, fewer bins would lead to faster
sequence labeling and longer window lengths could speed up
both compression and decompression, with a trade-off in the
compression ratio.

The compression results for OST-DNA using each of the seven
tools for each one-line genomewere also better than the results using
the corresponding standalone tool. This can be found by comparing
the compression results using each OST-DNA version with each
window length and each label length for the one-line genomes,

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1489704
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Al-okaily and Tbakhi 10.3389/fbinf.2024.1489704

as shown in Supplementary Table S7 (the compression results for
the standalone tools are provided in Table 1). This is justified due
to the fact that if the subsequences that are similar/redundant are
long distant from each other (for instance at the beginning and
end of the input data), then they will be compressed together
using OST algorithm as they will be binned together but this
is not the case with other compression methodologies especially
if the input data is larger and larger. So, the longer distant
similar/redundant subsequences and larger input data, the better
advantage for OST algorithm compared to other compression
methodologies.

By analyzing the compression results for all OST-DNA versions,
using different sequence label lengths and the adopted classification
methods in this work (i.e., Huffman tree encoding schema), we
found the most efficient results correlated with a window length
of 250 to 1,000 bases. This is reasonable, as lengths shorter or
longer than this will yield a uniform distribution of bases in the
sequence. However, dynamic window lengths can be more practical
and feasible given the additional costs for encoding the lengths.
We found efficient label lengths to be 2 and 4. This is reasonable
as increased label lengths produce more bins and more similarities
among sequences in the same bin. Compression is more efficient
when sequences in a bin are more similar. Supplementary Table S8
shows compression results for each version of OST-DNA for each
window and each label length cumulatively applied to all one-line
genomes. Further analysis at the bin level, rather than the genome
level, is provided in Supplementary Table S9.

Compression results produced by applying each OST-DNA
version to each bin, using the same window and label lengths
but with different genomes, were considerably different (see
Supplementary Table S10). This was not the case for bins produced
using the same label length and same genome, but with different
window lengths (see Supplementary Table S11). This means that
sequences with the same label but from different genomes differed
significantly (even though their labels were the same). This
observation suggests the need to find a set of labels or labeling
steps that could compress sequences from any source (genome) with
similar efficiency, to improve the compression results further. In
other words, sequences that share a label from this set would be
compressed at a similar rate, regardless of the source (genome) from
which they were derived. This set of labels could also be used better
archival of multiple genomes.

The current version of OST-DNA compresses each bin using
a specific tool. However, this is not optimal. Finding a tool
that optimally compresses each bin, or a novel algorithm that is
customized for efficient compression based on the bin content or
label, could further improve the overall performance.

4 Discussion

Note that the aim of this implementation of the proposed
algorithm is to proof-the-concept. Academic and commercial
versions and after careful sophistication and customized methods
will be sought in the near future.

The binning/bucketing approach was suggested to compress
NGS sequencing reads as these reads must be overlapped due to the
similarity in the sequenced genome or the amplification step in the
sequencing process. OST algorithm on the other hand, propose an
approach to compress a single genome/text. There are algorithms
proposed to compress a single genome but they rely on compression-
by-referencing approach which compress the genome based on
the similarities with another public genome. While OST algorithm
does not relay on any external resources and take advantage of
the similarities inside the genome itself using classification-then-
binning approach. Moreover, for general texts (general alphabets
such english language) there is no reliable reference that can be used
by the compression-by-referencing approach, while OST algorithm
is still applicable for any general text.

Data availability statement

Source code of the seven OST-DNA tools are available at https://
github.com/aalokaily/OST.

Author contributions

AA: Writing–original draft. AT: Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbinf.2024.
1489704/full#supplementary-material

Frontiers in Bioinformatics 07 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1489704
https://github.com/aalokaily/OST
https://github.com/aalokaily/OST
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1489704/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1489704/full#supplementary-material
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Al-okaily and Tbakhi 10.3389/fbinf.2024.1489704

References

Awan, F. S., and Mukherjee, A. (2001). “Lipt: a lossless text transform to improve
compression,” in Proceedings international Conference on information Technology:
Coding and computing (IEEE), 452–460.

Bakr, N. S., and Sharawi, A. A. (2013). Dna lossless compression
algorithms. Am. J. Bioinforma. Res. 3, 72–81. doi:10.5923/j.bioinformatics.20130
303.04

Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. (1986). A locally adaptive
data compression scheme. Commun. ACM 29, 320–330. doi:10.1145/5684.5688

Bonfield, J. K., and Mahoney, M. V. (2013). Compression of fastq and sam format
sequencing data. PloS one 8, e59190. doi:10.1371/journal.pone.0059190

Burrows, M., and Wheeler, D. J. (1994). A block-sorting lossless data compression
algorithm. Citeseer.

