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Discovery of plasma biomarkers
related to blood-brain barrier
dysregulation in Alzheimer’s
disease

Yuet Ruh Dan1,2 and Keng-Hwee Chiam1,2*
1School of Biological Sciences, Nanyang Technological University, Singapore, Singapore,
2Bioinformatics Institute, A∗ STAR, Singapore, Singapore

Introduction:Blood-based biomarkers are quantitative, non-invasive diagnostic
tools. This study aimed to identify candidate biomarkers for Alzheimer’s disease
(AD) using publicly available omics datasets, using the hypothesis that with
blood-brain barrier dysfunction in AD, brain-synthesized proteins can leak into
plasma for detection.

Methods:Differential abundance results of plasma and brain proteomic datasets
were integrated to obtain a list of potential biomarkers. Biological validity was
investigated with intercellular communication and gene regulatory analyses on
brain single-cell transcriptomics data.

Results: Five proteins (APOD, B2M, CFH, CLU, and C3) fit biomarker criteria.
4 corresponding transcripts (APOD, B2M, CLU, and C3) were overexpressed
in AD astrocytes, mediated by AD-related dysregulations in transcription
factors regulating neuroinflammation. Additionally, CLU specifically induced
downstream expression of neuronal death genes.

Discussion: In conclusion, a 5-protein panel is shown to effectively identify
AD patients, with evidence of disease specificity and biological validity. Future
research should investigate the mechanism of protein leakage through the
blood-brain barrier.

KEYWORDS

alzheimer’s disease, plasma biomarkers, blood-brain barrier, proteomics analysis,
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1 Introduction

First discovered in 1906, Alzheimer’s disease (AD) is now one of the most
common neurodegenerative diseases. Clinically, AD is characterized by amnestic cognitive
impairments, and neuropathologically, patients possess a signature of extracellularly
accumulated β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles. AD
accounts for up to 80% of all dementias (DeTure and Dickson, 2019) and costs US$1
trillion yearly (Livingston et al., 2020).

Diagnostic criteria for AD are subject to significant debate (Dubois et al., 2021).
Amyloid positivity is the main employed quantitative criterion, assessed through brain
positron emission tomography (PET) imaging or soluble Aβ levels in cerebrospinal
fluid (CSF). However, both are undesirable for large-scale applications, as PET
carries a significant financial cost, and the collection of CSF entails an invasive
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lumbar puncture. Furthermore, pure amyloid positivity is not
sufficient for an AD diagnosis, due to complex comorbidities and
the presence of amyloid deposits in cognitively normal patients
(Dubois et al., 2018). This renders neurocognitive testing as the
bottom line in AD diagnosis, a time-consuming and insensitive
process (Carson et al., 2018; Spering et al., 2012). Evidently, current
methods of diagnosis are subjective, cost-inefficient, and difficult to
administer. Novel diagnostic tools are thus needed.

Since samples can be obtained cheaply and easily, blood-based
biomarkers (BBMs) are increasingly touted as the ideal diagnostic
tool. Studies have evaluated the use of BBMs in determining amyloid
positivity, disease diagnosis, as well as risk of disease development,
leveraging on the development of high-throughput omics to
examine the plasma transcriptome, proteome, and metabolome.
For example, with a plasma panel of five proteins, Burnham et al.
(Burnham et al., 2014) predicted neocortical amyloid positivity with
sensitivity and specificity values of above 75%. However, though
many studies have since employed similar methodologies and
published promising results, progress is limited by significant inter-
study heterogeneity and poor reproducibility (O’Bryant et al., 2017).
A more theory-driven approach may thus be warranted to increase
validity of identified BBMs across samples and assay methods.

