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Background: The study of sample taxonomic composition has evolved from
direct observations and labor-intensive morphological studies to different DNA
sequencing methodologies. Most of these studies leverage the metabarcoding
approach, which involves the amplification of a small taxonomically-informative
portion of the genome and its subsequent high-throughput sequencing. Recent
advances in sequencing technology brought by Oxford Nanopore Technologies
have revolutionized the field, enabling portability, affordable cost and long-read
sequencing, therefore leading to a significant increase in taxonomic resolution.
However, Nanopore sequencing data exhibit a particular profile, with a higher
error rate compared with Illumina sequencing, and existing bioinformatics
pipelines for the analysis of such data are scarce and often insufficient, requiring
specialized tools to accurately process long-read sequences.

Results: We present PRONAME (PROcessing NAnopore MEtabarcoding data),
an open-source, user-friendly pipeline optimized for processing raw Nanopore
sequencing data. PRONAME includes precompiled databases for complete 16S
sequences (Silva138 and Greengenes2) and a newly developed and curated
database dedicated to bacterial 16S-ITS-23S operon sequences. The user can
also provide a custom database if desired, therefore enabling the analysis of
metabarcoding data for any domain of life. The pipeline significantly improves
sequence accuracy, implementing innovative error-correction strategies and
taking advantage of the new sequencing chemistry to produce high-quality
duplex reads. Evaluations using a mock community have shown that PRONAME
delivers consensus sequences demonstrating at least 99.5% accuracy with
standard settings (and up to 99.7%), making it a robust tool for genomic analysis
of complex multi-species communities.

Conclusion: PRONAME meets the challenges of long-read Nanopore
data processing, offering greater accuracy and versatility than existing
pipelines. By integrating Nanopore-specific quality filtering, clustering and
error correction, PRONAME produces high-precision consensus sequences.
This brings the accuracy of Nanopore sequencing close to that of
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Illumina sequencing, while taking advantage of the benefits of long-read
technologies.

KEYWORDS

long-read high-throughput sequencing, accuracy, clustering, polishing, duplex reads,
microbiome, database, ribosomal operon

1 Introduction

The study of biological diversity has historically relied on direct
observations and morphological studies to identify and classify
organisms. This approach has not only proved to be labor-intensive
but also limited in terms of accuracy and scope, particularly
when dealing with highly similar species. The development of
DNA sequencing transformed these methodologies, beginning with
the first-generation sequencing techniques introduced with Sanger
sequencing (Sanger and Coulson, 1975). This method allowed for
reliable but low-throughput applications that could only process one
isolated DNA sequence at a time. The DNA barcoding technique
was then introduced, amplifying and sequencing a specific, short
genetic marker within an organism’s DNA to facilitate species
identification (Hebert et al., 2003).

Subsequently, second-generation sequencing technologies such
as Roche 454 GS FLX and Illumina MiSeq and HiSeq systems
brought significant advancements. These platforms enabled high-
throughput sequencing (HTS), dramatically increasing data output
and reducing costs. Despite their advantages, these technologies
typically produced short reads, which presented challenges in
terms of achieving high taxonomic resolution (Goodwin et al.,
2016). Indeed, the amplicon length plays a crucial role in
determining the accuracy and precision of taxonomic identification
(Johnson et al., 2019; Nygaard et al., 2020). This limitation
makes species differentiation more difficult, leading to variability
in taxonomic classification and estimates of relative abundance
based on the specific hypervariable region sequenced (Wasimuddin
et al., 2020; López-Aladid et al., 2023).

The introduction of third-generation sequencing technologies
marked a further evolution in the field. Platforms like Pacific
BioSciences (PacBio) (Rhoads and Au, 2015) and Oxford Nanopore
Technologies (ONT) (Deamer et al., 2016) offer long-read
sequencing capabilities that overcome many of the limitations
faced with earlier technologies (Malla et al., 2019). These long
reads enhance taxonomic resolution and allow for more detailed
genomic analyses, making them particularly valuable for studying
complex multispecies communities (Jain et al., 2015). Full-16S
sequencing showed good performances in increasing the taxonomic
accuracy in complex multispecies communities (Jeong et al.,
2021; Szoboszlay et al., 2023). Despite this huge technological
innovation, it is not always possible to distinguish closely related
species inside specific genera, such as Clostridium or Pseudomonas
(Gürtler and Grando, 2013; Hu et al., 2022; Mulet et al., 2023).
Going one step further, sequencing the entire 16S-ITS-23S region
of the universally conserved rRNA operon (rrn) of bacteria and
archaea allowed to achieve species (Cusco et al., 2018; Srinivas et al.,
2024) or strain-level (Kerkhof et al., 2022) taxonomic resolution
and capture evolutionary polymorphisms. Despite the higher raw
read error rates initially associated with Nanopore technology,

which posed a challenge for distinguishing closely related species
(Jain et al., 2015), progress in chemistry, flowcell technology
and duplex basecalling have substantially improved sequencing
accuracy and quality (Deamer et al., 2016; Karst et al., 2021;
Brown et al., 2023; Zhao et al., 2023).

