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Introduction: Ever since the outbreak of listeriosis and other related illnesses
caused by the dreadful pathogen Listeria monocytogenes, the lives of
immunocompromised individuals have been at risk.

Objectives and Methods: The main goal of this study is to comprehend the
potential of terpenes, a major class of secondary metabolites in inhibiting one of
the disease-causing protein Internalin A (InlA) of the pathogen via in silico
approaches.

Results: The best binding affinity value of −9.5 kcal/mol was observed for
Bipinnatin and Epispongiadiol according to the molecular docking studies. The
compounds were further subjected to ADMET and biological activity estimation
which confirmed their good pharmacokinetic properties and
antibacterial activity.

Discussion: Molecular dynamic simulation for a timescale of 100 ns finally
revealed Epispongiadiol to be a promising drug-like compound that could
possibly pave the way to the treatment of this disease.
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1 Introduction

Plants have been an ideal source of medicine since prehistoric times due to their
beneficial effects on human health with minimum or no side effects. For this reason,
medicinal plants and other plant-derived products are used extensively for treating various
infectious diseases and ailments by the pharmaceutical industries. Medicinal plants are
considered a ‘storehouse’ of an array of biologically active compounds with varied
therapeutic applications (Pagare et al., 2015; Crozier et al., 2006; Tiwari and Rana,
2015; Yang et al., 2018). These plants possess anticancer, antibacterial, antiviral,
analgesic and anti-inflammatory properties among their many other medicinal uses.
More than 80% of the world’s developing population relies on traditional medical
practices involving the usage of plants for their primary wellness as reported by the
World Health Organization (WHO) (Bennett andWallsgrove, 1994; Teoh and Teoh, 2016).
The advancements in modern research has facilitated a significant surge in the study of
plant metabolites throughout the last century. Secondary metabolites (SMs) are vital
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compounds that are typically produced by plants and have a distinct
carbon skeleton framework. These metabolites are the end products
of primary metabolites generated from the biosynthetic
modifications such as methylation, glycosylation and
hydroxylation. Although not directly involved in respiratory and
photosynthetic metabolism, these metabolites assist plants in
withstanding specific environmental conditions. In fact, the SMs
are essential in defending the plant against potential threats like
animals and various microbes. Moreover, certain plants utilize SMs
to attract seed dispensers and pollinators, as well as signals to
mediate the symbiotic relationship between plants and
microorganisms (Aye et al., 2019; Twaij and Hasan, 2022). The
side chains and structural composition certainly make SMs more
complex. SMs can be categorized based on factors including their
solubility in different solvents, chemical structure, biosynthetic
pathways and composition. Terpenes (like sterols, carotenoids,
plant volatiles, cardiac glycosides), phenolics (like coumarins,
flavonoids, phenolic acids, lignin, tannins, stilbenes, lignans),
nitrogen containing (like non-protein amino acids, alkaloids,
cyanogenic glucosides) and sulfur containing compounds (like
thionins, glutathione, phytoalexins, defensins) are some of the
main groups belonging to SMs (Roba, 2020; Theis and Lerdau,
2003; Tetali, 2019).

Among the different phytochemicals, terpenes are the largest
class of natural products with over 30,000 members that have
been utilized for a wide range of applications such as flavoring,
perfume, medicine, cosmetics, biofuels, food and beverages. They
are the most diverse family that range in both structure and size.
These volatile, unsaturated five-carbon cyclic molecules are
composed of isoprene units, and the type of terpene that is
formed varies depending on the number of isoprene units
present (Costa et al., 2012). It is the hemiterpenes (1 isoprene
unit) - dimethylallyl pyrophosphate (DMAPP) and isopentenyl
pyrophosphate (IPP) that give rise to the many subclasses of
terpenes. Terpene subclasses include mono- (2 isoprene units),
sesqui- (3 isoprene units), Di- (4 isoprene units), sester-
(5 isoprene units), tri- (6 isoprene units) and carotenoids
(8 isoprene units). Numerous studies have elucidated the
ability of terpenes to improve skin penetration, prevent
inflammatory disorders, shield living organisms from biotic
and abiotic stresses and also their antimicrobial property to
combat infectious diseases (Croteau et al., 2000; Boncan et al.,
2020; Cox-Georgian et al., 2019). The possible antibacterial
potential of terpenes will be further explored in this work.

The food and economic sectors are being severely disrupted by
the outbreak of foodborne illnesses and the subsequent death rates.
Thus, public health initiatives have primarily focused on widely
recognized foodborne diseases and pathogens in the food chain as a
response to this growing concern (Altekruse et al., 1997; Motarjemi
and Kiiferstein, 1997; Newell et al., 2010). Multiple factors
contribute to the rise in foodborne diseases which include
increase in immunocompromised individuals, lack of proper
microbiological safety regulations before global food trading,
transportation conditions that allow the pathogens to survive on
the food and get to the consumers in a viable state, consumption of
raw vegetables, meat and unpasteurized dairy products as well as
temperature related changes favorable to the pathogen growth and
production (Tauxe, 1997; Thakur et al., 2018). Listeriosis caused by

Listeria monocytogenes (L. monocytogenes) is a systemic disease that
arises from consuming contaminated food, notably ready-to-eat
food and can be fatal to those with weak immune systems.
Pregnant women are more vulnerable to this disease than the
elderly people or infants, as several reports have stated 16%–17%
of Listeria monocytogenes infections in this population (Matereke
and Okoh, 2020; Ireton et al., 2021; Lecuit et al., 1997). Since this
Gram-positive, psychrotolerant pathogen can pass through the
blood brain and placental barriers, it often causes spontaneous
miscarriages and meningoencephalitis in pregnant women. The
pathogen’s tolerance to environmental stresses and sublethal
doses of antibiotics or other antimicrobial drugs are significant
factors to its antimicrobial resistance. Despite the advancements
in the medical field to fight L. monocytogenes, the bacteria still pose a
hazard to food safety as proved by the listeriosis outbreak that
occurred in South Africa in 2017–2018. Of all the foodborne
diseases, listeriosis has the highest death rates often ranging
between 20% and 30% and sometimes even exceeds 50%
(Bonazzi et al., 2009a; b; Lebrun et al., 1996). This pathogen
expresses a wide range of virulence factors in order to proliferate
and survive in the gastrointestinal system as well as to pass through
the various host biological barriers. Internalins are one of the major
virulence factors of L. monocytogenes that aids the pathogen to
adhere and invade the host cell membrane. Among the internalins,
the most researched ones are internalin A (InlA) and internalin B
that play a vital role in its pathogenesis. InlA is an 88 kDa protein
that comprises of a signal peptide at the N-terminus followed by
15 leucine rich repeats (LRR). An important structural component
of InlA is an inter-repeat (IR) domain located downstream of the
LRR domain that is essential for the binding of LRR region to its host
cell receptor E-cadherin (Martin, 2003). This widely expressed and
evenly distributed surface protein is covalently attached to the cell
wall and upon binding to the E-cadherin receptor facilitates the
pathogen’s internalization into the enterocytes and entry to the
primary site of the host cell, i.e., the intestinal epithelial barrier. An
LPTXGmotif that anchors InlA to the bacterial cell wall is located at
the C-terminal end of the protein followed by a sorting peptide
(Lopes-Luz et al., 2021; Kathariou, 2002).

