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The dihedral angle of the protein backbone can describe the main structure
of the protein, which is of great significance for determining the protein
structure. Many computational methods have been proposed to predict this
critically important protein structure, including deep learning. However, these
heavyweight methods require more computational resources, and the training
time becomes intolerable. In this article, we introduce a novel lightweight
method, named dilated convolution and multi-head attention (DCMA), that
predicts protein backbone torsion dihedral angles (ϕ,ψ). DCMA is stacked by five
layers of two hybrid inception blocks and one multi-head attention block (I2A1)
module. The hybrid inception blocks consisting of multi-scale convolutional
neural networks and dilated convolutional neural networks are designed for
capturing local and long-range sequence-based features. The multi-head
attention block supplementally strengthens this operation. The proposed DCMA
is validated on public critical assessment of protein structure prediction (CASP)
benchmark datasets. Experimental results show that DCMA obtains better or
comparable generalization performance. Compared to best-so-far methods,
which are mostly ensemble models and constructed of recurrent neural
networks, DCMA is an individualmodel that is more lightweight and has a shorter
training time. The proposedmodel could be applied as an alternativemethod for
predicting other protein structural features.

KEYWORDS

protein dihedral angles, lightweight model, dilated convolution, multi-head attention,
hybrid inception blocks

1 Introduction

Proteins play important roles in biological activities and often fold into unique three-
dimensional structures to perform their biological functions. However, experimentally
determining protein tertiary structures is costly and time consuming. Predicting protein
tertiary structures from their corresponding sequences is still a challenging problem in
computational biology. An integral part of predicting tertiary structures is to predict
interval structural properties, such as secondary structures, solvent-accessible surface area,
backbone dihedral angles, and contact maps. The backbone structure of a protein can
be described continuously by backbone dihedral angles ϕ and ψ. The backbone torsion
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angle prediction is beneficial for protein structure prediction.
The dihedral angle prediction has many applications in protein
structure prediction, including (i) better secondary structure
prediction, (ii) generation of multiple sequence alignments, (iii)
identification of protein folds, and (iv) fragment-free tertiary
structure prediction (Singh et al., 2014). Many computational
methods, especially deep learning-based models, have been applied
in this field.

In 1993, a discrete approach was used to predict backbone
dihedral angles that removed any approximations, including the
assumption that the effects of adjacent residues were uncorrelated
(Kang et al., 1993). In 2005, a continuous neural network-based
method was proposed to predict protein secondary structure and
backbone dihedral angles (Wood and Hirst, 2005). Other machine
learning methods have also been applied to the prediction of
protein dihedral angles, such as ANGLOR (Wu and Zhang, 2008)
and TANGLE (Song et al., 2012) using support vector machines
and neural networks, TALOS+ (Shen et al., 2009), SPINE X, and
Real-SPINE3.0 using neural networks, DANGLE (Cheung et al.,
2010) using Bayesian, conditional random field (Zhang et al.,
2013), and so on.

In recent years, deep learning methods have been successfully
applied to the prediction of protein structural properties, including
protein backbone dihedral angles. A deep recurrent restricted
Boltzmann machine (DReRBM) was developed to research protein
dihedral angles (Li et al., 2017). RaptorX-angle combines K-means
clustering and deep learning techniques to predict dihedral angles
(Gao et al., 2018). Spider 3 (Heffernan et al., 2017), which eliminates
the effect of the sliding window, used the machine learning model
of the bidirectional long short-term memory (BLSTM) (Hochreiter
and Schmidhuber, 1997) recurrent neural network (Schuster and
Paliwal, 1997; Graves et al., 2014). The DeepRIN (Fang et al.,
2018b) was designed based on the combination of the inception
(Szegedy et al., 2016) and the ResNet (He et al., 2016) networks.
SPOT-1D used an ensemble of BLSTM and ResNet to improve the
prediction of protein secondary structure, backbone dihedral angles,
solvent accessibility, etc. (Hanson et al., 2019). SPOT-1D integrated
three LSTM models, three LSTMResNet models, and three ResNet-
LSTM models and integrated contact maps as model input and
to boost its performance. Klausen and colleagues proposed the
NetSurfP-2.0 model, which used an architecture consisting of
a convolutional neural network (CNN) and LSTM Networks
(Klausen et al., 2019). Xu and colleagues proposed OPUS-TASS, a
protein backbone dihedral angles and secondary structure predictor
(Xu et al., 2020). It is an ensemble model; its individual model parts
consist of CNN, LSTM, and modified transformer networks. Zhang
and colleagues proposed CRRNN2, which introduced a multi-
task deep learning method based on BRNNs, one-dimensional
(1D) CNN, and an inception network, which can concurrently
predict protein secondary structure, solvent accessibility, and
backbone dihedral angles (Zhang et al., 2021). As an upgraded
version of OPUS-TASS, OPUS-TASS2 integrated global structure
information generated by trRosetta (Du et al., 2021) and achieves
SOTA performance. OPUS-TASS2 adopts an ensemble strategy
as OPUS-TASS and SPOT-1D, and it consists of nine models
(Xu et al., 2022).