Nevertheless, the challenges of analyzing such data
underscore the inadequacies of existing bioinformatics pipelines,
which are predominantly tailored for short-read sequences
(Amarasinghe et al., 2020). Indeed, due to the unique characteristics
of long reads, which include notably higher error rates and
extended lengths, dedicated algorithms are essential for their
correction (Zhang et al., 2020). Moreover, well-built and curated
databases are of critical importance to capitalize on the taxonomic
resolution brought by long read technologies. To mitigate these
challenges and effectively harness the potential of Nanopore data, it
is imperative to refine the data processing approaches for this new
era of sequencing technology.

Our new bioinformatics tool, PRONAME (PROcessing
NAnopore MEtabarcoding data), was designed to address these
needs. This open-source, user-friendly pipeline optimizes the
processing of raw Nanopore sequencing data and is adaptable
to a range of biological taxa, from bacteria to fungi, plants and
animals for instance, depending on the user’s focus. It includes
two formatted full-16S databases and two rrn operon databases,
providing robust support for diverse bacterial metabarcoding
applications. Alternatively, the user can provide a custom database
for any domain of life. Compared to existing pipelines, PRONAME
offers enhanced accuracy and is the only one to take advantage
of duplex reads associated with the new sequencing chemistry,
demonstrating its efficacy and versatility in the genomic analysis of
life’s diversity.

2 Materials and methods

2.1 The PRONAME pipeline

The PRONAME pipeline has been written in Bash
(GNU Project, 2024), with small companion scripts being written in
Python (Python Software Foundation, 2024) and R (R Core Team,
2024). The whole pipeline and complementary files are available in
our GitHub repository (https://github.com/benn888/PRONAME).
For ease of use, PRONAME is provided as a Docker image
(DockerInc., 2023). It simply needs to be pulled from Docker Hub
to be directly useable, without installation andwith all dependencies
and databases available. Alternatively, the different pipeline scripts
are also provided separately if the user wants to work outside the
Docker environment. The PRONAME pipeline is made of four
scripts as illustrated in Figure 1.The scripts must be run in the same
order as they are presented below. As a first step, it is recommended
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that users access the help menu of each script or follow the GitHub
tutorial to view the list of all arguments and usage examples.

2.1.1 Proname_import
Thefirst script of the PRONAME pipeline allows the import and

initial processing of Nanopore metabarcoding data. The sequencing
adapters are first trimmed off with Guppy (Guppy basecaller, v6.5.7)
and primers are removed with Cutadapt (v4.9) (Martin, 2011).
These two trimming steps are optional to offer greater flexibility
regarding the type of input data. This script also includes the
counting of simplex reads and duplex reads (if applicable) among
each sample, as well as the creation of length-vs-quality scatter plots
usingNanoPlot (v1.43) (De Coster et al., 2018) for each type of reads
(simplex, duplex and both). Scatter plot visualization is crucial for
deciding which type of read to work with (duplex and/or simplex)
and for defining the appropriate filtering thresholds to apply in the
next script.However, as this can be a time-consuming step, an option
has been added to skip this visualization step (although it is not
recommended).

2.1.2 Proname_filter
With this script, the user can take advantage of V14 sequencing

chemistry introduced by ONT, which produces high-quality duplex
reads exhibiting Q20+ quality (i.e., at least 99% average accuracy)
and up to Q30 quality (99.9% average accuracy). This significant
improvement in accuracy compared to simplex reads explains why
the proname_filter script allows discarding simplex reads to work
only with duplex data. Alternatively, it is also possible to execute
the analysis with both simplex and duplex reads, or only with
simplex reads (e.g., if a previous sequencing chemistry was used).
NanoFilt (v2.8.0) (De Coster et al., 2018) is then used to filter
reads using length and quality parameters provided by the user.
The number of high-quality reads (i.e., simplex and/or duplex reads
that passed the filtering step) is then reported and a new length-
vs-quality scatter plot is built to evaluate the impact of the quality
filtering process.

2.1.3 Proname_refine
The proname_refine script generates high-accuracy consensus

sequences in a multi-step process inspired by Ohta et al. (2023).
High-quality reads are first clustered using VSEARCH (v2.22.1)
(Rognes et al., 2016) according to a sequence similarity threshold
provided by the user, and singletons are removed. Importantly,
within each cluster, the read distribution and the link between
each read and its sample provenance are recorded. This ensures
that, at the end of the script, an OTU-like table reporting the
frequency of every consensus sequence in each sample is generated.
Seqkit (v2.3.0) (Shen et al., 2016) is used to extract from each
cluster the centroid sequence on the one hand, and a subset of
reads on the other hand. The error-correction is then performed
with Medaka v2.0.1 (Medaka, 2024) by polishing each centroid
sequence using its corresponding subset of reads. After a last
filtering step to remove chimera sequences using VSEARCH, the
user can choose whether to import the resulting representative
sequences and corresponding frequency table into the QIIME2
platform (2024.5 release) (Bolyen et al., 2019).

2.1.4 Proname_taxonomy
In this script, the user can employ one of the databases

available with PRONAME (located in /opt/db/ in the Docker
container) or provide a custom one, ideally formatted following the
recommendations of Dubois et al., 2022. The taxonomic analysis
is carried out outside QIIME2 with the blastn standalone tool
(v2.15.0) (Camacho et al., 2009) from BLAST command line
applications. This is due to the fact that the QIIME2 classify-
consensus-blast plugin uses the blastn qcov_hsp_perc parameter
and working on a per-HSP (high-scoring pair) basis does not seem
to be the most relevant option when dealing with long-read data.
Instead, the blastn results are filtered based on the blastn “qcov”
specifier to keep only the matches showing an overall query cover
percentage equal or higher than a threshold defined by the user (80%
by default). This allows considering the query cover over the whole
sequence (all HSPs), and hence provides results which are much
more consistent with those from the online BLAST tool.