FIGURE 1
Crystal structure of InlA protein (PDB ID: 1O6T).
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TABLE 1 Selected terpenes that are Lipinski compliant. The abbreviations HBD, HBA, Log P, RB and TPSA stands for Hydrogen bond donor, hydrogen bond
acceptor, octanol-water partition coefficient, rotatable bonds and topological polar surface area.

Ligand no. Compound name Molecular weight (g/mol) HBD HBA Log P RB TPSA (Å2)

1 Carvone 150.22 0 1 2.4 1 17.1

2 Aguerin B 330.4 1 5 1.9 3 72.8

3 Chlorojanerin 398.8 3 7 0.4 5 113

4 Janerin 362.4 2 7 0.1 4 106

5 Cynaropicrin 346.4 2 6 0.6 4 93.1

6 Britannin 366.4 1 7 1.9 4 99.1

7 Pulchellin 266.33 2 4 1.7 0 66.8

8 Zaluzanin C 246.30 1 3 1.3 0 46.5

9 Inuchinenolide C 366.4 1 7 1.9 4 99.1

10 Neopulchellin 266.33 2 4 1.7 0 66.8

11 Hemistepsin 346.4 2 6 0.6 4 93.1

12 Tetraneurin E 324.4 2 6 1.5 3 93.1

13 Bipinnatin 264.32 1 4 1.6 0 63.6

14 Athrolide B 394.5 1 7 2.9 5 99.1

15 Florilenalin 264.32 2 4 0.9 0 66.8

16 Annuolide C 246.30 1 3 1.5 0 46.5

17 Hysterin 308.4 1 5 2 3 72.8

18 Germacrene B 204.35 0 0 4.1 0 0

19 Alpha-Fenchene 136.23 0 0 3.1 0 0

20 Pinguisone 232.32 0 2 2.9 0 30.2

21 Furodysinin 216.32 0 1 3.9 0 13.1

22 Bisabolol 222.37 1 1 3.8 4 20.2

23 Hernandulcin 236.35 1 2 3.3 4 37.3

24 Lippidulcine A 252.35 2 3 1.6 4 57.5

25 Delobanone 236.35 1 2 3.1 4 37.3

26 Isoterpinolene 136.23 0 0 3.5 0 0

27 Artemisinin 282.33 0 5 2.8 0 54

28 Taurin 248.32 0 3 1.4 0 43.4

29 Santonin 246.30 0 3 2.3 0 43.4

30 Dehydrofarinosin 244.28 0 3 2.5 0 43.4

31 Yomogin 244.28 0 3 2.1 0 43.4

32 Encelin 244.28 0 3 2.5 0 43.4

33 Frullanolide 232.32 0 2 3.1 0 26.3

34 Tuberiferine 246.30 0 3 2.8 0 43.4

35 Traginone 178.27 0 1 2.4 3 17.1

36 Erivanin 266.33 2 4 1 0 66.8

37 Tanacetin 264.32 2 4 1 0 66.8

38 Rothin B 264.32 2 4 1.1 0 66.8

(Continued on following page)
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TABLE 1 (Continued) Selected terpenes that are Lipinski compliant. The abbreviations HBD, HBA, Log P, RB and TPSA stands for Hydrogen bond donor,
hydrogen bond acceptor, octanol-water partition coefficient, rotatable bonds and topological polar surface area.

Ligand no. Compound name Molecular weight (g/mol) HBD HBA Log P RB TPSA (Å2)

39 Arbusculin C 248.32 1 3 2.1 0 46.5

40 Telekin 248.32 1 3 2.1 0 46.5

41 Himachalene 204.35 0 0 3.9 0 0

42 Isolepidozene 204.35 0 0 4.1 0 0

43 Thujopsadiene 202.33 0 0 4.2 0 0

44 Axinysone C 250.33 1 3 2.2 1 46.5

45 Kanshone F 318.4 0 3 4 4 43.4

46 Ramarin B 234.33 1 2 2.4 1 37.3

47 Ramarin A 250.33 2 3 0.9 1 57.5

48 Lindestrene 214.30 0 1 3.7 0 13.1

49 Isosericenin 260.33 0 3 3.7 4 39.4

50 Isofischeric acid 246.30 1 3 3.3 3 50.4

51 Dihydroisochromolaenin 214.30 0 1 3.3 0 13.1

52 Euryopsonol 234.33 1 2 3.3 0 33.4

53 Petasalbin 234.33 1 2 3.7 0 33.4

54 Epispongiadiol 332.4 2 4 3.6 1 70.7

55 Cespitularin A 300.4 1 2 4.4 0 33.4

56 Tetradymol 234.33 1 2 3.4 0 33.4

57 Velatumin 280.32 3 5 0.4 1 90.9

58 Curcolonol 264.32 2 4 1.3 0 70.7

59 Furanofukinin 248.36 0 2 4.2 1 22.4

60 Zedoarofuran 264.32 2 4 1.3 0 70.7

61 Euryopsol 266.33 3 4 1.1 0 73.8

62 Citronellal 154.25 0 1 3 5 17.1

63 Cyperusol C 238.37 2 2 3.1 1 40.5

64 Rhombitriol 254.36 3 3 1.9 1 60.7

65 Oxyphyllol 238.37 2 2 3.1 1 40.5

66 Isodrimenediol 238.37 2 2 2.6 1 40.5

67 Junenol 222.37 1 1 4.2 1 20.2

68 Platambin 238.37 2 2 2.6 1 40.5

69 Arctiol 238.37 2 2 3.1 1 40.5

70 Pterocarpol 238.37 2 2 2.4 1 40.5

71 Rhombidiol 238.37 2 2 2.4 1 40.5

72 Sulphureuine D 254.36 3 3 2 2 60.7

73 Penicieudesmol A 238.37 2 2 3.6 1 40.5

74 Lairdinol A 238.37 2 2 3.1 1 40.5

75 Bonducellpin G 432.5 2 7 2.4 4 106

76 Lindenenone 228.29 0 2 2.7 0 30.2

(Continued on following page)
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To date, no in silico investigations have been performed to
predict the potential of terpenes in suppressing the activity of InlA
protein. Thus, this study was intended to investigate the binding
interactions of InlA with 80 terpenes through molecular docking
and dynamic simulation approaches with an ultimate goal of
identifying potential inhibitors of the virulence protein.