Recently, AlphaFold2 has achieved great success in predicting
protein monomer structures (Jumper et al., 2021; Ismi et al.,

2022). However, accuracy for single-sequence-based prediction
of secondary structures is far from the theoretical limit of
86%–90% (Zhou et al., 2023).The bottleneck resides in the immense
computational demands of running the AlphaFold2 model, both
in terms of computing power and runtime. Therefore, there is
still a need for prediction tools that can predict protein backbone
angles in a faster and more accurate manner. A recurrent neural
network (RNN) maintains a vector of activations for each timestep
that can remember prior input to influence the current input and
output. RNNs can be easily used for sequential or time series data
(Jozefowicz et al., 2015). The best-so-far deep learning methods
are essentially constructed by RNNs like SPOT-1D (Hanson et al.,
2019), OPUS-TASS (Xu et al., 2020), OPUS-TASS2 (Xu et al., 2022),
NetSurfP-2.0 (Klausen et al., 2019), and CRRNN2 (Zhang et al.,
2021). Because the computation of each step in an RNN depends
on the previous step, the recurrent computations are less amenable
to parallelization. In contrast to the models built by convolution
or attention networks, RNN-based models need more training
and running times. Moreover, these heavyweight models consume
more computing resources, which is not conducive to training or
inference.

In this article, we designed a new hybrid inception block
consisting of 1D CNNs and dilated CNNs (Yu and Koltun, 2016).
As an alternative to an RNN, a novel architecture with two hybrid
inception blocks and onemulti-head attention (Vaswani et al., 2017)
block called an I2A1 module is intended to capture local and
long-range features, which are comprised of two hybrid inception
blocks and augmented by one multi-head attention network.
The dilated convolution and multi-head attention (DCMA) novel
protein backbone dihedral angle predictor is mainly constructed
from I2A1modules. Hence, we havemade the following outstanding
contributions: 1) proposed a faster method that can substitute for
RNNs and offers comparable performance, and 2) provided a more
lightweight tool for predicting dihedral angles that is more friendly
to biological or medical researchers.

2 Materials and methods

2.1 Datasets

We used the same training (Hanson et al., 2019) and validation
sets as SPOT-1D and OPUS-TASS 1/2 for a fair comparison with
most state-of-the-art methods. The sequences were culled from the
PISCES server (Wang et al., 2003) by SPOT-1D in February 2017,
with the following constraints: resolution > 2.5 Å, R-free < 1, a
sequence identity truncation rate of 25%, and the sequence length
≤ 700. Finally, the training set and validation set contain 10,029
proteins and 983 proteins, respectively.

To evaluate the performance of differentmethods, we performed
the method on six public independent test sets: (1) The CASP12
dataset contains 40 proteins; (2) CASP13, which contains 32
proteins; (3) CASP-FM (56), collected by SAINT (Uddin et al.,
2020), which contains 10 template free modeling (FM) targets from
CASP13, 22 FM targets from CASP12, 16 FM targets from CASP11,
and 8 FM targets from CASP10; (4) the CASP12-FM dataset,
collected by Singh et al. (2021a), which contains 22 FM proteins
from CASP12; (5) the CASP13-FM dataset, collected by Singh et al.
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FIGURE 1
Model architecture of the DCMA.