After analysis, the results can be reimported into QIIME2 to
generate a taxa barplot.Theuser can take advantage of this to directly
proceed to further processing within QIIME2, such as alpha-/beta-
diversity analyses or differential abundance testing among others
(see the tutorial in our GitHub repository). It is also possible to
generate a phyloseq object (McMurdie andHolmes, 2013) composed
of the consensus sequences, the OTU table, the associated taxonomy
and a phylogenetic tree, in order to perform further analysis using R.

2.2 Reference databases

2.2.1 Full-length 16S rDNA databases
The Silva 138 SSURef NR99 (Quast et al., 2012) full-length

sequences and associated taxonomy were retrieved from the
QIIME2 website (QIIME2 data resources, 2024) and exported
into fasta and tsv files using the command ‘qiime tools export’.
The sequence file was then formatted with the makeblastdb
command to run with BLAST command line applications
(BLAST® Command Line Applications User Manual, 2008). The
Greengenes2 (McDonald et al., 2023) sequences and taxonomy
were retrieved from their ftp site (Greengenes2 ftp, 2024). Given the
large number of very small sequences in this database, sequences
shorter than 900 bp were filtered out. Only sequences identified
to the species level were kept. They were then formatted to match
BLAST command line application requirements as detailed above.

2.2.2 Ribosomal operon database
Some reference databases dedicated to the ribosomal RNA

operon sequences do already exist, but they did not fit our
purposes for several reasons, such as the region covered being
too short, the number of sequences/represented species, their
not up-to-date status, or how/whether they were curated. A new
reference database was therefore developed and named the rrn
operons Extracted fromGENomes of Bacteria (rEGEN-B) database.
This database in included in the Docker image and is also
directly available at: https://doi.org/10.6084/m9.figshare.26380702.
GenBank and RefSeq genomes were downloaded from the NCBI’s
Genome resource page on 4 November 2024. The search was
carried out to retrieve only assemblies with the “Chromosome”
or “Complete” status, and with a year of release ranging from

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1483255
https://doi.org/10.6084/m9.figshare.26380702
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Dubois et al. 10.3389/fbinf.2024.1483255

FIGURE 1
Schematic representation of the PRONAME pipeline. The pipeline comprises four scripts allowing importing and visualizing sequencing data
(proname_import), quality-filtering data and keeping only duplex and/or simplex reads (proname_filter), significantly improving the accuracy by
generating error-corrected consensus sequences and removing chimera (proname_refine), and performing the taxonomic analysis
(proname_taxonomy).∗Optional steps, the choice is left to the user whether or not to include them in the workflow.
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2005 to 2024. Prokaryotic rRNA operon sequences were then
extracted from these genomes using the sequences of 16S-27F
(5′-AGRGTTYGATYHTGGCTCAG-3′) (Lane, 1991) and 23S-
U2428R (5′-CCRAMCTGTCTCACGACG-3′) (Martijn et al., 2019)
primers. The extraction was restricted to keep amplicons between
3,500 and 6,500 bp, allowing 10% mismatch. The script “extract_
amplicons.sh” was written to carry out this in silico amplicon
extraction; it is also available in our GitHub repository and in
the Docker container (/opt/scripts/). The “data_summary.tsv” file,
obtained at the same time as the download of the reference genomes,
was used to retrieve genome taxids. The complete taxonomic
lineages were recovered using the approach described in the DB4Q2
pipeline (Dubois et al., 2022).The database was then curated to filter
out low-quality and suspected misidentified sequences, as described
in the DB4Q2 pipeline. Briefly, reference sequences were analyzed
in a cross-validation scheme with data leakage, i.e., where sets
of test and training sequences are strictly identical. This enabled
comparisons between expected and predicted taxonomies for each
sequence and discarding those for which the expected taxonomy
at the family rank was observed only once in the top 5 hits
resulting from the blastn analysis. This database was complemented
by the rrn operons extracted from the genomes of the 17 bacterial
species from the mock community sequenced in this work (see
below). The number of rrn copies per genome was recorded in
Supplementary Material S1 to maintain a record. Duplicate copies
of the rrn sequences from the same genome were then removed
to reduce redundancy. The fasta file containing extracted operon
sequences was then used to produce a database compatible with
BLAST command line applications by applying the makeblastdb
command. To enable users with lower computational capabilities
to utilize the rEGEN-B database in a more efficient way, a lighter
version of the database has also been compiled by extracting only
the first copy of the rrn operon in each genome (see the “uniq”
label in the database files). In complement to rEGEN-B, the recently
published GROND database (Walsh et al., 2024) was also included
in PRONAME as an optional database.

