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Committee, Shiraz University of Medical Sciences, Shiraz, Iran

Background: Helicobacter pylori, a bacterium associated with severe
gastrointestinal diseases and malignancies, poses a significant challenge
because of its increasing antibiotic resistance rates. This study aimed to identify
potential drug targets and inhibitors against H. pylori using a structure-based
virtual screening (SBVS) approach.

Methods: Core-proteome analysis of 132 H. pylori genomes was
performed using the EDGAR database. Essential genes were identified
and human and gut microbiota homolog proteins were excluded. The
DAH7PS protein involved in the shikimate pathway was selected for the
structure-based virtual screening (SBVS) approach. The tertiary structure
of the protein was predicted through homology modeling (based on
PDB ID: 5UXM). Molecular docking was performed to identify potential
inhibitors of DAH7PS among StreptomeDB compounds using the AutoDock
Vina tool. Molecular dynamics (MD) simulations assessed the stability

Abbreviations: ADMET, Absorption, Distribution, Metabolism, Excretion, and Toxicity; APBS, Adaptive
Poisson-Boltzmann Solver; CADD, Computer AidedDrugDiscovery; DEGs, Database of essential genes;
DAH7PS, 3-deoxy-D-arabino-heptulosonate 7-phosphate; E4P, Erythrose 4-phosphate; FDA, Food
and Drug Administration; KEGG, Kyoto Encyclopedia of Genes and Genomes; KAAS, KEGG Automatic
Annotation Server; MALT, Mucoid Associated Lymphoid Tissue; MD, Molecular Dynamics; MSA, Multiple
Sequence Alignment; NCBI, National Centers for Biotechnology Information; NMR, Nuclear Magnetic
Resonance; NPT, Constant Number of particles, Pressure, and Temperature; NVT, Constant Number
of particles, Volume, and Temperature; PME, Particle Mesh Ewald; PEP, Phosphoenolpyruvate; PDB,
Protein Data Bank; PPI, Proton Pump Inhibitor; Rg, Radius of Gyration; RMSD, Root Mean Square
Deviation; RMSF, Root Mean Square Fluctuation; RO5, Lipinski’s Rule of Five; SBVS, Structure Based
Virtual Screening; SPC, Simple Point Charge; VDW, Van Der Waals; WHO, World Health Organization.
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of DAH7PS-ligand complexes. The complexes were further evaluated in terms
of their binding affinity, Lipinski’s Rule of Five, and ADMET properties.

Results: A total of 54 novel drug targets with desirable properties were
identified. DAH7PS was selected for further investigation, and virtual screening
of StreptomeDB compounds yielded 36 high-affinity binding of the ligands. Two
small molecules, 6,8-Dihydroxyisocoumarin-3-carboxylic acid and Epicatechin,
also showed favorable RO5 and ADMET properties. MD simulations confirmed
the stability and reliability of DAH7PS-ligand complexes, indicating their potential
as inhibitors.

Conclusion: This study identified 54 novel drug targets against H. pylori.
The DAH7PS protein as a promising drug target was evaluated using a
computer-aided drug design. 6,8-Dihydroxyisocoumarin-3-carboxylic acid
and Epicatechin demonstrated desirable properties and stable interactions,
highlighting their potential to inhibit DAH7PS as an essential protein.
Undoubtedly, more experimental validations are needed to advance these
findings into practical therapies for treating drug-resistant H. pylori.

KEYWORDS

Helicobacter pylori, structure-based virtual screening, shikimate pathway, DAH7PS,
StreptomeDB

1 Introduction

Helicobacter pylori is a Gram-negative, spiral, and
microaerophilic bacterium that resides in the human stomach
(Suzuki and Moayyedi, 2013). Its discovery in 1982 revolutionized
the understanding of gastrointestinal disorders. Helicobacter
pylori colonizes the stomach mucosa of almost 50% of the global
population (Wroblewski et al., 2010) and has an exceptional capacity
to adapt to the acidic environment of the stomach (Fong and Fong,
2020). In 2020,H. pylori-related disease was the thirdmost common
cause of global cancer fatalities, with more than one million new
cases of gastric cancer and nearly 800,000 deaths (Sung et al., 2021).

Helicobacter pylori is the leading cause of peptic ulcers.
However, millions of cases are affected by chronic gastritis, gastric
carcinoma, duodenal ulcers, andmucoid-associated lymphoid tissue
(MALT) lymphoma due to the infection (Alyahawi et al., 2018;
Mahmoud et al., 2021). Asia has a notably high age-standardized
rate of gastric cancer because of the widespread prevalence of
H. pylori infection (Fauzia and Tuan, 2024). Furthermore, the
World Health Organization (WHO) has classified H. pylori as
a class I carcinogen because of its high correlation with gastric
cancer (Zhang et al., 2019). Eradicating this pathogen would
decrease the occurrence of cancer, leading to a 53% decrease
in the incidence in high-risk groups (Chiang et al., 2021). This
phenomenon is attributed to reduced inflammation in the gastric
mucosa, histological injury, peptic ulcer development, and ulcer
recurrence (Wu et al., 2019).