FIGURE 2
Architecture of pre-processing block (A) and I2A1 module (B).

FIGURE 3
Newly hybrid inception block. The 1D CNNs with 64 filters and kernel size [1, 3, 5, 7] are intended to capture sequence local futures. Dilated 1D CNNs
with 64 filters, kernel size 2, and multi-scale dilation rates (d_rate) are used to capture sequence long-range dependencies.

(2021a), which contains 17 FM proteins from CASP13; and the (6)
CASP14-FMdataset, collected byXu et al. (2022), which contains 15
FM proteins from CASP14.

2.2 Input features

DCMA takes three groups of sequence-based features as
input: a position-specific scoring matrix (PSSM) profile, a hidden

Markov model (HMM) profile, and residues coding. As SPOT-
1D reported, each 20-dimensional protein PSSM was generated
by three iterations of PSI-BLAST (Altschul et al., 1997) against
the UniRef90 sequence database updated in April 2018. The 30-
dimensional HMM sequence profiles are re-generated by HHBlits
(v3.1.0) (Steinegger et al., 2019) with default parameters based
on the UniRef30 database updated in June 2020. Similarly to
CRRNN’s schema (Zhang et al., 2018), a one-hot vector of residues
coding is mapped to a 22-dimensional dense vector.
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TABLE 1 Comparison of prediction performance on the CASP12 and
CASP13 datasets.

Method ϕ ψ

CASP12 CASP13 CASP12 CASP13

SPIDER3 21.12
(0.809)

- 35.67
(0.783)

-

RaptorX-
Angle

20.69
(0.788)

- 31.6 (0.813) -

DeepRIN 20.21
(0.838)

- 31.39
(0.834)

-

NetSurfP-
2.0

20.0 (−) - 31.2 (−) -

NetSurfP-2.0a 20.0 (0.832) 20.16
(0.838)

30.52
(0.843)

29.7 (0.847)

SPOT-1Db 18.91 (0.84) 18.7 (0.839) 27.46
(0.866)

26.64
(0.867)

CRRNN2 19.14
(0.842)

- 28.9 (0.853) -

OPUS-TASSc 18.12 (−) 17.94 (−) 26.0 (−) 25.95 (−)

DCMA 19.42
(0.837)

19.2 (0.846) 28.72
(0.857)

27.98
(0.859)

aResults are generated by our reproduced experiment.
bResults are from SPOT-1D’s online service.
cData are computed by their public predicted results.
Boldface numbers indicate the best performance, and “-” denotes data that cannot be
obtained publicly.

2.3 Outputs

To remove the effect of the angle’s periodicity, we employ a pair
of sine and cosine values for each torsion angle as the output instead
of directly predictingψ or ϕ. As a result, there are four outputs: sin ψ,
cos ψ, sin ϕ, and cos ϕ.The predicted angle α is defined as

α = arctan( sin α
cos α
)

The multi-task learning strategy of predicting protein
structural properties concurrently has been proven to be effective
by CRRNN2 (Zhang et al., 2021). We also adopted the same multi-
task learning schema as CRRNN2, in which the auxiliary output
during the training period is protein secondary structure (Q3 and
Q8) and solvent accessibility.The loss function and respective output
ratio in DCMA are the same as in CRRNN2.

2.4 DCMA model

As illustrated in Figure 1, our DCMA model consists of three
parts: a pre-processing block, five stacked I2A1 modules, and two
fully connected layers.The input features are transformed in the pre-
processing block, and its structure is demonstrated in Figure 2A.
The I2A1 module is mainly constructed by two cascaded hybrid
inception blocks and one multi-head attention block, as Figure 2B
shows. The details of these blocks will be introduced below.