2 Materials and methods

2.1 Preparation of protein and ligands

The 3D structure of InlA protein from L. monocytogenes with
resolution of 1.60 Å (PDB ID: 1O6T) (Figure 1) was obtained in PDB
format from the Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (https://www.rcsb.org/,
accessed 12 February 2024) (Berman et al., 2000). This protein was
then subjected to preparation prior to docking using the AutoDock
Tools 1.5.6 by eliminating water molecules, heteroatoms and adding
polar hydrogens and Kollman charges. Finally, the prepared target
was saved in pdbqt format (Morris et al., 2009).

In the case of ligands, 80 terpenes from different plant species
with a range of medicinal properties were selected based on
‘Lipinski’s rule of five’ (Table 1) and the 3D structures of these
compounds were obtained in SDF format from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/, accessed12 February
2024) (Benet et al., 2016; Kim, 2021). The compounds were energy
minimized using the steepest descent algorithm of Avogadro
software and Open Babel program was further utilized to
generate their pdbqt files (Hanwell et al., 2012; O’Boyle et al., 2011).

2.2 Molecular docking of InlA with the
selected terpenes

AutoDock Vina program was used to dock all the 80 ligands against
InlA protein inorder to gain an insight into the various interactions
involved during the binding process (Trott and Olson, 2010). This
program employs an efficient optimization technique that depends on
a special scoring function (combination of empirical and knowledge-
based approaches) and a gradient-based local search genetic algorithm to
predict the binding modes thereby producing reliable information
concerning the receptor and ligand interactions (Jaghoori et al., 2016;
Sarkar et al., 2024). The binding affinities were estimated for each InlA-
ligand complex. The protein was kept rigid and the ligands were flexible
throughout the docking study.With the grid box centered at x = −15.289,
y = −1.522 and z = 26.283 and dimensions set at points 126 × 82 ×

126 separated by 1Å, all the inputfiles needed for dockingwere created in
ADT 1.5.6. Based on the best docking scores, the top ten compounds
from among the 80 terpenes were chosen for further interaction analysis.
A compound with greater negative binding affinity value revealed its
stronger binding to the target receptor (Rolta et al., 2022).

2.3 Visualization of binding interactions

Different interactions and the amino acid residues involved
during the binding of InlA protein with the top 10 compounds
were examined using the BIOVIA discovery studio (DS) visualizer
and Ligplot+ software (Studio, 2008; Laskowski and Swindells,
2011). In particular, Ligplot+ was used to study the two-
dimensional (2D) protein-ligand interactions involving hydrogen
and hydrophobic interactions, and DS visualizer was used to
investigate the different forms of hydrogen and hydrophobic
bonding that were present in the complexes. Additionally,
PyMOL software was also utilized for the three-dimensional (3D)
visualization of receptor-ligand complexes (Yuan et al., 2017).

2.4 ADMET and biological activity prediction

The pharmacokinetic properties and the efficacy of the top
10 compounds obtained upon docking were computed by the
admetSAR server (http://lmmd.ecust.edu.cn/admetsar2/, accessed
15 February 2024). The server predicts the carcinogenicity, blood-
brain barrier penetration (BBB), Human Intestinal Absorption (HIA),
subcellular localization, human oral bioavailability, toxicity and various
other parameters of drugs or drug-like compounds that play a crucial
role in the drug development process (Cheng et al., 2012). Additionally,
the PASS (Prediction of Activity Spectra for Substances) online server
(https://www.way2drug.com/passonline/, accessed 18 February 2024)
was used to further explore the possible therapeutic activities of these
compounds (Filimonov et al., 2014). This server estimates a
compound’s expected activity spectrum as ‘probability of activity
(Pa)’ and ‘probability of inactivity (Pi)’. Pa and Pi have values
ranging from 0.000 to 1.000 and the compound activity is
considered possible only if Pa > Pi (Chakraborty et al., 2016).

2.5 Molecular dynamic (MD) simulation and
MM/GBSA binding free energy estimation

MD simulation of protein-ligand complexes with the best docking
scores and the protein alone (InlA) was carried out using the

TABLE 1 (Continued) Selected terpenes that are Lipinski compliant. The abbreviations HBD, HBA, Log P, RB and TPSA stands for Hydrogen bond donor,
hydrogen bond acceptor, octanol-water partition coefficient, rotatable bonds and topological polar surface area.

Ligand no. Compound name Molecular weight (g/mol) HBD HBA Log P RB TPSA (Å2)

77 Epicurzerenone 230.30 0 2 4 2 30.2

78 Scabequinone 260.28 0 4 3 1 56.5

79 Omphalone 188.18 0 3 1.1 1 47.3

80 Evodone 164.20 0 2 1.9 0 30.2
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GROMACS software (version 2023) for a 100 nanosecond (ns)
timescale to gain an insight into their stability as well as the
conformational behaviour upon ligand binding (Bauer et al., 2022).
CHARMM27 forcefield of GROMACS and SwissParam server were
used to generate the protein and ligand topologies (Bjelkmar et al., 2010;
Bugnon et al., 2023). Both the protein and complex systems were
further solvated in cubic box and neutralized by adding Na+/Cl− ions.
Post solvation and neutralization, using steepest descent algorithm the
systems were energy minimized to eliminate the steric clashes and then
equilibrated utilizing theNVTandNPT ensembles so as tomaintain the
temperature (300K) and pressure (1atm) of the systems (Berendsen
et al., 1984; Andersen, 1980; Petersen, 1995). Ultimately, MD run was
initiated for 100 ns and the root mean square deviation (RMSD), root
mean square fluctuation (rmsf), radius of gyration (Rg), solvent
accessible surface area (SASA) of the protein-ligand and protein
systems were determined. Furthermore, the protein-ligand
complexes were subjected to principal component analysis (PCA).
Xmgrace software was used to obtain the 2D plots of all the
aforementioned parameters (Turner, 2005).

Post MD simulation, MM/GBSA (Molecular Mechanics/
Generalized Born Surface Area) binding free energy of the
protein-ligand complexes with the best docking scores were
estimated for the last 20 ns MD trajectory using the gmx_
MMPBSA program (v1.6.0) (Valdés-Tresanco et al., 2021). In
MM/GBSA method, the total binding free energy is determined
by the following equation:

ΔGbind � Gcomplex − Gprotein − Gligand

ΔGbind � ΔGgas + ΔGsol − TΔS

where Gcomplex is the free energy of the protein-ligand complexes,
while Gprotein and Gligand are the free energies of the protein and
ligands. The conformational entropy upon ligand binding is
represented by TΔS. ΔGgas is the sum of internal energies (ΔEint
- bond, angle, dihedral), van der Waals energy (ΔEvdW) and
electrostatic component of internal energy (ΔEele). ΔGsol is the
combination of polar (ΔEGB) and non-polar (ΔESURF)
components of solvation energy.