According to the CDC yellow book 2024, asymptomatic
infections do not require treatment. The standard treatment for
patients with active duodenal or gastric ulcers is bismuth quadruplex
therapy, which consists of a proton pump inhibitor (PPI) or H2-
blocker, bismuth, metronidazole, and tetracycline. If clarithromycin
resistance among H. pylori strains is 15% in the region and patients
have no prior history of macrolide exposure, clarithromycin triple

therapy (PPI + clarithromycin + amoxicillin or metronidazole) is
an option (CDC Yellow book, 2024).

Recently, the treatment of H. pylori has encountered significant
challenges because of antibiotic resistance, leading to treatment
failure and recurrence (Hu et al., 2020). Amoxicillin generally
exhibits low antibiotic resistance globally, with primary resistance
rates of approximately 3% in Asia and 0.4% in Europe. However, in
Africa, the resistance rate of H. pylori to amoxicillin is significantly
higher, averaging 72.6% and reaching up to 100% in certain regions
(Lin et al., 2023). Additionally, the majority of WHO regions
exhibit a high aggregate prevalence of primary and secondary
resistance to metronidazole, clarithromycin, and levofloxacin. The
pooled prevalences of resistance to clarithromycin, metronidazole,
levofloxacin, amoxicillin, and tetracycline in WHO regions were
15%, 91%, 14%, 38%, and 13%, respectively. Metronidazole
exhibited the most prevalence of antibiotic resistance in all regions
(Aumpan et al., 2023; Savoldi et al., 2018). Although the prevalence
of primary resistance to amoxicillin and tetracycline has remained
consistent since 1990, those of clarithromycin, levofloxacin,
and metronidazole have been increasing from 1990 to 2022
(Hong et al., 2024; CLSI. Performance Standards for Antimicrobial
Susceptibility Testing, 2022).

Moreover, H. pylori eradication is further complicated by the
emergence of multidrug-resistant (MDR) strains. Under these
conditions, the only remaining logical approach is individualized
treatment based on antimicrobial susceptibility testing results,
which has not been widely adopted. With the evolving and dynamic
nature of antibiotic resistance in H. pylori, if this situation remains
uncontrolled, we may soon confront the risk of running out of
effective drug options (Lin et al., 2023). Therefore, it is essential
to develop and implement effective strategies to eliminate H.
pylori. Several drawbacks are associated with conventional drug
discovery methods, which impede the efficiency and efficacy of
the process. Some of these constraints include high failure rates in
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identifying viable drug candidates, long timeframes, and high costs
(Audah et al., 2019). In contrast, virtual screening methods offer
notable advantages over conventional methods. Virtual screening
technologies, such as ligand-based and structure-based methods,
are pivotal in expediting the drug discovery process by predicting
the activity of untested compounds in target drug proteins using
computational algorithms (da Silva Rocha et al., 2019; Suzuki et al.,
2017). Whole-genome sequencing of bacterial pathogens, high-
throughput protein purification, X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and the introduction
of bioinformatic methods, molecular docking, and molecular
dynamics simulation have led to a better understanding of the
structural details of proteins and protein–ligand complexes and drug
discovery procedures (Arif et al., 2021; Blundell et al., 2006).

In this study, we aimed to identify novel drug targets against
H. pylori. Following target identification, a promising therapeutic
candidate was selected, and potential inhibitor ligands were
screened using a computer-aided drug discovery (CADD) approach.
Finally, the feasibility of protein-ligand interactions was assessed
using molecular dynamics simulations. The findings of this study
might help address the treatment challenges associated with H.
pylori, which arise due to the increasing rates of antibiotic
resistance.

2 Materials and methods

2.1 Core-proteome analysis

The pipeline of the current study for identification of potential
drug targets against H. pylori has been presented in Figure 1. In
the first step, to identify common drug targets among circulating
H. pylori strains, a total of 132 strains with complete sequence
genomes were selected from the EDGAR database (https://edgar3.
computational.bio.uni-giessen.de), and the core proteins were
extracted in FASTA format.

2.2 Identification of novel drug targets

Most antibiotics target critical cellular functions; therefore, key
gene products from microbial cells are attractive novel targets for
antibacterial drugs (Zhang et al., 2004). Thus, we evaluated the
essential role of proteins in the survival of bacteria. For this purpose,
the core proteins were compared to the essential gene sequences at
database of essential genes (DEG) using BLASTp tool (https://tubic.
org/deg/public/index.php).

To minimize any host cross-reactive responses, the essential
proteins were blasted against the Homo sapiens (taxid: 9606)
proteome using BLASTp at NCBI (National Center for
Biotechnology Information; https://blast.ncbi.nlm.nih.gov/Blast.
cgi). Then, proteins were compared with proteins involved in the
metabolic pathways of H. pylori and human at the KAAS server
(KEGG Automatic Annotation Server). The Kyoto Encyclopedia
of Genes and Genomes (KEGG) database includes the metabolic
pathways of different organisms and enables the detection of specific
metabolic pathways of a particular organism (Moriya et al., 2007).
Finally, proteins with any resemblance to those in human metabolic

pathways were excluded. Moreover, the remaining proteins were
blasted against mitochondrial proteins at the MITOMAP website
(https://www.mitomap.org/). These attempts are crucial to prevent
the binding of drug targets to human proteins and undesirable
cross-reactivities (Kaur et al., 2023).