2.3 Mock community

2.3.1 DNA extraction, library preparation and
whole-genome sequencing

Seventeen Gram- and Gram + bacterial species were selected
to assemble a mock community (Supplementary Material S2). Five
of them belonged to the Pseudomonas genus and were deliberately
chosen for their genetic proximity to put PRONAME to the test
and evaluate its efficiency under very unfavorable conditions. DNA
was extracted from pelleted bacterial cultures using the NucleoSpin
Soil Kit (Macherey-Nagel), with SL1 and SX as lysis solutions.
After purification with AMPure XP beads (Beckman Coulter), the
DNA was visualized on 0.5% agarose gel and its concentration was
measured using a Qubit 4 fluorometer (ThermoFisher). Sequencing
libraries were then prepared using the Ligation Sequencing Kit V14
(SQK-LSK114) from Oxford Nanopore Technologies (ONT), and
each library was loaded on a separate Flongle flowcell R10.4.1.
The sequencing runs were performed using a MinION device and
lasted 24 h.

2.3.2 Genome assembly
The raw-signal POD5 reads were basecalled using Dorado

(v0.3.4) (Dorado, 2023) with the dna_r10.4.1_e8.2_400bps_
sup@v4.2.0 basecallingmodel. Adapters were removed using Guppy
(v6.5.7) and genomes were then assembled using Trycycler (v0.5.4)
(Wick et al., 2021). Briefly, short reads (less than 1,000 bp) and
very bad reads (the worst 10%) were discarded. A third quality-
filter was applied to remove reads with a Q score lower than 13.
Reads were then sub-sampled into 12 read sets and the Flye (v2.9.2)
(Kolmogorov et al., 2019), Miniasm (v0.3) (Li, 2016) + Minipolish
(v0.1.2) (Wick and Holt, 2021) and Raven (v1.8.3) (Vaser and
Šikić, 2021) assemblers were used to build four assemblies with
each. The contigs of the 12 assemblies were clustered, reconciled,
and a multiple sequence alignment was run on reconciled contig
sequences. The sequencing reads were then partitioned between
each cluster and a consensus contig sequence was generated for each
cluster. Finally, Medaka (v1.8.0) was run on the Trycycler consensus
sequences to polish them and further increase their accuracy.

The assembly metrics for the sequenced genomes of bacteria
included in the mock community are reported in Table 1. The
genome size ranged from 2.9 to 8.6Mb, with a fluctuating number of
plasmids (from 0 to 6). Notably, whereas every species displayed one
circular chromosome, Burkholderia anthina happened to have three
chromosomes, which allies with previous reports (Bochkareva et al.,
2018). All sequenced genomes have been deposited on the NCBI
under the BioProject numbers PRJNA1134685 and PRJNA1141912.

2.3.3 Mock community constitution
The total genome length and the number of rrn operon copies

were inferred from each assembled genome. These parameters and
the concentration ofDNAextracted fromeach bacterial culturewere
used to mix the DNA of the 17 members in the mock community
with an identical number of rrn operon copies for each of them.

2.4 DNA metabarcoding assay

To illustrate the efficiencyof thePRONAMEpipeline andquantify
the accuracy of consensus sequences it produces, six metabarcoding
assays “RRN1” to “RRN6” were set up (Supplementary Material S3).
The mock community DNA was amplified with four primer pairs
covering the majority of the rrn operon (Table 2). Four assays were
carried out with the current R10.4.1 flowcells (V14 chemistry),
and two with the older R9.4.1 flowcells. The PCR reactions were
performedintriplicate.All25 µL-PCRreactionswerecarriedoutusing
12.5 µL of 2X GoTaq® Long PCR Master Mix (Promega), 1.25 µL
of 10 µM forward and reverse primers, 1 µL of DNA and 9 µL of
nuclease-free water (QIAGEN). Triplicate PCR products were pooled
during purification using AMPure XP Beads (BeckmanCoulter).The
amplicon quality was checked by running 5 µL of PCR products on
0.6% agarose gel andDNA concentrationwasmeasured using aQubit
4 fluorometer (ThermoFisher). For the four assays run on R10.4.1
flowcells, the sequencing libraries were prepared using the Ligation
SequencingKitV14 (SQK-LSK114). Each librarywas run for 24 hona
Flongle flowcell (R10.4.1) using a MinION device (Oxford Nanopore
Technologies). Raw sequencing data were basecalled using Dorado
(v0.3.4) with the dna_r10.4.1_e8.2_400bps_sup@v4.2.0 basecalling
model. For the two assays using older flowcells and kit chemistry,
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TABLE 1 Assembly metrics for the genomes of the 17 bacterial species sequenced in this work.