3 Results

3.1 Lipinski rule evaluation of terpenes

All the selected compounds obeyed ‘Lipinski’s rule of 5’ without
any violation suggesting their possibility of oral administration.
According to this rule, a drug or a drug-like compound can be
orally administered only if it satisfies the following criteria:
molecular weight ≤500 g/mol, HBD ≤5, HBA ≤10 and LogP ≤ 5
(Walters, 2012; Saini et al., 2021). The molecular weight of all the
terpenes varied from 136.23 to 398.8 g/mol. Alpha-Fenchene and
Isoterpinolene had the lowest molecular weight of 136.23 g/mol
while the highest value of 398.8 g/mol was shown by Chlorojanerin.
Moreover, the HBDs and the HBAs of all the compounds ranged
from 0 to 3 and 0 to 7, respectively. The lowest logP value of 0.1 was
noted for Janerin whereas Cespitularin A had the maximum logP
value of 4.4. These observations collectively demonstrate the
potential of the chosen terpenes in oral delivery.

3.2 Molecular docking analysis of protein
with the terpenes

All the 80 terpenes were blindly docked against the InlA protein
with the grid box covering the entire protein surface. Additionally, a
reference ligand Ampicillin, which is one of the most widely used
antibiotic to treat illnesses caused by L. monocytogenes,was also docked
against the virulence protein in order to determine whether the terpenes
were more or less effective compared to the drug. We observed
exceptional binding affinity values for each protein-ligand complexes
and the top 10 compounds (Figure 2) with the highest scores were
finalised for further analysis. The important amino acid residues and the
different interactions involved in the binding of the best 10 ligands with
the InlA protein fromDS visualizer and Ligplot+ software are displayed
in table 2. The binding affinity values obtained for all the 80 terpenes
and Ampicillin are highlighted in table 3.

According to numerous studies, higher negative binding affinity
values often imply a ligand’s increased capacity to inhibit the disease-
causing target protein (Deepasree and Subhashree, 2023; Sahu and
Pattanayak, 2019; Islam et al., 2021; Correa-Basurto et al., 2015). The
top 10 terpenes had varied binding affinities ranging
from −8.8 to −9.5 kcal/mol. Among all the selected terpenes,
Bipinnatin (lig.13) and Epispongiadiol (lig.54) were found to have
displayed the best interaction with InlA protein with a binding
affinity value of −9.5 kcal/mol followed by Artemisinin and
Bonducellpin G showing the next highest docking score of −9.1 kcal/
mol. In DS visualizer, Bipinnatin displayed 2 hydrogen bonds with
Ser173 and Asp213 amino acid residues of InlA along with
3 hydrophobic interactions (2 pi-alkyl and 1 pi-sigma bonds) with
Phe150 (Figure 3A). Similarly, the ligand13-InlA interaction analysis
with Ligplot+ revealed a maximum of 3 hydrogen bonds to Ser172,
Ser173 and Asp213 residues formed at a distance of 2.95 Å, 3.02 Å and
3.23 Å. Here, Asn129, Phe150 and Asn151 had hydrophobic interactions
with Bipinnatin (Figure 3B). The 3D representation of ligand13-InlA
complex is shown in Figure 3C. In the case of Epispongiadiol, the ligand
showed 1 conventional and 1 pi-donor hydrogen bond with Asn129,
1 carbonhydrogen bondwith Ser172 and 3 pi-alkyl bondswith Phe150 in
DS visualizer (Figure 4A)while 2 hydrogen bonds toAsn129 andGlu 170
(formed at a distance of 3.29 Å and 3.04 Å) were noted in Ligplot+
(Figure 4B).Moreover, the compound had hydrophobic interactionswith
Asn151, Phe150 and Ser172 residues of the virulence protein. Figure 4C
depicts the 3D view of ligand54-InlA complex.

Artemisinin (ligand 27) that exhibited the next best affinity value
(−9.1 kcal/mol) had 1 hydrogen bond with Ser172, 1 pi-alkyl and
1 pi-sigma bond with Phe150 residue of the protein (DS visualizer-
Figure 5A). No hydrogen bonds were revealed upon the
visualization of ligand 27-InlA complex in Ligplot+ and only
hydrophobic interactions to Ser173, Ser172, Phe150, Glu170 and
Asp213 were identified (Figure 5B). Also, Bonducellpin G (ligand
75) sharing the same value as that of ligand 27 possessed 5 hydrogen
bonds with residues including Asn151, Asn129, Ser173, Ser215 and
Asp213 as well as 1 pi-alkyl bonding with Phe150. The ligand also
had an additional pi-pi stacked bonding with Phe150 residue (DS
visualizer- Figure 6A). Figure 6B (Ligplot+) shows that ligand
75 formed hydrogen bonds with Asn129 and Ser173 each at a
distance of 3.15 Å and 3.23 Å. Moreover, this compound had
hydrophobic interactions with residues, namely, Ser215, Ser216,
Ser172, Phe150 and Glu170.
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Ligand 9 (Inuchinenolide C), ligand 39 (Arbusculin C), and
ligand 78 (Scabequinone) had a docking score of −9.0 kcal/mol
respectively. Out of the best 10 compounds, Axinysone C (ligand
44) showed the lowest binding affinity value of −8.8 kcal/mol
with InlA protein indicating its weak interaction with the target
protein when compared to the other compounds in the top
10 list. In contrast to the top 10 terpenes with the best
docking scores, Ampicillin displayed a remarkably low
binding affinity value of −8.7 kcal/mol. This result reveals
that the top 10 terpenes exhibited stronger interaction with
InlA in comparison to Ampicillin, pointing to the terpenes’
potential to be more bactericidal than the drug. Figures 7A, B
(2D images) and Figure 7C (3D images) depict the various
interactions involved between Ampicillin and InlA. Therefore,
based on the docking results, Bipinnatin and Epispongiadiol with
the highest docking scores could possibly act as potential
antibacterial agents that can suppress the virulence protein
InlA of L. monocytogenes. Furthermore, the key residues that
were observed predominantly in the docked complexes were
Ser172, Ser173, Phe150 and Asp213. This may also highlight the
vital role played by these residues in inhibiting the protein upon
binding with the antibacterial drugs thereby turning the
virulence protein inactive.

3.3 ADMET and biological activity analysis

Post docking, the 10 terpenes were subjected to ADMET and
biological activity analysis for a deeper understanding of their
pharmacokinetic profiles and wide spectrum of therapeutic
functions particularly the antibacterial activity. Some of the
significant pharmacokinetic characteristics and therapeutic
activities observed for the top 10 terpenes are shown in tables 4, 5.