After retrieving proteins with no similarity to host proteomes,
novel drug targets were identified by comparing the proteins to
the DrugBank database (https://go.drugbank.com/). This server
presents comprehensive data on Food and Drug Administration
(FDA)-approved, vet-approved, investigational and experimental
drugs, drug targets and interactions as well (Wishart et al., 2018).
To fulfill this purpose, proteins with no similarity to the registered
targets in the DrugBank database were considered. Next, proteins
were submitted to the BLASTp server of NCBI to identify associated
protein data bank (PDB) files.

It is well established that antibiotic significantly affect the gut
microbiota in terms of diversity and function. Eventually, antibiotics
lead to imbalance in gut microbiota (Patangia et al., 2022). To avoid
this condition, protein sequences were compared to the proteomes
of 83 common commensal strains of the human gut using BLASTp
from the GenBank database. This action was taken to select proteins
with minimum similarity to the gut microbiota. The gut microbiota
strains are listed in Supplementary Data 1.

The subcellular localization of the remaining proteins was
then predicted using the PSORTb database (https://www.psort.
org/psortb/). Following the described procedure, cytoplasmic
proteins were selected as a novel H. pylori-targeting drug.

2.3 Structure-based virtual screening

2.3.1 Active site conservation and 3D prediction
of DAH7PS protein

The 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase
(DAH7PS) was selected as a paradigm of potential drug target
against H. pylori. This protein showed the highest similarity to the
protein databank of DAH7PS in Pseudomonas aeruginosa (PDB
ID: 5UXM). The tertiary structure of DAH7PS of H. pylori was
predicted by homology modeling using the Swiss-model web server
(https://swissmodel.expasy.org/interactive#structure). DAH7PS of
Pseudomonas aeruginosa (PDB ID: 5UXM) was selected as the
template for 3D homology modeling. Then, the predicted tertiary
structure was validated using the ProSA-web server (https://prosa.
services.came.sbg.ac.at/prosa.php) (Wiederstein and Sippl, 2007)
and Ramachandran plots in SWISS-MODEL (https://swissmodel.
expasy.org/assess). In addition, the energy minimization of proteins
was performed using the GalaxyRefine web-tool (https://galaxy.
seoklab.org/cgi-bin/submit.cgi?type=REFINE).

The active site of DAH7PS in P. aeruginosa was previously
determined via crystal structure analysis by comparing the structure
of the protein to that of DAH7PS in other microorganisms and the
proximity of allosteric binding sites (Sterritt et al., 2018). Thus, we
determined the active site of DAH7PS in H. pylori by comparing the
protein with its homolog in other microorganisms.The homologous
sequences of DAH7PSwere investigated in Pseudomonas aeruginosa
(PDB ID: 5UXM_A), Mycobacterium tuberculosis (PDB ID: 2YPO_
A), and Corynebacterium glutamicum (PDB ID: 5HUC_A) and
aligned using Mega X (Kumar et al., 2018). Multiple sequence
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FIGURE 1
The pipeline for the identification of novel drug targets against H. pylori, followed by structure-based virtual screening (SBVS) to identify novel inhibitors
against DAH7PS. Two molecules, 6,8-Dihydroxyisocoumarin-3-carboxylic acid and Epicatechin, were introduced as novel promising inhibitors.

alignment (MSA) of homologous sequences was performed using
the Unipro UGENE software (Okonechnikov et al., 2012).

Next, the conservancy of DAH7PS among different H.
pylori strains was determined by running of multiple sequence
alignment (MSA) of the homologous proteins using the MegaX tool
(Kumar et al., 2018). The MSA results were represented in sequence
logo format using the WEBLOGO web server (https://weblogo.
berkeley.edu/logo.cgi) (Crooks et al., 2004).

2.3.2 Receptor preparation and grid box
definition

Theprotein structure was prepared by assigning bonding orders,
adding hydrogen atoms, 0 charges, and removing water molecules.
The protein structure was then converted to PDBQT format for
molecular docking analysis. The grid box was defined as Center_
X = 21.414 Å, Center_Y = 16.331 Å, and Center_Z = 24.558 Å
grid points, and the grid spacing was considered 1.000 Å. The grid
box is defined over the protein’s structure that focuses the docking
simulation on the active site of the protein.We concluded hydrogen-
donor residues in the active site could be associated with hydrogen
bonds between protein-ligand complex. Thus, we considered a grid
box enclosed all hydrogen-donor residues.

2.3.3 Ligand preparation
Structure-based virtual screening (SBVS) as in silico process is

a widely recognized approach for drug development. This strategy
detects selective inhibitors for the binding site of the targeted protein
(Li et al., 2017). Secondary metabolites originate from Streptomyces
spp. StreptomeDB contains 6524 ligands were considered as a
library of small molecules (Moumbock et al., 2020). Thus, we aimed
to explore novel inhibitors of DAH7PS using the StreptomeDB
databases. All compoundswere downloaded in SDF format and then
converted to PDBQT format usingOpenBabel software.Meanwhile,

energyminimization was performed on all ligands usingOpenBabel
with the MMFF94 force field, and the ligands were exported into
PDBQT format (O’Boyle et al., 2011).