2.4.1 Pre-processing block
As Figure 2A and Equation 1 show, the representing residue

features, including 20-dimension (D) PSSM, 22-D residue coding,
and 30-DHMM, are aggregated and transformed into 256-D tensors
by one dimension and one kernel (1D1) CNN (Zhang et al., 2018).
The weight constraint of dropout (p = 0.5) used to avoid overfitting
was applied to the output of 1D1 CNN. Then, the tensors denoted as
input are fed to each I2A1 module and the first dense layer.

con = contenate (PSSM,HHM,Coding)

Output = dropout (1D_CNN (con) , p = 0.5) .
(1)

2.4.2 Hybrid inception block
CNNs provide the property (Strubell et al., 2017) that

parallelizes runtime independent of the sequence length maximizes
GPU resource usage and minimizes the training and evaluating
time. However, a CNN’s perception is limited by the input size. As
Strubell’s description notes (Strubell et al., 2017), the maximum
perception length r of CNN is expressed as r = l(w− 1) + 1,
where l is the stacked layers number, and w is filter size. And
the receptive width is promoted to 2l+1 − 1, when l dilated
layers are stacked. Dilated convolution can cover a larger area
of the input due to skipping some areas, and a large portion
of the information is lost (Wang et al., 2018). A simple and
useful solution is hybrid dilated convolutions, and this strategy
has been proven practicable (Wang et al., 2018; Wu et al., 2016;
Chen et al., 2017; Singh et al., 2021b).

Motivated by the effectiveness of the inception (Szegedy et al.,
2015; Szegedy et al., 2016) network based on CNNs (Fang et al.,
2018b; Fang et al., 2018a; Uddin et al., 2020), we proposed a newly
hybrid inception block, as shown in Figure 3. Four types of local
features are aggregated from 1D CNNs with 64 filters and kernel
size [1, 3, 5, 7] respectively, for the minimum length of protein
secondary structures is three, and 1D CNN with kernel size one
(1D1 CNN) is used to data dimension transformation. Another four
groups of long-range features are perceived from hybrid dilation
rates (d_rate) CNNs with 64 filters and kernel size 2. Similar to
DeepLabv3’s (Chen et al., 2017) configuration, dilation rates [2, 4,
8, 16] are applied. For better perceptive capability, four channels
with stacked [1, 2, 3, 4] dilated CNNs, respectively, are combined.
Multi-scale dilation rates { [2], [2, 4], [2, 4, 8], [2, 4, 8, 16]} are used
in corresponding channels, respectively. When the eight parallel
outputs are concatenated as a 512-dimensional tensor, the data
dimension is transformed into 256 by a 1D1 CNN for model weight
reduction.

2.4.3 Multi-head attention

The attention mechanism (Tay et al., 2020) can be viewed
as a graph-like inductive bias that connects all tokens in a
sequence with a relevance-based pooling operation. Multi-head
attention (Vaswani et al., 2017) allows the model to jointly attend
to information from different representations and focus on
different aspects of information. The advantage of attention
is that it can capture long-term dependencies without being
limited by sequence length. Because the result of each step
does not depend on the previous step, steps can be done in
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TABLE 2 Results of predicting ϕ by different predictors on free modeling targets.

Predictor CASP-FM(56) CASP12-FM CASP13-FM CASP14-FM

NetSurfP-2.0a 20.55 (0.835) 22.66 (0.826) 22.68 (0.8) 22.32 (0.789)

SPOT-1D-Single - 25.43 (−) 25.13 (−) -

SPOT-1D 19.39 (−) 22.22 (0.827)b 20.8 (0.808)b 23.19 (−)

OPUS-TASS 18.85 (−) 21.9 (−)c 22.15 (−)c 21.91 (−)

OPUS-TASS2 (76D) 18.58 (−) - - 21.79(−)

DCMA 19.44 (0.847) 22.19 (0.831) 20.84 (0.817) 21.8 (0.794)

aResults are generated by our reproduced experiment.
bResults are from SPOT-1D’s online service.
cThe results are obtained locally using the OPUS-TASS standalone package.
Boldface numbers indicate the best performance, and “-” denotes data that cannot be obtained publicly.

TABLE 3 Results of predicting ψ by different predictors on free modeling targets.