One of the biggest challenges faced during oral drug
development is assessing the drug’s capability to cross the
intestinal epithelial barrier that estimates the rate and extent to
which the drug is absorbed into the human body eventually
impacting its bioavailability (Rudrapal et al., 2022; Aja et al.,
2021; Qaddir et al., 2017). For this reason, both HIA and Caco-2
intestinal cell permeability of the compounds were estimated. Except
for Tanacetin and Arbusculin C, the remaining terpenes exhibited
positive response for HIA indicating that each of those terpenes can
undergo intestinal absorption upon oral administration. Also,
Inuchinenolide C and Bonducellpin G did not show caco-2
permeability while all other terpenes had positive response for
the same. P-glycoprotein, an ABC transporter is a protein that
actively engages in a number of biological processes including drug
absorption, metabolism, distribution and excretion thereby
detoxifying and protecting the body from harmful substances. It
was discovered that none of the 10 compounds inhibited this
protein. With the exception of Tanacetin and Arbusculin C, the
remaining terpenes revealed BBB penetration. Moreover, all the
terpenes were observed to be non-carcinogens. The subcellular
localization of the terpenes were found to be in the mitochondria
except for Furodysinin in plasma membrane. In the case of acute
oral toxicity, the terpenes were categorized into four levels-mainly
category I, II, III and IV based on their LD50 values. Category I
consists of compounds with LD50 ≤ 50 mg/kg while category II has
compounds with LD50 > 50 mg/kg but less than 500 mg/kg.
Compounds with LD50 values higher than 500 mg/kg but less
than 5,000 mg/kg are grouped into category III and those with
LD50 value greater than 5,000 mg/kg comes under category IV.
Generally, compounds that fall in category III and IV are often
considered non-toxic while II is slightly toxic and category I
compounds are highly toxic (Guan et al., 2019). In this study,
none of the terpenes belonged to category I for acute oral

FIGURE 2
Structures of the top 10 terpenes.
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toxicity. However, Inuchinenolide C and Bipinnatin displayed
category II toxicity indicating their slightly toxic nature. Aside
from Artemisinin and Tanacetin that belonged to category IV, all
other terpenes were placed in category III. Thus, the top
10 compounds were predicted to have satisfactory ADMET
findings for the major parameters.

The biological activities possessed by the 10 terpenes were
further explored using the PASS web server. Antineoplastic,
antiprotozoal, immunosuppressant, antiinflammatory, antifungal,
antiviral and antileukemic activities were some of the
predominantly expressed functions of the 10 terpene compounds
obtained from the server and the Pa value was significantly higher
than Pi in all the activity predictions. Furthermore, all the terpenes
except for Inuchinenolide C, Furodysinin and Axinysone C
exhibited antibacterial activity supporting the core aim of the study.

3.4 MD simulation analysis

Bipinnatin (ligand 13) and Epispongiadiol (ligand 54)
showcased the highest binding affinities (−9.5 kcal/mol) based on
the docking data obtained and hence MD simulation was performed

for the complexes of these compounds with InlA protein as well as
the apo form of InlA over a 100 ns timescale. Here, the RMSD,
RMSF, Rg and SASA of the complexes and the apo protein were
computed as a function of time inorder to monitor the variations in
their stability, conformation and the amino acid residue interactions
(Joshi et al., 2021; Surti et al., 2020; Nagamalla et al., 2022).

3.4.1 RMSD analysis
The RMSD was assessed to understand the stability of both the

complex systems and apo protein that provides information on the
degree of protein deviation from its native conformation upon
ligand binding (Mani et al., 2023; Rampogu et al., 2022). The
backbone RMSD plots of ligand13-InlA, ligand54-InlA and apo
form are depicted in Figure 8. The apo protein started off with an
RMSD value of 0.25 nm and then attained stability at 0.3 nm after a
time period of 65 ns. This value was maintained till the end of 100 ns
MD run. The Bipinnatin-InlA complex (complex13), displayed
stability upto 20 ns at 0.3 nm RMSD but then significant
deviations were seen until 70 ns at 0.45 nm. After 70 ns, the
complex regained stability at the initial backbone RMSD value of
0.3 nm and remained stable with the same RMSD value until the
100 ns timescale. On the other hand, Epispongiadiol-InlA complex

TABLE 2 Top 10 terpenes with the best docking scores and their interacting residues.

Ligand
no.

Ligand
name

Binding
affinity

(kcal/mol)

Amino acid residues involved
(discovery studio visualizer)

Amino acid residues
involved (Ligplot+)

H-bond Pi-
sigma

Pi-
alkyl

Alkyl Others H-bond Hydrophobic

9 Inuchinenolide
C

−9.0 Ser429 — — Val422 Ser429
(Unfavourable

acceptor-acceptor
bond)

Ser429 (3) Asp457, Val428,
Asn427, Lys425

13 Bipinnatin −9.5 Ser173,Asp213 Phe150 Phe150
(2)

— — Ser173,
Ser172,
Asp213

Asn129, Asn151,
Phe150

21 Furodysinin −8.9 Ser172 (pi-donor) — Phe150
(4)

— — — Ser173, Asp213,
Glu170, Phe150,

Ser172

27 Artemisinin −9.1 Ser172 Phe150 Phe150 — — — Ser173, Ser172,
Phe150, Glu170,

Asp213

37 Tanacetin −8.9 Ser172 (2)
Ser192

— Phe150 — — Ser172,
Ser173

Asp213, Phe150,
Glu170, Ser192

39 Arbusculin C −9.0 Ser173, Ser172,
Ser192

— Phe150 — — Ser172,
Ser173

Asp213, Ser192,
Glu170, Phe150

44 Axinysone C −8.8 Ser215 — Phe150
(3)

— — — Ser173, Ser215,
Ser172, Asp213,

Phe150

54 Epispongiadiol −9.5 Ser172 (carbon
h-bond), Asn129
((2) 1 is pi- donor)

— Phe150
(3)

— — Asn129,
Glu170

Asn151, Phe150,
Ser172

75 Bonducellpin G −9.1 Asn151, Asn129,
Ser173, Ser215,

Asp213

— Phe150 — Phe150 (Pi-Pi
stacked bond)

Ser173,
Asn129

Ser215, Ser216,
Ser172, Phe150,

Glu170

78 Scabequinone −9.0 Ser173, Ser215 (pi-
donor)

— Phe150 — Asp213 (Pi-anion
bond)

Ser173 Ser215, Thr237,
Asp213, Ser172,
Glu170, Phe150
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TABLE 3 Docking scores of all the 80 terpenes and Ampicillin.