2.3.4 Molecular docking of DAH7PS with ligands
The prepared ligands were docked in the active sites of

DAH7PSs with a defined grid box using AutoDock Vina software
(Eberhardt et al., 2021). The docking results were sorted by the
descending binding affinity. Subsequently, ligands with a binding
affinity ≤ −13 kcal/mol were selected and evaluated based on
Lipinski’s Rule of Five (RO5) and ADMET properties. Rigid and
flexible dockings were performed once again for selected molecules.
According to RO5, a drug ismore likely to have good absorption and
permeation if it has 5 or fewer hydrogen bond donors, 10 or fewer
hydrogen bond acceptors, amolecular weight of 500 kDa or less, and
a calculated Log P (CLog P) of 5 or below (Benet et al., 2016). The
ADMET index predicts the Absorption, Distribution, Metabolism,
Excretion, and Toxicity of a compound (Guan et al., 2019). The
interacting residues were visualized using the BIOVIA Discovery
Studio Visualizer (Studio, 2008). Finally, the APBS Electrostatics
plugin in PyMOL software was used to visualize the Electrostatic
charge distribution of the most promising complexes (Lerner and
Carlson, 2006).

2.3.5 Molecular dynamics simulations
To evaluate the stability of interactions within the DAH7PS-

ligand complexes, molecular dynamics (MD) simulations were
carried out using the GROMACS 2022 simulation package and
the CHARMM force field (Paul Bauer, 2022). First, the structural
system was placed in an octahedron box with 1.2-nm spacing from
all edges (Jørgensen and Reisfeld, 1983).The topology parameters of
the protein structures were generated using theGROMACS software
suite. For each ligand, the topology and configuration parameters
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were obtained via the SwissParam server (http://www.swissparam.
ch/). Subsequently, the simulation box was filled with TIP3 water
molecules. To neutralize the system, appropriate quantities of Na+

and Cl− ions were added. Three-dimensional periodic boundary
conditions were applied to the entire system.

MD simulations began with a two-stage energy minimization
process. First, the systems were equilibrated under NVT (constant
Number of particles, Volume, and Temperature) conditions at 300 K
for 100 ps. This was followed by an NPT (constant Number of
particles, Pressure, and Temperature) equilibration phase lasting
1,000 ps, in which the Parrinello-Rahman barostat was used to
maintain the temperature at 300 K and the pressure at 1.0 bar.

Long-range electrostatic interactions were calculated using the
Particle Mesh Ewald (PME) method with a cutoff distance of
10 Å. Van der Waals (VDW) interactions were determined using
a 1-nm cut-off. To ensure the stability of hydrogen bonds, the
LINCS algorithm was applied to constrain all bonds involving
hydrogen atoms. The final stage of the MD simulation involved
a 100-ns run without restraints. After the necessary equilibration
steps, the first 10 ns were considered as the equilibrium period,
resulting in a 40-ns simulation with 2-fs time steps. Following
equilibration, 100-ns production runs were executed for the docked
complexes. To evaluate the stability of the protein-ligand complexes,
essential metrics such as root mean square deviation (RMSD), root
mean square fluctuation (RMSF), and the radius of gyration (Rg)
were calculated (Jahantigh et al., 2022). RMSD, in particular, was
used to assess conformational changes in the protein during MD
simulation, with lower RMSD values indicating greater stability of
the docked complex (Cardoso and Mendanha, 2021). RMSF was
used to measure the fluctuations of individual residues within the
complex, with higher RMSF values indicating greater flexibility of
the protein’s regions (Ghahremanian et al., 2022). Additionally, Rg
was calculated to assess the compactness and folding of the docked
complexes. Lower Rg values indicate a more rigid and compact
structure (Jiang et al., 2019; Parida et al., 2020).

3 Results

3.1 Lis of new drug targets against
Helicobacter pylori

Core-genome analysis identified 483 core genes within a dataset
of 132 H. pylori strains. Out of 483 proteins, 119 with high similarity
to essential DEG proteins were identified. By comparing 119
essential proteins to the host proteome, 55 proteins were excluded
to prevent cross-reaction with H. sapiens. None of the remaining 64
proteins resembled human metabolic pathways at the KAAS server
and mitochondrial proteins at the MITOMASTER database.

Proteins were investigated in the drug target of the DrugBank
database. Out of 64 proteins, 10 were previously targeted by FDA-
approved experimental and investigational drugs, and 54 potential
novel drug targets were identified. Among these novel drug targets,
31 proteins were similar to a protein available in the PDB file
in the PDB database of NCBI. The subcellular localization of the
proteins was predicted for 21 cytoplasmic membrane proteins,
16 unknown proteins, 12 cytoplasmic membrane proteins, 2
flagellar proteins, 2 OMPs, and 1 periplasmic protein. Among

the remaining proteins, four showed no similarity to the human
gut microbiota: 3-deoxy-7-phosphoheptulonate synthase class II
(WP_015085380.1), LPP20 lipoprotein (WP_000795968.1), ComF
family protein (WP_015086367.1), and FolB domain-containing
protein (WP_015086400.1). The 54 potential new drug targets are
detailed in Table 1.