In this study, dysregulation of the blood-brain barrier (BBB) in
AD was investigated as a potential mechanism for plasma protein
dysregulation. Comprising a continuous monolayer of endothelial
cells, transport of macromolecules across the BBB is typically
greatly inhibited by junctional complexes such as tight junctions
and adherens junctions (Knox et al., 2022) which affect paracellular
transport, as well as low endogenous levels of transendothelial
transport (Sweeney et al., 2018). However, breakdown of this barrier
has been well-documented in AD. Enhanced permeability of the
BBB to fluorescent markers has been shown in AD mouse models
(Liu et al., 2020), together with decreased tight junction expression
and evidence of morphological vessel damage (Islas-Hernandez and
Garcia-Delatorre, 2020). In humans, magnetic resonance imaging
has also depicted increased permeability of peripheral contrast
agents into brain tissues (Sweeney et al., 2018) and increased
microhemorrhages in the cortices of AD subjects (van de Haar et al.,
2016) suggesting increased tissue extravasation of red blood cells.
As such, we hypothesised that as the integrity of the BBB weakens
with AD, proteins which are initially sequestered in the brain
will be able to leak out into the peripheral circulation, resulting
in some proteins being upregulated in AD plasma compared to
healthy control plasma. In particular, given that AD is a largely
protopathic disease (Johnson et al., 2022), proteins upregulated in
the brain as a consequence of AD-specific processes may be able to
be transported into the plasma, serving as BBMs that could diagnose
the presence or absence of AD.

Based on this theoretical underpinning, we aimed to identify
dysregulated plasma proteins that were upregulated in the AD brain
and transported through the faulty BBB, thus providing future
clinical and experimental investigations with reliable, data-driven
candidates for AD BBM validation (Figure 1). Overall, five proteins
were identified: apolipoprotein D (APOD), beta-2 microglobulin
(B2M), complement 3 (C3), clusterin (CLU), and complement factor
H (CFH).These proteinswere investigated as a 5-proteinBBMpanel,
and were assessed for effectiveness, specificity and validity as an AD
diagnostic panel.

2 Methods

The overall methodological framework of this study is
illustrated in Figure 2. Briefly, in the discovery phase, differential
abundance analysis was performed separately on plasma proteomics
data and brain proteomics data, and a list of proteins that were
significantly overabundant in AD plasma and brains were curated
as potential plasma biomarkers. Validation was assessed in three
prongs: biological validity of the plasma panel was confirmed
by investigating its association with markers of AD pathology,
peripheral inflammation and other neurodegenerative diseases,
while predictive validity of the panel was ascertained in a secondary
unseen plasma dataset. Finally, molecular validation was assessed
by studying upstream mechanisms of protein dysregulation in the
brain, to verify that the changes were AD-specific.

2.1 Study cohorts

Three plasma proteomics cohorts, three brain proteomics
cohorts and one single-cell RNA (scRNA) cohort consisting of
AD and healthy control (HC) samples were analysed in this study.
All datasets used are publicly available. Brain proteomics data
was generated from postmortem brain tissue collected through
the Emory Alzheimers’ Disease Research Center Brain Bank, The
National Institute on Aging’s Baltimore Longitudinal Study of
Aging and the Sun Health Research Institute Brain and Body
Donation Program of Sun City, Arizona. All brain proteomic
cohorts and the ANMerge plasma proteomic cohort were accessed
from the AD Knowledge Portal hosted on Synapse (https://
adknowledgeportal.org) and downloaded with their corresponding
metadata. The scRNA dataset and metadata was downloaded from
its website (http://adsn.ddnetbio.com/) (Grubman et al., 2019). The
remaining AD plasma proteomics dataset used was obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
while the Parkinson’s Disease Biomarker Program (PDBP) plasma
proteomics data was accessed and downloaded as a Supplementary
Table from Posavi et al. (2019). The datasets are listed in Table 1.

2.2 Data preprocessing

Prior to downloading, the ADNI plasma proteomics dataset
had undergone quality control performed by the Consortium,
namely, removal of analytes with more than 10% missing
data, transformation of non-normal protein data, imputation
of missing values, and removal of outliers. Demographics are
presented in Table 2. Subsequently, data was filtered for protein
abundance measurements performed during baseline visits, and
two samples were excluded due to discrepancies in the recorded
diagnosis. The variance of each protein abundance contributed by
age was calculated using linear regression, and it was found that
seven proteins had more than 10% of their variances explained by
age. The effect of age was thus corrected for with linear regression,
and this age-adjusted dataset consisting of 146 proteins and 564
samples was used for downstream analysis.