Predictor CASP-FM(56) CASP12-FM CASP13-FM CASP14-FM

NetSurfP-2.0a 32.1 (0.832) 36.3 (0.816) 34.55 (0.821) 41.1 (0.759)

SPOT-1D-Single – 43.46 (−) 45.23 (−) –

SPOT-1D 30.1 (−) 34.71 (0.83)b 29.96 (0.853)b 43.98 (−)

OPUS-TASS 28 (−) 33.63(−)c 32.4 (−)c 38.93 (−)

OPUS-TASS2 (76D) 26.91 – – 38.65

DCMA 29.31 (0.854) 34.66 (0.833) 29.9(0.854) 38.57(0.772)

aResults are generated by our reproduced experiment.
bResults are from SPOT-1D’s online service.
cThe results are obtained locally using the OPUS-TASS standalone package.
Boldface numbers indicate the best performance, and “-” denotes data that cannot be obtained publicly.

parallel mode. We use a multi-head attention mechanism as
a complement to the hybrid inception block. Eight heads are
employed. In the DCMA model, we use multi-head attention as
Equations 2–4, the most popular attention in recent years, which
combines multiple self-attention networks to divide the model
into multiple heads to form multiple subspaces and can make
models focus on different aspects of information. In our model,
we employ eight heads, and tanh activated function is added
to the output for smooth variation. In order to control model
weight, the dimension of headi is reduced to 64, and the output
dimension of the attention block is 256.

Output = tanh (MultiHead (Q,K,V)) , (2)

MultiHead (Q,K,V) = contenate(head1,head2…head8)WO, (3)

headi = Attention (QWQ
i ,KW

K
i ,VW

V
i )

== softmax(
QWQ

i (KW
K
i )

T

√d
)VWV

i . (4)

2.4.4 I2A1 module
The input data is fed parallel to one multi-headed attention

block and two cascaded hybrid inception blocks, as Figure 2B and
Equations 5–10 show. The proposed module can effectively capture
both the short-range and long-range dependencies. In the first I2A1
module (i = 1), Input2 is the output of the pre_processing block,
and Input1 is null. In other I2A1 modules, Input2 is the output of
the previous I2A1 module, and Input1 is the output of the pre_
processing block. For a better balance between the ability to model
long-range dependencies and computational efficiency, only one
attention block is joined with two cascaded hybrid inception blocks,
and the dimension of concatenated data is also reduced from 1,024
(768, when in the first module) to 256 by 1D1 CNN.

Input1i =
{
{
{

null, i f  i = 1

output o f pre_processing block, i f i > 1,
(5)

Input2i =
{
{
{

output o f pre_processing block, i f  i = 1

output o f previous I2A1module, i f i > 1,
(6)
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TABLE 4 MAE of torsion angles on the 8-class secondary structures for the free modeling targets of the CASP datasets.

H B E G I T S C

CASP-FM(56)
phi 11.42 45.52 25.38 29.27 0 38.81 62.66 45.4

psi 7.39 27.76 19.63 16.29 0 28.89 34.78 29.41

CASP12-FM
phi 8.78 27.31 20.97 16.87 0 29.87 38.16 31.68

psi 15.03 47.53 28.74 35.95 0 41.48 61.76 51.04

CASP13-FM
phi 7.34 25.48 20.38 13.13 0 24.75 40.80 31.62

psi 10.70 41.58 21.17 30.30 0 32.85 69.57 46.98

CASP14-FM
phi 8.44 28.98 22.57 21.40 0 36.13 36.72 29.81

psi 16.53 38.29 32.74 55.29 0 55.67 69.81 56.21

For the eight class definitions: G = 3–10 helix, H = α helix, I = π helix, B = β bridge, E = extended strand, S = bend, T = h-bonded turn, and C = coil.

F_out1i = inception(inception(Input2i)) , (7)

F_out2i =mh_attention(Input2i), (8)

F_coni = contenate(F_out1i,F_out2i, Input1i, Input2i) , (9)

Outputi = dropout(1D_CNN(F_coni) , p = 0.5) . (10)

3 Results

3.1 Experimental settings

The developed DCMA model was implemented in Keras, and
the weights in DCMA were initialized using default values. The
implementation was trained on a NVIDIA P6000 GPU. Adam
optimization with an initial learning rate of 0.0004 was used to
optimize the networks.