Species Genome size (bp)a Genome coverage Number of rrn operon
copies

NCBI BioSample
accession number

Glutamicibacter creatinolyticus 3,377,278 (1C) 240x 5 SAMN42431379

Staphylococcus equorum 2,992,544 (1C + 6P) 135x 7 SAMN42431380

Sphingomonas albertensis 4,099,393 (1C) 82x 3 SAMN42431381

Burkholderia anthina 8,619,681 (3C + 1P) 81x 6 SAMN42431382

Methylobacterium bullatum 5,014,694 (1C + 1P) 65x 4 SAMN42431383

Pedobacter foliorum 6,131,055 (1C) 37x 6 SAMN42431384

Enterobacter kobei 4,814,064 (1C + 2P) 132x 8 SAMN42431385

Sphingobacterium thalpophilum 5,718,724 (1C) 111x 7 SAMN42431386

Xanthomonas translucens 4,658,813 (1C + 1P) 48x 2 SAMN42431387

Microbacterium oxydans 3,822,978 (1C) 168x 2 SAMN42431388

Pseudomonas cichorii 5,986,012 (1C) 194x 6 SAMN42431389

Pseudomonas syringae 5,947,987 (1C) 166x 5 SAMN42431390

Pseudomonas asplenii 6,658,430 (1C) 107x 6 SAMN42431391

Pseudomonas sivasensis 6,351,098 (1C) 197x 6 SAMN42230335

Pseudomonas lurida 6,039,873 (1C) 52x 5 SAMN42431392

Bacillus subtilis 4,228,867 (1C) 55x 10 SAMN42431393

Pantoea agglomerans 5,268,351 (1C + 4P) 57x 7 SAMN42431394

aFor each assembly, the number of chromosomes (C) and plasmids (P) is reported in brackets.

the libraries were prepared using the Ligation Sequencing Kit (SQK-
LSK110) and each was run for 24 h on a R9.4.1 Flongle flowcell.
Raw sequencing data were basecalled using Dorado (v0.3.4) with the
dna_r9.4.1_e8_sup@v3.6 basecalling model.

3 Results

3.1 Developed reference databases

Thesequence length distribution of the Silva138 andGreengenes
databases developed/formatted in this work showed a clear peak
around 1,500 bp (Figure 2).This corresponds to the length of the full
16S rRNA gene, which makes these databases useful for researchers
performing full 16S metabarcoding with custom primers or directly
with the ONT 16S Barcoding Kit. Regarding the databases dedicated
to the rrn operon, the rEGEN-B and GROND sequences displayed
much longer profiles, with distribution curves centered around 4,500
and 4,900 bp respectively. While GROND sequences correspond to
the full rrn operon, rEGEN-B sequences do not include the last
portion of the 23S gene. This region was considered less useful,
since it is not amplified by common16S/23Smetabarcoding primers;

therefore, it was excluded to save computation time. The wider
shape of the length distribution peak compared to 16S databases is
explained by the increased sequence length, offering more variation
possibilities and in particular, the presence of the ITS region which
known to display important length polymorphism.

As illustrated in Table 3, the Silva138 database displays more
sequences and covers more species compared to Greengenes2,
although its average sequence length is slightly shorter. Regarding
the rrn operon reference dataset, the rEGEN-B and GROND
databases demonstrated an increased number of sequences and
represented species compared to other previously published
databases. Interestingly, the average sequence length measured
indicates that rEGEN-B reference sequences are long enough
to cover the entire length of amplicons produced with the
primer sets most commonly used in bacterial long-read
metabarcoding analyses (Table 2).The rEGEN-B database is also the
only one to match the “high-confidence curation” criteria that were
defined in this work: (i) the sequences in the database only come
from genomes with confident assembly levels (i.e., “chromosome”
or “complete genome” status, but not “contig” nor “scaffold”), (ii)
only sufficiently recent genomes were retained for operon sequence
extraction (nothing before 2005), and (iii) the database was curated
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TABLE 2 PCR primers used in the six metabarcoding assays.

Metabarcoding
assay name

Flowcell/Chemistry
generation

Primer
type

Primer
name

Primer sequence
(5′-3′)

Average
amplicon
length (bp)

RRN1
R10.4.1 flowcell, current
chemistry (V14)

F 16S-27F AGRGTTYGATYHTGGCTCAG
4,265

R 23S-2241R ACCRCCCCAGTHAAACT

RRN2
R10.4.1 flowcell, current
chemistry (V14)

F 16S-A519F CAGCMGCCGCGGTAA
4,112

R 23S-U2428R CCRAMCTGTCTCACGACG

RRN3
R10.4.1 flowcell, current
chemistry (V14)

F 16S-27F AGRGTTYGATYHTGGCTCAG
4,616

R 23S-U2428R CCRAMCTGTCTCACGACG

RRN4
R10.4.1 flowcell, current
chemistry (V14)

F 16S-8F AGRGTTYGATYMTGGCTCAG
4,516

R 23S-2490R CGACATCGAGGTGCCAAAC

RRN5 R9.4.1 flowcell, older chemistry
F 16S-27F AGRGTTYGATYHTGGCTCAG

4,265
R 23S-2241R ACCRCCCCAGTHAAACT

RRN6 R9.4.1 flowcell, older chemistry
F 16S-A519F CAGCMGCCGCGGTAA

4,112
R 23S-U2428R CCRAMCTGTCTCACGACG

The average amplicon length was computed by performing in silico PCR, with the extract_amplicons.sh script, using each of these primer sets and the 17 assembled genomes from the mock
community as template.

FIGURE 2
Sequence length distribution of the databases included in PRONAME. Silva138 and Greengenes2 are existing databases dedicated to the 16S rRNA gene
that were formatted to fit within the PRONAME framework. rEGEN-B is a new curated database developed in this work and dedicated to bacterial rrn
operon sequences (the 16S-ITS-23S region).

using the DB4Q2 pipeline to discard low-quality and misidentified
sequences. The species-level accuracy of both rrn operon databases
was also investigated with a cross-validation (CV) analysis using the
QIIME2 command ‘qiime rescript evaluate-cross-validate’ (k-fold
cross validation in a pseudo-realistic situation). For the GROND
databases, we selected the one built with RefSeq sequences in

order to compare databases with sequences from the same origin
(since RefSeq was also used for rEGEN-B). The rEGEN-B database
showed a slightly lower species-level annotation accuracy (50%)
compared to GROND (58%). However, this direct comparison is
not completely relevant. Indeed, the GROND sequences are longer
than those of rEGEN-B, providing a better taxonomic resolution
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TABLE 3 Databases included in PRONAME and comparison with other existing ones.