Sl.No. Ligands Binding affinity
(kcal/mol)

1 Carvone −6.9

2 Aguerin B −8.6

3 Chlorojanerin −8.7

4 Janerin −8.7

5 Cynaropicrin −8.5

6 Britannin −8.3

7 Pulchellin −8.2

8 Zaluzanin C −7.7

9 Inuchinenolide C −9.0

10 Neopulchellin −8.0

11 Hemistepsin −8.7

12 Tetraneurin E −8.1

13 Bipinnatin −9.5

14 Athrolide B −8.6

15 Florilenalin −7.9

16 Annuolide C −8.4

17 Hysterin −8.0

18 Germacrene B −7.9

19 Alpha-Fenchene −6.1

20 Pinguisone −8.0

21 Furodysinin −8.9

22 Bisabolol −8.1

23 Hernandulcin −7.8

24 Lippidulcine A −8.3

25 Delobanone −8.7

26 Isoterpinolene −7.3

27 Artemisinin −9.1

28 Taurin −8.3

29 Santonin −8.4

30 Dehydrofarinosin −8.5

31 Yomogin −8.2

32 Encelin −8.6

33 Frullanolide −8.0

34 Tuberiferine −8.2

35 Traginone −7.6

36 Erivanin −8.3

37 Tanacetin −8.9

38 Rothin B −8.6

(Continued in next column)

TABLE 3 (Continued) Docking scores of all the 80 terpenes and Ampicillin.

Sl.No. Ligands Binding affinity
(kcal/mol)

39 Arbusculin C −9.0

40 Telekin −8.7

41 Himachalene −7.6

42 Isolepidozene −7.8

43 Thujopsadiene −7.6

44 Axinysone C −8.8

45 Kanshone F −7.9

46 Ramarin B −7.5

47 Ramarin A −8.4

48 Lindestrene −8.3

49 Isosericenin −6.5

50 Isofischeric acid −7.7

51 Dihydroisochromolaenin −7.6

52 Euryopsonol −8.1

53 Petasalbin −8.4

54 Epispongiadiol −9.5

55 Cespitularin A −7.9

56 Tetradymol −7.9

57 Velatumin −7.8

58 Curcolonol −7.9

59 Furanofukinin −7.4

60 Zedoarofuran −8.7

61 Euryopsol −8.7

62 Citronellal −5.4

63 Cyperusol C −8.0

64 Rhombitriol −7.8

65 Oxyphyllol −8.1

66 Isodrimenediol −7.4

67 Junenol −7.9

68 Platambin −7.8

69 Arctiol −7.2

70 Pterocarpol −8.4

71 Rhombidiol −8.2

72 Sulphureuine D −7.6

73 Penicieudesmol A −8.1

74 Lairdinol A −7.7

75 Bonducellpin G −9.1

76 Lindenenone −7.8

(Continued on following page)
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(complex54) was found to be stable after 50 ns maintaining a
backbone RMSD value of 0.3 nm. A slight decrease in RMSD
was noticed at 90 ns. Thus, ligand54- InlA complex was observed
to be more stable than ligand13-InlA complex and apo protein
according to the obtained RMSD results.

3.4.2 RMSF analysis
To gain a better understanding of the fluctuations in protein

atoms or residues resulting from ligand interaction, RMSF analysis
was carried out for all the 3 systems: apo protein, Bipinnatin-InlA
and Epispongiadiol- InlA complexes. The presence of more flexible
regions (turns, loops) are indicated by higher backbone RMSF values
while lower value confirms the presence of secondary structures
(helices or sheets) (Bhatt et al., 2021; Shahlaei et al., 2011; Krushna
et al., 2017). The initial RMSF of apo protein was recorded to be
0.29 nm and as the 100 ns run proceeded, maximum fluctuations
were observed at 0.33 nm between residues 420–440 and 450–480.
Similarly, the Bipinnatin-InlA complex also began with an RMSF
value of 0.29 nm and higher fluctuations were visible at 0.3 nm
between residues 490 and 500. Minimum fluctuations with an
average RMSF value of 0.2 nm were noted between the start and
end of the 100 ns trajectory. The starting RMSF value of
Epispongiadiol-InlA complex was noted to be 0.31 nm and
higher variations were observed between residues 450–480 at
0.3 nm. Hence, from the above results it can be inferred that
both ligand13-InlA and ligand54-InlA complexes did not exhibit
much fluctuations from the apo protein (Figure 9) indicating the
presence of more secondary structures than flexible regions in all the
systems. This can further reveal that the protein has undergone less
structural changes as a result of ligand binding.

3.4.3 Rg analysis
The radius of gyration (Rg) determined the structural compactness

of all the systems under study by measuring the atomic distribution
around the center of mass. In other words, Rg examines if the system
steadily folds or unfolds during the specific simulation time period
(Sharma et al., 2020; Thirumal Kumar et al., 2017; Apicella et al., 2017).
Rg plots generated for apo protein, Bipinnatin-InlA and
Epispongiadiol-InlA complexes are displayed in Figure 10. It was
discovered that both the protein and protein-ligand complexes had
relatively same and consistent Rg values over the course of 100 ns
trajectory. The average Rg value for all the systems were noted to be
3.05 nm. Therefore, this finding implies that the protein-ligand
complexes and apo protein were perfectly compact and in folded
condition during the entire 100 ns timescale.

3.4.4 SASA analysis
Solvent accessible surface area (SASA) is a parameter that estimates

the area of protein’s surface exposed to solvent. Usually, higher SASA
indicate greater exposure of protein residues to water which in turn lead
to smaller binding interface area. Hence, a lower SASA value is expected
during the MD run which indicates less protein expansion and better
stability of the protein structure (Rahman et al., 2021; Saini et al., 2019).
Initially, both apo protein and the protein-ligand complexes (ligand 13-
InlA and ligand 54-InlA) displayed similar SASA values of 210 nm2. As
the 100 ns simulation progressed, slight variations in the values were

TABLE 3 (Continued) Docking scores of all the 80 terpenes and Ampicillin.

Sl.No. Ligands Binding affinity
(kcal/mol)

77 Epicurzerenone −6.5

78 Scabequinone −9.0

79 Omphalone −7.9

80 Evodone −6.7

Reference
Ligand

Ampicillin −8.7

FIGURE 3
(A) and (B) 2D images of Bipinnatin interacting with InlA protein
observed in discovery studio and Ligplot+. Green dotted lines indicate
the hydrogen bonds involved while the red pockets containing amino
acid residues reveal the residues involved in hydrophobic
interactions (C) 3D view of Bipinnatin-InlA complex. Yellow dotted
lines represent the hydrogen bonds formed during the
binding process.
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observed for each of the three systems. By the end of 100 ns, both the
apo protein and Epispongiadiol-InlA complex had the same SASA
value of 205 nm2 while the Bipinnatin-InlA complex exhibited a
marginally higher value of 215 nm2. Thus, the above results suggest
that upon the binding of Bipinnatin, the InlA protein had more
exposure to solvent when compared to Epispongiadiol. Moreover,
the binding of Epispongiadiol had least affected the stability of InlA
protein as both the apo form and ligand 54-InlA complex showcased
similar SASA values by the end of 100 ns trajectory (Figure 11).