Capon, J. (1959). A probabilistic model for run-length coding of pictures. IRE Trans.
Inf. Theory 5, 157–163. doi:10.1109/tit.1959.1057512

Cleary, J., and Witten, I. (1984). Data compression using adaptive coding and partial
string matching. IEEE Trans. Commun. 32, 396–402. doi:10.1109/tcom.1984.1096090

Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2010). The sanger
fastq file format for sequenceswith quality scores, and the solexa/illumina fastq variants.
Nucleic acids Res. 38, 1767–1771. doi:10.1093/nar/gkp1137

Cormack, G. V., and Horspool, R. N. S. (1987). Data compression using dynamic
markov modelling. Comput. J. 30, 541–550. doi:10.1093/comjnl/30.6.541

Cover, T. M. (1999). Elements of information theory. John Wiley and Sons.

Duda, J. (2013). Asymmetric numeral systems: entropy coding combining speed
of huffman coding with compression rate of arithmetic coding. arXiv preprint
arXiv:1311.2540

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE
Trans. Inf. theory 21, 194–203. doi:10.1109/tit.1975.1055349

Fano, R. M. (1949). The transmission of information. Research Laboratory of
Electronics: Massachusetts Institute of Technology.

Fraenkel, A. S., and Kleinb, S. T. (1996). Robust universal complete codes for
transmission and compression. Discrete Appl. Math. 64, 31–55. doi:10.1016/0166-
218x(93)00116-h

Friend, R. C. (2004). Transport layer security (TLS) protocol compression using
lempel-ziv-stac (LZS). RFC 3943. doi:10.17487/RFC3943

Gopinath, A., and Ravisankar, M. (2020). “Comparison of lossless data compression
techniques,” in 2020 international Conference on inventive computation technologies
(ICICT) (IEEE), 628–633.

Grumbach, S., and Tahi, F. (1994). A new challenge for compression
algorithms: genetic sequences. Inf. Process. and Manag. 30, 875–886.
doi:10.1016/0306-4573(94)90014-0

Hosseini, M., Pratas, D., and Pinho, A. J. (2016). A survey on data compression
methods for biological sequences. Information 7, 56. doi:10.3390/info7040056

Huffman, D. A. (1952). A method for the construction of minimum-redundancy
codes. Proc. IRE 40, 1098–1101. doi:10.1109/jrproc.1952.273898

Jahaan, A., Ravi, T., and Panneer Arokiaraj, S. (2017). A comparative study and
survey on existing dna compression techniques. Int. J. Adv. Res. Comput. Sci. 8.
doi:10.26483/ijarcs.v8i3.3086

Kavitha, P. (2016). A survey on lossless and lossy data compression methods. Int. J.
Comput. Sci. and Eng. Technol. (IJCSET) 7.

Knuth, D. E. (1985). Dynamic huffman coding. J. algorithms 6, 163–180.
doi:10.1016/0196-6774(85)90036-7

Kodituwakku, S., and Amarasinghe, U. (2010). Comparison of lossless data
compression algorithms for text data. Indian J. Comput. Sci. Eng. 1, 416–425.

Kryukov, K., Ueda, M. T., Nakagawa, S., and Imanishi, T. (2020). Sequence
compression benchmark (scb) database—a comprehensive evaluation of
reference-free compressors for fasta-formatted sequences. GigaScience 9, giaa072.
doi:10.1093/gigascience/giaa072

Langdon, G. G. (1984). An introduction to arithmetic coding. IBM J. Res. Dev. 28,
135–149. doi:10.1147/rd.282.0135

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The sequence alignment/map format and samtools. Bioinformatics 25, 2078–2079.
doi:10.1093/bioinformatics/btp352

Lipman, D. J., and Pearson, W. R. (1985). Rapid and sensitive protein similarity
searches. Science 227, 1435–1441. doi:10.1126/science.2983426

Mahoney, M. V. (2005). Adaptive weighing of context models for lossless data
compression. Tech. Rep. Florida Tech.

Mansouri, D., Yuan, X., and Saidani, A. (2020). A new lossless dna compression
algorithm based on a single-block encoding scheme. Algorithms 13, 99.
doi:10.3390/a13040099

Martín, G. (1979). Range encoding: an algorithm for removing redundancy from a
digitised message. Video Data Rec. Conf., 24–27.