3.2 In silico characterization of DAH7PS
protein

After careful evaluations, DAH7PS (WP_015085380.1) was
selected as a potential H. pylori-targeting drug.This enzyme is a part
of the shikimate pathway and is present inmicroorganisms but not in
mammals.This pathway is essential for the biosynthesis of important
aromatic compounds, including phenylalanine (Phe), tyrosine
(Tyr), and tryptophan (Trp). DAH7PS facilitates an aldol-like
condensation reaction between phosphoenolpyruvate (PEP) and
erythrose 4-phosphate (E4P), resulting in the formation of 3-deoxy-
D-arabino-heptulosonate 7-phosphate (DAH7P) (Sterritt et al.,
2018). The absence of this pathway and the enzymes in mammals
make them possible targets for the development of antibiotics
without any cross-reactive reactions in the host (Frlan, 2022).

The 3D structure of DAH7PS from H. pylori was predicted by
homology modeling. The tertiary structure, ProSA-web plot, and
Ramachandran plot are presented in Figure 2. ProSA-web analysis
showed a Z-score = −9.64.TheQMEANglobal score of the predicted
tertiary structure was 0.83, which confirms the high quality of the
PDB file. The Ramachandran plot demonstrates that 97.06% of
the residues were located in the favored region. Multiple sequence
alignment of the DAH7PS protein showed high conserved active
site residues in H. pylori, P. aeruginosa, M. tuberculosis, and C.
glutamicum. The MSA and hydrogen donor residues in the active
site (Arg109, Arg 268, Lys 290, Arg 321) are shown in Figure 3.
Moreover, the MSA of DAH7PS was conserved among H. pylori
strains. See Figure 4.

3.3 Virtual screening results

The molecular dockings of DAH7PS against 6524 compounds
at StreptomeDB resulted in the identification of 36 ligands with the
highest affinity (≤−13 kcal/mol). Based on the Tanimoto coefficient,
hierarchal clustering of the ligands identified 15 clusters among
the 36 ligands (Figure 5). All compounds exhibited desirable RO5
activities (Supplementary Data 2).

2′,5′-Dimethoxyflavone, 3′,4′,7-Trihydroxyisoflavone,
4′-Hydroxy-5,7-Dimethoxyflavanone, 5-Hydroxy-7,4′-
Dimethoxyflavanone, AC1NT4ZV, Apiigenin, Bhimamycin A,
Bhimamycin I, Glycitein, Furthermore, Nanaomycin alpha had
Log Papp >1 × 10−6 cm/s. Compounds with a Log Papp: 1-10 ×
10−6 cm/s are classified as moderately absorption in the human
intestine (Kus et al., 2023). Other ligands exhibited lower intestinal
absorption.

Austramide, Bhimamycin A, Taxifolin, and N-(4,7-Dihydroxy-8-
methyl-2-oxo-2H-chromen-3-yl)-1H-pyrrole-2-carboxamide had a
VDss > 0.7 L/kg, indicating a high distribution of these compounds
in tissues (Lombardo et al., 2021).
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FIGURE 2
(A) Tertiary structure of DAH7PS of H. pylori predicted through homology modeling. (B) Validation of the predicted 3D structure using ProSA-Web
analysis, showing a Z-score = −9.64. (C) Ramachandran plot of the predicted structure of DAH7PS, showing that 97.06% of the residues were located in
the favored region.

FIGURE 3
Multiple sequence alignment of the DAH7PS protein in H. pylori, Pseudomonas aeruginosa, Mycobacterium tuberculosis, and C. glutamicum showed
high conserved DAH7PS expression. The H-donor residues of active site including Arg109, Arg 268, Lys 290, and Arg 321 are indicated in red boxes.

Among the studied compounds, only 5-Hydroxy-7,4′-
dimethoxyflavanone had a Log BB ≥ 0.3 that could pass
the blood–brain barrier (Kunwittaya et al., 2013), while 2′,5′-
dimethoxyflavone and 7,4′-dihydroxy-8-methoxy-isoflavone
showed Log PS > 0.2, demonstrating their capability to
penetrate the CNS (Kalhor et al., 2023).

2-Acetyl-1,8-dihydroxy-3-methylanthraquinone, 3-Indolyl
carbonyl, alpha-L-rhamnopyranoside, 6,8-Dihydroxyisocoumarin-
3-carboxylic acid, Antimycin, Bhimamycin A, CHEMBL492618,
Epicatechin, Nanaomycin A, Fluostatin P, Taxifolin, Nanaomycin
C, Nanaomycin alpha, Nikkomycin So (X), Nikkomycin So (Z),
Nikkomycin S (X), Octoketide 4b, RK 1441A, SEK4b, and cyclo (3-
Hydroxy-L-Pro-L-Tyr) are neither substrates nor inhibitors of CYP
enzymes. Almost all selected ligands, except 2′,5′-dimethoxyflavone,
were not the substrate of Renal OCT2, indicating that the compounds
are not excreted through the kidneys.