3.4.5 Principal component analysis
The collective motion of Bipinnatin-InlA and Epispongiadiol-

InlA complexes were predicted by PCA. In other words, PCA
determines the structural changes that occur in the protein upon
ligand binding (Maisuradze et al., 2009). The dynamics of the
2 protein-ligand complexes were estimated with respect to the
backbone. The initial principal components (PCs) help in the
recognition of dominating motions and also in obtaining a
significant portion of variance in the data. In order to
understand the motive variations amongst the complex systems,
the 2D projection of two eigenvectors (eigenvector 1 in X-axis and
eigenvector 3 in the Y-axis) were assessed using the essential
dynamics (ED) approach. A system is considered stable if it
occupies a small phase space with stable clusters whereas systems
that occupies more space and exhibits erratic clusters are categorized
as less stable (Tong et al., 2021). Figure 12 indicates that both the
complexes almost shared similar conformational spaces suggesting
the stable nature of InlA protein upon the binding of Bipinnatin and
Epispongiadiol.

FIGURE 4
(A) and (B) 2D images of Epispongiadiol interacting with InlA
protein observed in discovery studio and Ligplot+. (C) 3D view of
Epispongiadiol-InlA complex.

FIGURE 5
(A) and (B) 2D images of Artemisinin interacting with InlA protein
observed in discovery studio and Ligplot+.
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4 Binding free energy analysis

The total binding free energy of Bipinnatin-InlA and
Epispongiadiol-InlA complexes were computed after 100 ns
MD simulation. The overall binding free energy value of
Bipinnatin-InlA complex was noted to be −12.12 kcal/mol
which indicates the good stability and strong binding
interactions between the protein and Bipinnatin (Figure 13).
According to the data, the molecular mechanical energy changes
in the gas phase (ΔGGas) displayed the highest negative energy
value of −49.96 kcal/mol followed by the electrostatic
component of internal energy (ΔEele) contributing to a value
of −36.76 kcal/mol. In the case of Epispongiadiol-InlA complex,
a total binding free energy value of −18.36 kcal/mol was
observed which further suggests the strong binding and stable
nature of Epispongiadiol-InlA complex (Figure 14). Here, the
major contributor to the binding free energy was ΔGGas

(−34.16 kcal/mol) and ΔEvdW (van der Waal’s energy) was
the next best contributor with an energy value
of −19.15 kcal/mol. Hence, based on the energy data,
Epispongiadiol-InlA complex was more stable and had
stronger interactions with the protein compared to
Bipinnatin due their greater negative binding free energy
value. Tables 6, 7 depicts the various energy contributions
that resulted in the stable complexes of Bipinnatin and
Epispongiadiol with InlA protein.

5 Discussion

Listeriosis caused by L. monocytogenes is not just a single disease
rather a series of illnesses including meningitis, bacteremia,

FIGURE 6
(A) and (B) 2D images of Bonducellpin G interacting with InlA
protein observed in discovery studio and Ligplot+. FIGURE 7

(A) and (B) 2D images of Ampicillin interacting with InlA protein
observed in discovery studio and Ligplot+. (C) 3D view of Ampicillin-
InlA complex.
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TABLE 4 Pharmacokinetic properties of the top 10 terpenes.

Ligand
no.

Compound Human intestinal
absorption (HIA)

P-glycoprotein (P-gp)
inhibitor

Caco-2
permeability

Blood brain barrier
penetration (BBB)

Carcinogenicity Acute oral
toxicity

Subcellular
localization

9 Inuchinenolide C Yes (+) No (−) No (−) Yes (+) No (−) II Mitochondria

13 Bipinnatin Yes (+) No (−) Yes (+) Yes (+) No (−) II Mitochondria

21 Furodysinin Yes (+) No (−) Yes (+) Yes (+) No (−) III Plasma Membrane

27 Artemisinin Yes (+) No (−) Yes (+) Yes (+) No (−) IV Mitochondria

37 Tanacetin No (−) No (−) Yes (+) No (−) No (−) IV Mitochondria

39 Arbusculin C No (−) No (−) Yes (+) No (−) No (−) III Mitochondria

44 Axinysone C Yes (+) No (−) Yes (+) Yes (+) No (−) III Mitochondria

54 Epispongiadiol Yes (+) No (−) Yes (+) Yes (+) No (−) III Mitochondria

75 Bonducellpin G Yes (+) No (−) No (−) Yes (+) No (−) III Mitochondria

78 Scabequinone Yes (+) No (−) Yes (+) Yes (+) No (−) III Mitochondria
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encephalitis or serious pregnancy related infections that can be fatal
to those individuals with weakened immune system. According to
an earlier study, the Centers for Disease Control and Prevention
(CDC) estimated an annual occurrence of 1662 invasive listerial
infections in the United States leading to 1520 hospitalizations and
266 deaths (Cartwright et al., 2013). Development of effective
medications or antidotes against this disease-causing pathogen
continue to be a significant challenge, despite enormous
advancements in the medical sector. This failure can be
attributed to the bacteria’s growing resistance to antibiotics. The
bioactive compounds or phytochemicals found in plants have been
explored by several scientists and researchers over the years in an
effort to learn more about how these compounds might be able to
treat some of the major illnesses caused by different
microorganisms.

In the current work, we utilized in silicomethods to investigate
the possible antibacterial effect of terpenes on one of the virulence
proteins of L. monocytogenes, InlA. Many research studies have
reported a range of therapeutic properties of terpenes including

TABLE 5 Different biological activities exhibited by the top 10 terpenes.