For training the model on GPU with batch input, proteins
shorter than 700 AA are padded with all-zeros. Similar to the
CRRNN2 experiment, the strategy of deepmulti-task learning is also
applied in the DCMA training period. In the inference period, only
the backbone angle output is retained.

3.2 Evaluation metrics

To evaluate the predictive performance of protein backbone
dihedral angles, the mean absolute error (MAE) (Sunghoon et al.,
2011) and Pearson correlation coefficient (PCC) were used to
measure the relevance between the native values and predicted ones.
Here, the value of a protein dihedral angle is in the range of [−180◦,
180◦]. Before evaluating the protein dihedral angle, the difference
between the predicted value P′ and the actual value E is usually first

converted to the dihedral angle according to Equation 11 (Li et al.,
2017). Then, the PCC and MAE are calculated by Equations 12, 13,
respectively.

P =
{{{{
{{{{
{

P′, i f |P′ −E| ≤ 180◦

P′ + 360◦, i f P′ −E ≤ −180◦

P′ − 360◦, i f P′ −E ≥ 180◦,

(11)

where P′ is the original value of the predicted dihedral angle.

PCC = 1
N− 1

N

∑
i=1
(P
′ − P′
sp′
)(E−E

sE
). (12)

Among them, P′ and E are the means of P′and E, respectively,
and sp′ and sE are the standard deviations of P′ and E, respectively.

MAE = 1
N

N

∑
i=1
|E− P′| . (13)

3.3 Evaluation on independent test
datasets

In order to better evaluate the performance of our model,
we compare the DCMA model with other representative
methods on public independent CASP sets. We compared
the performance of DCMA with SPOT-1D, Netsurfp-2.0,
DeepRIN, CRNN2, etc., on the CASP12 and CASP13 datasets,
as shown in Table 1. Values in brackets are PCC, and “-” denotes
data that cannot be obtained publicly. We re-implemented the
model of Netsurfp-2.0 and used the same datasets and features
as DCMA. DCMA achieved (19.42, 28.72) of (ϕ,ψ) on CASP12
and (19.2, 27.98) of (ϕ,ψ) on CASP13 respectively. The DCMA
performance is weaker than that of SPOT-1D and OPUS-
TASS and better than Netsurfp-2.0, DeepRIN, RaptorX-Angle,
and SPIDER3.

The comparison between state-of-the-art models, including
SPOT-1D, OPUS-TASS, OPUS-TASS2, and DCMA, is further

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1477909
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Zhang et al. 10.3389/fbinf.2024.1477909

FIGURE 5
Predicting the absolute error of the ϕ angle on sequence T1039-D1. The secondary structure is linearized for visualization.

FIGURE 4
Model loss variation in the validation dataset. The comparison of the dihedral angle prediction performance of the iterative procedure using different
input features on the validation dataset.

analyzed on free modeling targets in Table 2, 3. The prediction
results of OPUS-TASS2 based on sequence features are compared.
The sequence features of OPUS-TASS2 are 20-D PSSM, 30-DHMM,
7-D physicochemical properties, and 19-D PSP19 features, which
are denoted as “OPUS-TASS2 (76D).” Predicting results on the
CASP12-FM dataset show that the performance of SPOT-1D and

OPUS-TASS is similar and better than others. The performance of
OPUS-TASS2 is best on theCASP-FM (56) dataset. DCMAachieved
better prediction performance on the more difficult CASP13-FM
dataset. On the most difficult CASP14-FM dataset, the prediction
performance of OPUS-TASS2 and DCMA is comparable and better
than other predictors.
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TABLE 5 Comparison of different stacked I2A1 blocks with the same hyper-parameters.