5,7,4′-trihydroxy-3′-methoxyisoflavone, 6,8-Dihydroxyisoco
umarin-3-carboxylic acid, 7,4′-Dihydroxy-8-methoxy-isoflavone,
AC1NT4ZV, Antimycin, Austramide, CHEMBL492618,

Epicatechin, Fluostatin P, Taxifolin, Luteolin, Naomycin C,
Naomycin alpha, SEK4b, and cyclo(D)-tran-4-OH-Pro-(D)-Phe
exhibited no toxicity in the following tests: Oral rat acute and
chronic toxicity, Tetrahymena pyriformis toxicity, minnow toxicity,
hepatotoxicity, or skin sensitization. Additionally, they were not
inhibitors of hERG I and II.

The docked complexes were visualized in the Discovery Studio
software. Seven hydrogen bonds were formed between the 6,8-
Dihydroxyisocoumarin-3-carboxylic acid and Lys 116, Gln 113, Arg
109, Lys 290, Glu 267, and Arg 321 residues of DAH7PS. Moreover,
two pi-Alkyl bonds with Pro 117, one pi-pi stacked with Arg 109,
one cationic bond with His 353, and one anionic bond with Glu 235
were observed (Figure 6A).

Epicatechin formed seven hydrogen bonds with Arg 321, Lys
290, Glu 235, Gln 113, Lys 116, Cys 70, and Gln 423 residues in
DAH7PS. Furthermore, two Van der Waals residues with His 353
and Ser 119, three alkyl bonds with His 353, Lys 116, Cys 70, one
cationic bond with Arg 268, one anionic bond with Asp 425, and
one pi-sigma with Pro 117 (Figure 6B).
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FIGURE 4
Multiple sequence alignment of the DAH7PS protein among 132 H. pylori strains visualized using the WEBLOGO web server.

FIGURE 5
Hierarchal clustering (based on the Tanimoto coefficient) classified the 36 ligands with the highest affinity (≤−13 kcal/mol) to DAH7PS into 15 clusters.

Electrostatic charge distribution of 6,8-Dihydroxyisocoumarin-
3-carboxylic acid-DAH7PS, and Epicatechin-DAH7PS complexes
are presented in Figures 6C, D, respectively. Both complexes were

positively charged around the active site of the protein. Thus,
small molecules with negative electrostatic charges have a stronger
interaction with this positive cavity.
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FIGURE 6
The interactions of 6,8-Dihydroxyisocoumarin-3-carboxylic acid (A) and Epicatechin (B) with DAH7PS protein. The tertiary structure of the DAH7PS
protein and its APBS (Adaptive Poisson-Boltzmann Solver) electrostatic interactions with the ligands are shown in (D) and (C) depictions. Data highlight
that the pocket size has a highly positive charge.

3.4 The results of molecular dynamics
simulations

Thus, 6,8-Dihydroxyisocoumarin-3-carboxylic acid, and
epicatechin, which showed desirable RO5 and ADMET properties,
were selected as the most promising inhibitors against DAH7PS in
MD simulations. RMSD, RMSF, and Rg, which are fundamental
metrics, were employed in MD simulations to evaluate the stability,
flexibility, and compactness of biomolecular systems (Nipun et al.,
2021). The MD simulation plots of the two complexes are presented
in Figure 7. Complex 1 represents the complex of DAH7PS and 6,8-
dihydroxyisocoumarin-3-carboxylic acid, and complex 2 represents
the complex of DAH7PS and Epicatechin. RMSD measures the

deviation of atomic positions over time, indicating structural
changes in the system, while RMSF provides insights into the
flexibility of individual residues within a protein. The RMSD values
of both complexes fluctuated between 0.1 and 0.3, indicating the
stability of the complexes (Figure 7A), and the RMSF values of
both complexes varied between 0 and 0.7 (Figure 7B). On the other
hand, Rg provides information about the overall compactness of a
biomolecule, thereby aiding in understanding its global shape and
conformation (Nipun et al., 2021). The Rg plots were slightly higher
in DAH7PS-ligand complexes than for the sole protein (Figure 7C).
These parameters play a crucial role in MD studies aimed at
assessing the behavior of ligand-receptor complexes, protein-ligand
interactions, and the stability of compounds (Erol, 2023).
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FIGURE 7
Molecular dynamic (MD) simulation data of DAH7PS-ligand complexes. Complex 1 shows 6,8-dihydroxyisocoumarin-3-carboxylic acid and complex 2
shows Epicatechin with DAH7PS. (A) The RMSD plot of both complexes fluctuates between 0.1 and 0.3, indicating the stability of the complexes. (B) the
RMSF of both complexes fluctuates between 0 and 0.7. (C) The Rg. plots of both complexes were slightly higher than that of the sole protein.