Ligand no. Compound Activity Pa Pi

9 Inuchinenolide C Antineoplastic
Antiprotozoal
Antileukemic

Immunosuppressant
Antifungal

Antiinflammatory
Antioxidant

0.951
0.928
0.704
0.720
0.628
0.553
0.254

0.004
0.003
0.005
0.014
0.016
0.042
0.035

13 Bipinnatin Antineoplastic
Antieczematic
Antiprotozoal
Antileukemic

Immunosuppresant
Antiinflammatory

Antifungal
Antibacterial
Antiviral

0.936
0.896
0.787
0.761
0.763
0.700
0.567
0.434
0.386

0.004
0.005
0.005
0.005
0.009
0.016
0.022
0.024
0.108

21 Furodysinin Antieczematic
Dementia treatment

Antifungal
Antiinflammatory

Antiviral
Antiprotozoal
Antineoplastic

0.708
0.490
0.403
0.415
0.339
0.309
0.372

0.043
0.017
0.049
0.088
0.178
0.094
0.115

27 Artemisinin Antiprotozoal
Antineoplastic
Antiparasitic
Antifungal

Antileukemic
Immunosuppressant

Antiviral
Antibacterial

0.992
0.853
0.857
0.793
0.806
0.825
0.639
0.214

0.001
0.007
0.002
0.005
0.004
0.003
0.001
0.005

37 Tanacetin Antineoplastic
Dementia treatment

Antileukemic
Antifungal
Antibacterial
Antiviral

Antiprotozoal

0.860
0.529
0.506
0.457
0.332
0.375
0.245

0.006
0.010
0.014
0.038
0.049
0.122
0.069

39 Arbusculin C Antineoplastic
Antiprotozoal

Antiinflammatory
Antileukemic
Antifungal
Antibacterial
Antiviral

Dementia treatment
Immunosuppressant

0.947
0.768
0.564
0.561
0.442
0.331
0.385
0.513
0.464

0.004
0.006
0.040
0.010
0.041
0.049
0.009
0.012
0.050

44 Axinysone C Immunosuppressant
Antineoplastic
Antieczematic
Antileukemic
Dermatologic
Antiseborrheic

Dementia treatment

0.601
0.595
0.600
0.267
0.559
0.506
0.391

0.029
0.046
0.086
0.053
0.021
0.060
0.057

54 Epispongiadiol Antineoplastic
Antiinflammatory

Antiviral
Antifungal
Antibacterial
Antipruritic

Dementia treatment
Immunosuppressant

0.905
0.854
0.658
0.430
0.343
0.577
0.712
0.550

0.005
0.005
0.009
0.044
0.045
0.019
0.007
0.007

75 Bonducellpin G Antineoplastic
Hepatoprotectant

0.732
0.689

0.021
0.008

(Continued in next column)

TABLE 5 (Continued) Different biological activities exhibited by the top
10 terpenes.

Ligand no. Compound Activity Pa Pi

Antipruritic
Antiprotozoal
Antifungal

Immunosuppressant
Antibacterial

0.560
0.488
0.455
0.416
0.246

0.022
0.026
0.038
0.062
0.085

78 Scabequinone Vasoprotector
Hepatoprotectant
Antiinflammatory

Antifungal
Antibacterial
Antileukemic
Antioxidant

Insulin promoter

0.691
0.577
0.574
0.459
0.379
0.378
0.365
0.399

0.011
0.014
0.037
0.038
0.035
0.029
0.015
0.064

FIGURE 8
RMSD plots of Apo protein (black), Bipinnatin-InlA complex (red)
and Epispongiadiol-InlA complex (green).
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anticancer, antiinflammatory, antiviral, antidiabetic,
antiplasmodial and antimicrobial activities (Tetali, 2019). For
example, researchers have discovered terpenes and its
derivatives to be potential inhibitors of SARS-CoV-2 proteases
as well as a promising natural antagonists of cancer through in
silico studies (Diniz et al., 2021; Muhseen and Li, 2019). In our
previously published work, the inhibitory effect of terpenoids
(derived from terpenes) on another virulence protein of L.
monocytogenes were predicted utilizing computational methods
(Deepasree and Subhashree, 2023). Computational methodologies
have proven to be very beneficial in pharmaceutical research
because of their capacity to identify and generate novel, potent
drugs, especially through the use of molecular docking and
molecular dynamic simulation approaches. Every terpene

chosen for this investigation complied with “Lipinski’s rule of
five” and when these compounds were docked against the target
protein InlA, it became evident that Bipinnatin and Epispongiadiol
had the highest negative binding affinity values (−9.5 kcal/mol),
which made them the most potent drug-like compounds. This
work stands out for offering innovation as there are only very few
reports linked to the aforementioned compounds. Selecting only
the top ten compounds with the best docking scores, we proceeded
to investigate the pharmacokinetic properties and also predicted

FIGURE 9
RMSF plots of Apo protein (black), Bipinnatin-InlA complex (red)
and Epispongiadiol-InlA complex (green).

FIGURE 10
Rg plots of Apo protein (black), Bipinnatin-InlA complex (red) and
Epispongiadiol-InlA complex (green).

FIGURE 11
SASA plots of Apo protein (black), Bipinnatin-InlA complex (red)
and Epispongiadiol-InlA complex (green).

FIGURE 12
2D trajectory projection of Bipinnatin-InlA (red colour) and
Epispongiadiol-InlA (green colour) complexes during MD simulation.
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the possible biological activities that these ten compounds might
exhibit. The drugs chosen for analysis provided acceptable
ADMET results for the compounds and also found that all the
compounds with an exception of Inuchinenolide C, Furodysinin
and Axinysone C displayed antibacterial activity which supports
the goal of the study. Finally, the two compounds with the best

docking scores were subjected to MD simulation for 100 ns and the
results obtained suggests Epispongiadiol to be the best compound
over Bipinnatin due to its greater structural stability. However, the
aforementioned computational approaches have certain
limitations as these methods don’t completely capture the
cellular environments and other crucial interactions. In

FIGURE 13
Energy contributions of Bipinnatin-InlA complex.

FIGURE 14
Energy contributions of Epispongiadiol -InlA complex.

TABLE 6 Binding free energy of Bipinnatin-InlA complex determined using
GB calculations.

Energy component Average (kcal/mol)

ΔEvdW −13.2

ΔEele −36.76

ΔEGB 40.32

ΔEsurf −2.48

ΔGGas −49.96

ΔGSolv 37.84

ΔGbind −12.12

TABLE 7 Binding free energy of Epispongiadiol-InlA complex determined
using GB calculations.

Energy component Average (kcal/mol)

ΔEvdW −19.15

ΔEele −15.01

ΔEGB 18.43

ΔEsurf −2.63

ΔGGas −34.16

ΔGSolv 15.8

ΔGTotal −18.36
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addition, the exact mechanism of action or resistance mechanisms
may not be predicted by computational studies alone. Thus,
preclinical and clinical investigations would be required to
explore the in silico predictions in biological models for further
therapeutic applications.

6 Conclusion

This study aimed to understand the potential of 80 terpenes in
inhibiting one of the major virulence protein, Internalin A of the
pathogen L. monocytogenes. Among the terpenes, Bipinnatin and
Epispongiadiol were discovered to be the potential drug-like
candidates that could be targeted against InlA due to their good
binding affinity value of −9.5 kcal/mol. Although both the compounds
possessed antibacterial activity upon biological activity evaluation,
Bipinnatin belongs to a category of compounds that induces less
toxicity only at lower doses according to ADMET analysis while
Epispongiadiol is non-toxic even at higher doses. Results of the MD
simulation for 100 ns revealed Epispongiadiol to be better than
Bipinnatin due to their overall structural stability despite both the
compounds having identical docking scores. The MM/GBSA binding
free energy analysis confirmed the stable nature and stronger
interaction of Epispongiadiol with the virulence protein. Hence,
based on the in silico investigation, this work reports for the first
time that Epispongiadiol could be a possible antibacterial agent that
can be directed against InlA protein. Future studies are intended for
the in vivo/in vitro validation with the best compound identified
from this work.
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