Oberhumer, M. (2008). Lzo-a real-time data compression library.

Ranganathan, N., and Henriques, S. (1993). High-speed vlsi designs for lempel-ziv-
based data compression. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 40,
96–106. doi:10.1109/82.219839

Ryabko, B. Y. (1980). Data compression by means of a “book stack”. Probl. Peredachi
Inf. 16, 16–21.

Salomon, D. (2004). Data compression: the complete reference. Springer Science and
Business Media.

Shannon,C. E. (2001). Amathematical theory of communication.ACMSigmob.Mob.
Comput. Commun. Rev. 5, 3–55. doi:10.1145/584091.584093

Storer, J. A., and Szymanski, T. G. (1982). Data compression via textual substitution.
J. ACM (JACM) 29, 928–951. doi:10.1145/322344.322346

Stout, Q. (1980). Improved prefix encodings of the natural numbers (corresp.). IEEE
Trans. Inf. Theory 26, 607–609. doi:10.1109/tit.1980.1056237

Tunstall, B. P. (1968). Synthesis of noiseless compression codes. Atlanta, FL: Georgia
Institute of Technology. Ph.D. thesis.

Uthayakumar, J., Vengattaraman, T., andDhavachelvan, P. (2018). Swarm intelligence
based classification rule induction (CRI) framework for qualitative and quantitative
approach: an application of bankruptcy prediction and credit risk analysis. J.
King Saud University-Computer Inf. Sci. 32, 647–657. doi:10.1016/j.jksuci.2017.
10.007

Vitter, J. S. (1987). Design and analysis of dynamic huffman codes. J. ACM (JACM)
34, 825–845. doi:10.1145/31846.42227

Welch, T. A. (1984). A technique for high-performance data compression. Computer
17, 8–19. doi:10.1109/mc.1984.1659158

Willems, F. M., Shtarkov, Y. M., and Tjalkens, T. J. (1995). The context-tree weighting
method: basic properties. IEEE Trans. Inf. theory 41, 653–664. doi:10.1109/18.
382012

Williams, R. N. (1991). “An extremely fast ziv-lempel data compression algorithm,”
in [1991] proceedings. Data compression conference (IEEE), 362–371.

Ziv, J., and Lempel, A. (1977). A universal algorithm for sequential data compression.
IEEE Trans. Inf. theory 23, 337–343. doi:10.1109/tit.1977.1055714

Ziv, J., and Lempel, A. (1978). Compression of individual sequences via
variable-rate coding. IEEE Trans. Inf. Theory 24, 530–536. doi:10.1109/tit.1978.
1055934

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1489704
https://doi.org/10.5923/j.bioinformatics.20130303.04
https://doi.org/10.5923/j.bioinformatics.20130303.04
https://doi.org/10.1145/5684.5688
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1109/tit.1959.1057512
https://doi.org/10.1109/tcom.1984.1096090
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1093/comjnl/30.6.541
https://doi.org/10.1109/tit.1975.1055349
https://doi.org/10.1016/0166-218x(93)00116-h
https://doi.org/10.1016/0166-218x(93)00116-h
https://doi.org/10.17487/RFC3943
https://doi.org/10.1016/0306-4573(94)90014-0
https://doi.org/10.3390/info7040056
https://doi.org/10.1109/jrproc.1952.273898
https://doi.org/10.26483/ijarcs.v8i3.3086
https://doi.org/10.1016/0196-6774(85)90036-7
https://doi.org/10.1093/gigascience/giaa072
https://doi.org/10.1147/rd.282.0135
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1126/science.2983426
https://doi.org/10.3390/a13040099
https://doi.org/10.1109/82.219839
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/322344.322346
https://doi.org/10.1109/tit.1980.1056237
https://doi.org/10.1016/j.jksuci.2017.10.007
https://doi.org/10.1016/j.jksuci.2017.10.007
https://doi.org/10.1145/31846.42227
https://doi.org/10.1109/mc.1984.1659158
https://doi.org/10.1109/18.382012
https://doi.org/10.1109/18.382012
https://doi.org/10.1109/tit.1977.1055714
https://doi.org/10.1109/tit.1978.1055934
https://doi.org/10.1109/tit.1978.1055934
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Compression algorithm
	2.2 Decompression algorithm
	2.3 OST-DNA

	3 Results
	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