Database Locus Average
sequence
length (bp)

Number of
sequences

Number of
species

High-
confidence
curation∗

References

Databases included in PRONAME

Silva138 16S 1,457 436,680 48,933 No Quast et al. (2012)

Greengenes2 16S 1,493 192,860 18,956 No McDonald et al. (2023)

rEGEN-B 16S-ITS-23S 4,580 523,869 16,217 Yes This work

rEGEN-B_uniq 16S-ITS-23S 4,614 115,032 16,217 Yes This work

GROND 16S-ITS-23S 4,899 317,986 23,542 No Walsh et al. (2024)

Databases from the literature

RRN_DB2 16S-ITS-23S 4,073 493,329 11,762 No Kinoshita et al. (2021)

MIrROR 16S-ITS-23S 4.260 97,781 9,485 No Seol et al. (2022)

rOPDB 16S-ITS-23S 4,939 308,026 10,417 No Kerkhof et al. (2022)

Two commonly used reference databases dedicated to the full 16S rRNA gene have been formatted and included in the PRONAME environment package (Silva138 and Greengenes2). For rrn
operon sequences, a new curated reference database has been developed (rEGEN-B). For reduced computation times, an alternative database has also been built, by keeping only one rrn operon
copy per genome (rEGEN-B_uniq). All these databases are available in the /opt/db/ directory.∗: The “high-confidence curation” status reflects the fact that (i) the sequences in the database only
come from genomes with confident assembly levels (i.e., “chromosome” or “complete genome” status, but not “contig” nor “scaffold”), (ii) only sufficiently recent genomes were retained for
operon sequence extraction (nothing before 2005), and (iii) the database was curated using the DB4Q2 pipeline (Dubois et al., 2022) to discard low-quality and misidentified sequences.

for CV. The GROND database also has a much wider taxonomic
breath (e.g., it includes Archaea whereas rEGEN-B does not), which
provides more context when querying the database and therefore
increases the CV results. In addition, the sequences from GROND
were clustered during the database construction (while rEGEN-B
sequences were not), which may artificially enhance its accuracy.

3.2 Metabarcoding the mock community

The metabarcoding sequencing data generated in this
work were deposited on the NCBI under BioProject number
PRJNA1139700. Details about the simplex/duplex read distribution
among each sample, and length vs. quality plots can be found
in Supplementary Material S4. Raw sequencing reads, as well as
reads generated at different steps of the PRONAME pipeline, were
blasted against the mock community genomes sequenced in this
work. This enabled computation of the mean accuracy of these
different read sets and illustrated the increase in accuracy across
the whole pipeline (Figure 3). Overall, processing with PRONAME
significantly increased read accuracy, regardless of the sequencing
chemistry. With the current V14 chemistry (R10.4.1 flowcells), the
results highlighted the benefits of the newly introduced duplex
reads, which reached 99.5% ± 0.14% accuracy at the end of the
PRONAME pipeline (with default settings, i.e. 90% clustering
threshold). It was possible to attain even higher accuracy levels,
like the 99% clustering threshold that led to an accuracy of 99.7%
± 0.03%. Detailed alignments of consensus sequences with their
corresponding reference sequences extracted from the mock
genomes are presented in Supplementary Material S5.

The results obtained with the older sequencing chemistry
(R9.4.1 flowcells) were also interesting, given that similar accuracy
to that of simplex V14 data (R10.4.1 flowcells) could be achieved.
However, it was noticed that the quality of raw R9.4.1 data was
poorer: the average read quality curve was centered around Q13
with almost no read above Q18, whereas V14 chemistry led to
quality curves centered around Q15 and many reads between Q20
and Q30. Consequently, since the same quality/length parameters
were applied for both R9.4.1 and R10.4.1 assays, this quality filtering
resulted in much fewer HQ reads for R9.4.1 chemistry, which might
not be ideal when aiming to detect low-frequency taxa.

3.3 The importance of the clustering step

One of the key parameters in the PRONAME pipeline is
the identity threshold selected to carry out the read clustering,
as it affects the accuracy of consensus sequences, the number
of identified species in the mock community, and computation
time (Figure 4). The lower the threshold, the lower the number of
generated clusters, and therefore the lower the number of centroid
sequences to be processed during the time-consuming polishing
step. The counterpart of using such low identity thresholds is
that small variations may be overlooked, which explains the small
number of identified species among the 17 species present in
the mock community. It should be noted that, in cases where
some species are missed, these are always Pseudomonas, and
members of this genus are known to be difficult to differentiate
genetically (Mulet et al., 2023). Conversely, using a high clustering
identity threshold leads to more clusters, negatively affecting the
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FIGURE 3
Read mean accuracy reached at different steps of the PRONAME workflow. Accuracy was computed for reads before their import into PRONAME (Raw
reads), reads generated by proname_import (Trimmed reads) and proname_filter (HQ reads) and error-corrected sequences generated by
proname_refine (Consensus sequences). The libraries were sequenced either with new V14 chemistry (R10.4.1 flowcells, producing both simplex and
duplex reads) or with the older chemistry (R9.4.1 flowcells, generating only simplex reads). Each point in the graph represents the average of the values
obtained in the four (R10.4.1) or the two (R9.4.1) relevant trials. The experimental design presented in Supplementary Material S3 was followed to
produce this figure, using default parameters for every PRONAME script.