4 Discussion

Helicobacter pylori is a significant bacterium in healthcare
systems because of its widespread prevalence and association with
various gastrointestinal diseases and malignancy. Approximately

half of the global population is infected with H. pylori
(Elbehiry et al., 2023; Cover and Blaser, 2009). The treatment
of H. pylori has become challenging because of increasing
antibiotic resistance. Resistance to antibiotics has increased
due to the widespread use of antibiotics, which renders less
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effectiveness of standard treatment regimens. Resistance rates
vary geographically but are generally rising, complicating
eradication efforts (Elbehiry et al., 2023). Antimicrobial
resistance to commonly used antibiotics such as clarithromycin,
metronidazole, and levofloxacin has been particularly
problematic, necessitating the development of new treatment
strategies.

CADD techniques like virtual screening can rapidly evaluate
large chemical libraries to identify promising lead compounds
that inhibit bacterial targets. Machine learning models trained
on antimicrobial activity data can predict potency and help
prioritize compounds for synthesis and testing (Melo et al., 2021;
da Silva et al., 2022; Jukič and Bren, 2022). This accelerates the
lead discovery process significantly compared to traditional
trial-and-error screening. Moreover, in silico approaches allow a
computational prediction of ADMET (absorption, distribution,
metabolism, excretion, toxicity) properties to optimize drug-
likeness early in the discovery process. This strategy reduces
late-stage failure of compounds due to poor pharmacokinetics.
(Ameji et al., 2024). Modeling atomic-level interactions facilitates
the identification of inhibitors that are less susceptible to common
resistance mechanisms like target mutations. This increases the
likelihood of discovering antibiotics that remain effective against
resistant strains (Almihyawi et al., 2022).

Several antibiotics discovered using CADD approaches have
progressed to clinical trials or regulatory approval. Solithromycin,
a novel fluoroketolide, was designed using computational modeling
and docking to overcome resistance to earlier macrolides. It showed
potent activity against drug-resistant pneumonia in phase 3 trials.
Gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase
inhibitor, was identified through virtual screening and optimization.
The efficacy of the agent against uncomplicated urinary tract
infections caused by resistant Enterobacterales was demonstrated in
a phase 2 trial study (Melo et al., 2021).

Although CADD has greatly accelerated antibiotic discovery,
significant challenges remain in translating promising in silico
hits into clinically useful drugs. Integrating computational
approaches with biophysical simulations, machine learning, and
experimental data is key to maximizing their impact. Overall,
such approaches have become indispensable tools for combating
antibiotic resistance, complementing and enhancing traditional
discovery methods (Almihyawi et al., 2022).

In the current study, we performed a subtractive proteome
analysis to identify the most promising drug targets against
H. pylori. For this purpose, several important properties were
considered. For example, core proteins conserved across circulating
H. pylori strains are ideal drug targets because they ensure broad-
spectrum efficacy. Targeting these proteins increases the likelihood
that a developed drug will be effective against various H. pylori
strains, thereby reducing the risk of treatment failure due to
strain-specific variations. In addition, essential genes are critical
for bacterial survival. Targeting essential gene products increases
the likelihood of developing potent antibacterial drugs. If an
essential gene product is inhibited, it can lead to bacterial death
or severe growth inhibition, making it an effective therapeutic
strategy (Patil et al., 2013; Luo et al., 2015). In addition to improving
the safety profile of the drug, proteins unique to H. pylori that

specifically affect the pathogen without interfering with human
cellular processes were targeted. Mitochondria, being evolutionarily
related to bacteria, often share similarities in their protein
structures (Boguszewska et al., 2020). Ensuring that target proteins
are not similar to mitochondrial proteins helps avoid potential
off-target effects on human mitochondria, which could lead to
cellular toxicity. The availability of protein structures in the PDB
is valuable for structure-based virtual screening. Having detailed
structural information allows for in silico modeling and rational
drug design, potentially accelerating the drug discovery process
and improving the likelihood of developing effective inhibitors.
These properties, when combined, help identify drug targets that
are likely to be effective against H. pylori, safe for human use,
and amenable to rational drug design approaches for developing
successful treatments.

Taken together, genomic subtraction identified DAH7PS as one
of the novel and promising drug targets against this pathogen. This
enzyme plays a critical role in the shikimate pathway (Jiao et al.,
2020). Because H. pylori relies on this pathway to synthesize amino
acids that are not available in the host, targeting DAH7PS may
effectively disrupt its metabolic processes, leading to bacterial
growth inhibition or death (Divyashri et al., 2021). Conversely, the
shikimate pathway is absent in mammals, making it an attractive
target for antibiotic development. This specificity reduces the risk of
off-target effects in human cells, thereby increasing the safety profile
of potential drugs (Han et al., 2006).

The shikimate pathway plays a fundamental role in the survival
and virulence of bacteria through several critical functions. This
pathway is essential for the biosynthesis of aromatic amino acids,
which are indispensable for protein production and bacterial
growth. Additionally, the shikimate pathway leads to the formation
of chorismate, a key precursor for the synthesis of vital compounds
such as folic acid and siderophore. These metabolites are crucial
for bacterial metabolism and their ability to acquire iron, a
necessary element for survival in host environments. Studies have
demonstrated that interference with this pathway can significantly
reduce bacterial growth and virulence, highlighting its pivotal role
in the pathogenic life cycle (Frlan, 2022).