Test dataset Four blocks Five blocks Six blocks Five blocks without attention

CASP12 19.57 (29.27) 19.42 (28.72) 19.32 (28.82) 19.44 (28.99)

CASP13 18.91 (28.63) 19.2(27.98) 19.35 (28.31) 19.32 (28.23)

CASP12-FM 22.4 (35.56) 22.19 (34.66) 22.05 (35.16) 22.35 (35.19)

CASP13-FM 21.28 (31.42) 20.84(29.9) 22.13 (31.01) 22.37 (31.70)

CASP14-FM 21.91 (39.78) 21.8(38.57) 22.16 (39.83) 22.52 (39.43)

Boldface numbers indicate the best performance.

FIGURE 6
Length distributions of training and validation datasets.

The latest benchmark dataset CASP15 (removing four similar
sequences) was also used for evaluating the model generalization
and achieved (19.78, 29.53) ofMAEmetrics and (0.83, 0.847) of PCC
metrics on (ϕ,ψ). For amore detailed understanding of the predicted
results, the average dihedral angle prediction errors (measured
by the MAE) are demonstrated on the CASP-FM(56), CASP12-
FM, CASP13-FM, and CASP14-FM datasets across eight types of
secondary structures, as shown in Table 4. The prediction errors of
both H and E are the lowest because the secondary structures of H
and E have the most samples.

The prediction performance at the sequence level is further
analyzed. The absolute error on the ϕ angle of sequence T1039-
D1, selected from the CASP14-FM dataset, is visualized in Figure 5.
Although the MAE at the sequence level is 16.92, the absolute
errors on some residues are large. The predictive performance is
acceptable on continuous secondary structure regions. When the
structural state changes, prediction errors are high. We suppose that
the discontinuous regions cannot supply more contextual features.

3.4 Ablation study

The impact of different groups of input features is first analyzed.
The loss variation on the validation dataset is compared when
the model was trained by using different combinations of input
features. The experimental results are shown in Figure 4. Compared
to the models trained by the input of a single feature, the
features of pairwise combinations are more efficient in reducing
losses. When three groups of features, PSSM profile, HHM
profile, and residue coding, are combined, the effect of reducing
loss is best.

We further analyzed the DCMA model structure. The results
of the ablation experiment are shown in Table 5, where values
in the cell and the bracket are the MAEs of (ϕ, ψ). Assuming
the same other hyper-parameters, the performance of four, five,
and six stacked I2A1 modules is compared. The experimental
results show that the model with five stacked I2A1 modules is
more effective and has fewer parameters. The influence of the
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multi-head attention network is also analyzed. The DCMA model
removed the multi-head attention block, and the effectiveness
was weakened.

The length distributions of training and validation datasets
are shown in Figure 6. The data statistics show a total of 2022
sequences ranging in length from 102 to 213. In addition,
there are 7,326 sequences with lengths ranging from 50
to 300. The recommended length of input sequence ranges
from 50 to 300.

4 Conclusion

Predicting protein 3D structures is an important and
challenging task. Predicting protein backbone torsion dihedral
angles helps solve the problem. Heavy models are unfriendly
and unsuitable for running on edge computing devices. In
particular, the file size of the SPOT-1D model is larger than
10 GB. In this article, a lightweight, faster, and individual
model named DCMA is proposed. The model file of DCMA
is less than 50 MB. We use hybrid dilated CNN and multi-
head attention to design a new deep network structure, I2A1,
that substitutes for RNN. The I2A1 block balanced the model
generalization and computational efficiency well. Thus, our model
mechanism can be applied to predicting various other protein
attributes as well.

In future work, input residues will be characterized
with more structural information, including physicochemical
properties and protein domains (Guo et al., 2003; Yu et al.,
2023), to improve the performance of discontinuous or isolated
secondary structures. Although DCMA is more lightweight
and faster, its input still relies on multi-sequence alignment
information such as a PSSM profile. A single-sequence-based
method that did not use evolutionary features would be
more friendly.

Pre-trained protein language models (pLMs) can generate
information-rich representations of sequences. Combined with
sequence embedding generated by pLMs, a downstream predictor
of backbone dihedral angles and other 1D structural properties
can be exploited without generating multi-sequence alignment
information.
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