computation time. Also, the clusters are smaller (with less reads used
to polish the centroid sequence), which may explain the observed
drop in accuracy (except for 99% where a significant increase in
accuracy is observed). High clustering thresholds, however, allow
identification of all species in the mock community, including the
five Pseudomonas. Hence, these results illustrate how choosing the
clustering identity threshold is a matter of compromise. This is the
reason why the default value has been set at 0.90, as a middle ground
between the number of identified species, computation time and
accuracy achieved.

4 Discussion

4.1 Increasing nanopore metabarcoding
accuracy and applicability

The PRONAME pipeline has shown to significantly increase
the accuracy of Nanopore metabarcoding data thanks to several
key characteristics such as read quality filtering, clustering and
polishing, as well as the possibility of capitalizing on higher-quality
duplex reads. With a duplex rate of at least 20% in our datasets,
this provided more than enough duplex reads to cover the entire
sequenced diversity. If, however, the user observes too few duplex
reads in its data, working only with them may not be the most
appropriate way to proceed, since the lower number of working
reads could lead to an increased proportion of singletons after
clustering.Given that singletons are removed at the endof clustering,
this could represent a partial loss of useful information. If such
a situation is faced, it is recommended to use both simplex and

duplex reads. It must also be noted that our sequencing runs yielded
on average 24,901±9,499 duplex reads and 229,214±22,164 simplex
reads per assay. This number of duplex reads was sufficient to study
the composition of the 17-species mock sample, but it may not be
adequate for real-life samples, which probably contain many more
species. In such cases, using both duplex and simplex reads might
also be the most appropriate option. Admittedly, it will decrease the
sequence accuracy of ∼1% (see Figure 3) but it represents ∼40–45 bp
on a rrn operon amplicon (more than 4,000 bp), which should not
significantly affect the outcome of the taxonomic assignments. The
pipeline also enables valorization of older sequencing data by re-
analyzing them, in light of the fact that processing reads from an
older chemistry with PRONAME demonstrated a very satisfying
increase in accuracy (Figure 3).

It is also important to understand how the clustering (and
subsequent polishing) works to set relevant parameters according
to the study context and research question. As highlighted in
Figure 4, the clustering identity threshold had a significant impact
on the average accuracy that could be reached, but also affected
the number of species from the mock community that could be
identified and, of course, the computation time. Although selecting
a high threshold tended to decrease sequence accuracy, the extreme
threshold of 99% showed a remarkable improvement and seemed
to be a good option to obtain results combining good accuracy
and fidelity in terms of identified species, provided the computation
time is not an obstacle for the user. For more reasonable processing
duration, thresholds of 90% (set as default parameter) or even 93%
appear to be safe compromises. Indeed, both approaches achieved
a high level of accuracy and identified a significant proportion of
species in the mock community while maintaining computation
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FIGURE 4
Influence of clustering identity threshold on accuracy, number of identified mock species and computation time. Accuracy refers to the mean identity
percentage between consensus sequences generated by PRONAME and reference sequences extracted from the genomes of the species used in the
mock community. Seventeen bacterial species were included in the mock community. Five of them belonged to the Pseudomonas genus and were
deliberately chosen for their genetic proximity to put PRONAME to the test and evaluate its efficiency under very unfavorable conditions. The
secondary grey curve represents the computation time needed to refine sequencing data and produce high-accuracy consensus sequences. To
generate these results, raw data from the four sequencing assays that used V14 chemistry (RRN1 to RRN4 assays) were processed using PRONAME with
increasing clustering thresholds from 80% to 99%. Default settings were used for the other parameters of the pipeline.

time at a reasonable level. It is important to note that the mock
community used in this work contained five Pseudomonas species,
and it is known that members of the Pseudomonas genus are very
difficult to differentiate genetically (Mulet et al., 2023).This explains
why the number of identified species exhibits such a wide range
according to the clustering threshold, from 12 to 17 (i.e., all)
species in the mock community identified. It underlines the fact
that this parameter should be set according to the study case, since
this kind of complexity should not be expected for all types of
samples. Similarly, this clustering threshold should also be adapted
when working with different barcode regions, given that smaller
clustering percentages could be selected if shorter amplicons were
sequenced (Ohta et al., 2023).