Because the shikimate pathway is conserved among
many pathogenic bacteria, DAH7PS inhibitors may also
be effective against other bacterial pathogens, providing
a broader therapeutic application. This pathway has been
considered a potential drug target for various pathogens,
including M. tuberculosis and Acinetobacter baumannii
(Nunes et al., 2020; Shil et al., 2023).

DAH7PS showed a positive electrostatic charge distribution
at its active site. Positive electrostatic charges on proteins attract
negatively charged ligands, enhancing binding affinity due to
Electrostatic interaction between ionic species of the opposite
charges. Charged residues provide specific and highly stable
binding by forming strong interactions with negatively charged
ligand groups (Zhou and Pang, 2018).

SBVS resulted in the identification of 36 potential inhibitors
against DAH7PS. Among them, 6,8-Dihydroxyisocoumarin-3-
carboxylic acid and Epicatechin, which possess desirable ADMET
properties, were selected forMD simulation studies. MD simulation
has revolutionized drug discovery by providing atomic-level insights
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into drug-target interactions and enhancing various stages of the
drug development process. It can reveal hidden binding pockets
on protein targets that are not obvious in static crystal structures.
This allows the discovery of novel binding sites and allosteric
modulators. It generates ensembles of receptor conformations that
can be used in virtual screening, allowing for a more dynamic and
realistic representation of the target, which enhances the accuracy
of docking and scoring compared to rigid receptor structures. Long
timescale MD simulations can provide estimates of drug binding
and unbinding rates, which are important for understanding drug
efficacy and residence time. Unlike static docking, MD simulations
account for protein flexibility and entropic effects, providing a
more accurate representation of the thermodynamics of drug
binding (De Vivo et al., 2016; Durrant and McCammon, 2011).
With ongoing improvements in algorithms and computing power,
MD simulations are likely to play an increasingly important role
in CADD. Our analysis showed that 6,8-Dihydroxyisocoumarin-
3-carboxylic acid and Epicatechin both passed the RO5 rule,
which demonstrates the oral bioavailability of these compounds
in humans (Roskoski, 2019).

Epicatechin is a polyphenolic derivative of green tea with
anti-inflammatory and antioxidant effects (Shukla et al., 2019;
Ongnok et al., 2020). Moreover, several studies have reported
the antibacterial effects of this compound on Stenotrophomonas
maltophilia, A. baumannii, and Staphylococcus aureus (Betts et al.,
2011; Guo et al., 2022). Similarly, it has shown promising
antibacterial effects against drug-resistant H. pylori strains
(Escandón et al., 2016; Yanagawa et al., 2003). One possible
mechanism by which catechins exert antibacterial effects is
perturbation of the bacterial membrane by targeting phospholipids.
However, its mechanism of action has not been fully understood
(Escandón et al., 2016; Yanagawa et al., 2003). Our study might
shed light on a new aspect of its mechanism of action by targeting
the DAH7PS enzyme in the shikimate pathway.

6,8-Dihydroxyisocoumarin-3-carboxylic acid is a coumarin
derivative. Coumarin compounds exhibit possess antioxidant,
anti-inflammatory, anti-cancer, antimicrobial, anti-HIV, and
anti-tuberculosis properties (Li et al., 2024). Hydroxylated
coumarins such as 7-hydroxy-4-methylcoumarin, 6,7-dihydroxy-
4-methylcoumarin, 6-hydroxy-7-methoxy-4-methylcoumarin, and
5,7-dihydroxy cyclopentanocoumarin have shown anti-H. pylori
effects as strong as metronidazole (Kawase et al., 2003). Similarly,
another study measured the MIC of 24 coumarin derivatives against
H. pylori and reported that the majority of derivatives indicated
an MIC of 10–40 mg/mL. Moreover, they demonstrated potential
urease inhibitory effects (Jadhav et al., 2013).

It is noteworthy that several previous studies have identified
novel drug targets and inhibitors for treating H. pylori. Gonzalez
et al. targeted HsrA, and seven natural flavonoids were identified
as potential inhibitors of this protein (González et al., 2019).
Similarly, HsrA was identified as a shortlisted drug target in
our study. In another study, Divyashri G et al. aimed to identify
potential inhibitors of H. pylori in mango ginger by conducting
molecular docking of 130 compounds against selected drug
targets. The findings revealed that mango ginger compounds
exhibited good binding affinity toward shikimate kinase and type
II dehydroquinase through interactions like hydrogen bonds and
salt bridges (Divyashri et al., 2021).

5 Conclusion

In conclusion, this study focused on identifying novel
therapeutic agents for targeting drug-resistant H. pylori infections.
Using subtractive proteomics, 54 new drug targets were identified,
with DAH7PS emerging as a particularly promising candidate.
Two potential inhibitors, 6,8-Dihydroxyisocoumarin-3-carboxylic
acid and Epicatechin, were identified, both of which demonstrated
favorable RO5 and ADMET properties. MD simulations confirmed
the stability and reliability of the DAH7PS-ligand complexes,
thereby underscoring their potential effectiveness. However, it is
crucial to integrate computational predictions with experimental
validation to advance these promising compounds into practical
applications. Our findings provide valuable insights into the
development of new targeted therapies against H. pylori in
future studies.
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