4.2 Comparison to other existing pipelines

Different pipelines enabling the processing of Nanopore
metabarcoding data have already been published. However, most of
them do not incorporate an error-correction step with a Nanopore-
dedicated tool. For instance, the MeTaPONT pipeline (Ammer-
Herrmenau et al., 2021) basecalls fast5 into fastq files and then
directly switches to taxonomic classification. The RESCUE pipeline
(Petrone et al., 2023) includes additional steps like adapter/primer
trimming and Q-score filtering but does not involve any error
correction before the taxonomic analysis. The ASHURE pipeline
(Baloğlu et al., 2021) does attempt to correct sequencing errors but

not with a tool specifically developed for Nanopore data that takes
into account its particular error profile. Instead, authors used an
original approach of rolling-circle amplification (RCA) to generate
consensus sequences that can reach median accuracies of up to
99.3% when long concatemeric reads can be achieved. However, the
pipeline has been designed to process only such concatemeric data,
which seems to be a niche application of Nanopore metabarcoding.
It indeed requires an isothermal amplification, which is, according
to the author’s words, a time-consuming step that may skew
concatemeric reads toward shorter sequences. The Natrix2 pipeline
(Deep et al., 2023) is very interesting as it includes, like PRONAME,
clustering, chimera detection and error correction with Nanopore
data-dedicated tools. Unfortunately, no information is provided
about the accuracy that can be expected from consensus sequences
generated by the pipeline. In addition, one major difference with
PRONAME is the way sequences are polished to remove sequencing
errors. Whereas PRONAME polishes a cluster centroid sequence
with closely related reads (i.e., sub-reads from the same cluster),
the whole initial sequencing reads are used for polishing in
Natrix2. This approach was also evaluated in the present study but
produced poorer performances with consensus sequence accuracy
at around 92.5% (Supplementary Material S6).

Theperformance of PRONAMEhas also been directly compared
to that of other pipelines. On the one hand,HTS rawdata originating
from assays RRN1 to RRN4 were processed using the Natrix2 and
MeTaPONT pipelines to assess the sequence accuracy they could
achieve. Compared to PRONAME, both pipelines displayed lower
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accuracy levels with 96.5% for Natrix2 and 94.7% for MeTaPONT
(Supplementary Material S7). These levels can easily be explained
by the reasons mentioned above, especially for MeTaPONT where
the data processing is not as sophisticated as that of Natrix2 and
PRONAME. On the other hand, sequencing data arising from
‘real-life’ samples were also analyzed using these three pipelines
(Supplementary Material S8). The sequencing reads came from
another study that investigated the composition of endophytic
bacterial communities of tomato grown under sterile conditions in
response to the application of osmotic stress and humic substances
(Lengrand et al., 2024). The results provided by PRONAME
highlighted the presence of Bradyrhizobium, Sphingomonas,
Methylobacterium and Ralstonia species in control condition.
When samples underwent osmotic stress and humic substance
application, the appearance of Frigoribacterium sp. SL97 was noted,
combined with the disappearance ofMethylobacterium sp. FF17 and
Sphingomonas species.These real-life samples were selected for their
low bacterial diversity, confirmed by PRONAME, attributable to
the sterile conditions in which tomato plants were grown. This low
diversity is a strength here because it enabled verification that the
tested pipelines do not produce false positives. Furthermore, the
results provided by PRONAME align with those of previous studies,
which showed identical species identification in other tomato
cultivars (Wei et al., 2013; Shaik andThomas, 2019). In contrast, both
the MeTaPONT and Natrix2 pipelines were also able to successfully
identify the major trends, but they produced additional less precise
assignments, especially MeTaPONT, detecting a myriad of closely
related species and unassigned sequences, reflecting remaining
sequencing errors.

In addition, PRONAME displays other unique features. Firstly,
in contrast to other pipelines, it does not require any installation
or database download. Instead, it has been packaged in a Docker
image that simply needs to be pulled from Docker Hub to run a
container and proceed with sequence processing. All dependencies
and up-to-date databases are precompiled in this Docker image.
Secondly, PRONAME is the only pipeline aware of the new structure
of V14 sequencing data, allowing taking advantage of duplex reads
and their higher quality. Thirdly, whereas some pipelines do not
perform clustering, this step is included in others but the way the
assignment of reads to each cluster is done does not always seem
clear or appropriate. In the Natrix2 pipeline for instance, raw reads
are aligned against the consensus sequences to identify the read
numbers per consensus, which represents more of an estimation
than a precise count. In PRONAME, the exact number and sample
origin of the reads constituting each cluster are recorded from the
beginning of the clustering process. This generates an OTU-like
table, gathering in one file the precise count of consensus sequences
in every sample. In its structure, this table is identical to the OTU-
/ASV-tables generated when using an Illumina metabarcoding
approach, and therefore has the advantage of being useable for
alpha-/beta-diversity metric calculation and differential abundance
analysis among others. Lastly, the PRONAME pipeline has been
designed to be used even without extensive bioinformatics skills.
The commands are simple, documented, and the pipeline offers the
possibility of importing the generated files into QIIME2, a user-

friendly and probably the most widely used bioinformatics platform
in the metabarcoding field.

5 Conclusion

The PRONAME pipeline has been developed to process
Nanopore metabarcoding data and to significantly increase its
accuracy and usability.Thanks to an innovative approach combining
different quality filtering steps, read clustering, error-correctionwith
a tool specifically dedicated to Nanopore data and the valorization
of duplex reads, the results have demonstrated that the generated
consensus sequences displayed at least 99.5% accuracy with default
settings, and could reach 99.7%. The structure of the data produced
by the pipeline allows direct advancement to further analyses such
as inferring microbial diversity metrics between sample groups,
or taxa differential abundance testing, for example,. Overall, this
work represents a significant step forward in the field of DNA
metabarcoding as the PRONAME pipeline very closely matches
the accuracy of Illumina sequencing while taking advantage of
Nanopore sequencing assets.
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