The ANMerge plasma proteomics dataset was log transformed
and corrected for batch processing effects. No further preprocessing
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FIGURE 1
Overview of study hypothesis for detection of BBMs for AD. Created with BioRender.com

was conducted, and the final dataset consisted of 1,001 unique
proteins and 699 samples. PDBP plasma proteomics had similarly
been log-transformed prior to downloading, and no significant
batch effects were observed thus no batch adjustment was
performed. A total of 1,305 proteins were measured in 376 samples.
Demographics of both cohorts are presented in Table 2.

Individually, brain proteomic datasets from the Emory
ADRC study, the BLSA study, and the Banner study were
filtered for potential analyte contaminants, analytes which were
only identified by a modification site, analytes part of a decoy
database, analytes with non-gene symbol names. Duplicate
measurements were averaged into a single column. Summary
statistics are presented in Table 3. Since all datasets utilized
the same label-free LC-MS/MS methodology with MaxQuant
quantification, normalized intensity data columns of each dataset
were subsequently merged for meta-analysis. Dataset-specific
correction was performed with the ComBat function in the R
package sva (Johnson et al., 2007), and the dataset was filtered
for proteins detected in less than 10% of samples. Imputation of
missing values was subsequently performed using the R package
missForest (Stekhoven and Bühlmann, 2012), a random forest
classification-based imputation algorithm. The final dataset used
for differential protein analysis consisted of 2,955 proteins and
250 samples.

2.3 Differential protein abundance analysis

Differential protein abundance analysis was performed on
plasma proteomics datasets as well as the combined brain
proteomic dataset using the Wilcoxon rank-sum test, with
Benjamin-Hochberg correction. An adjusted cut-off p-value of
0.05 was used.

Correlational analysis of the differentially abundant proteins
in the brain proteomic dataset was further performed against
fibrinogen. Fibrinogen is only synthesized in the periphery and
not the brain, thus fibrinogen levels in the brain are a well-
established marker of BBB permeability. An adjusted cut-off p-value
of 0.05 was used.

2.4 Validation of BBM panel

Random forest models using the R package randomForest
(Liaw and Wiener, 2002) were built using the candidate
BBMs as features, using default parameters. The R package
caret was used to subset plasma proteomic data into training
and testing data at a split of 0.8, and subsequently the R
package pROC (Robin et al., 2011) was used to test the random
forest models on diagnosis prediction. Receiver operator curves
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FIGURE 2
Methodology employed by this study. Created with BioRender.com.

(ROC) and the corresponding area under the ROCs (AUROC) were
obtained with the original ADNI plasma proteomics data, as well as
with ANMerge plasma proteomics data, which served as a separate
validation dataset.

2.5 CSF biomarker-corrected plasma BBM
analysis

340 samples from the ADNI plasma proteomics dataset were
able to be matched to CSF samples. Thus, a subset of the original
dataset was taken consisting of the 340 samples and merged with
their corresponding CSF biomarker data. Given that the original
ADNI diagnoses had been calculated purely on clinical measures,
samples in this CSF subset were checked for accuracy of diagnosis
according to amyloid positivity in CSF data as defined by a CSF
amyloid value of below 880. This resulted in the removal of 14
AD samples and produced a final dataset of 326 samples and
146 proteins. Differential abundance analysis between AD and

HC samples was performed with the R package Boruta (Kursa
and Rudnicki, 2010), using a cut-off p-value of 0.05 and all other
default parameters to obtain potential plasma biomarker proteins
that were specific to a neuropathologically and clinically accurate
AD diagnosis.

2.6 Differential single-cell transcriptomics
analysis of brain tissue samples

The downloaded single-cell transcriptomics data of AD
and healthy control entorhinal cortex samples consisted of
the raw values of 10,850 genes in 13,214 cells which had
been pre-annotated to microglia, neurons, endothelial cells,
astrocytes, oligodendrocytes and oligodendrocyte precursor
cells. Demographics are presented in Table 4. Subsequently,
the dataset was subset into the six annotated cell types, and
differentially expressed genes were obtained for endothelial
cells, astrocytes, and microglia using the pipeline provided
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TABLE 1 Datasets used.

Study Samples Tissue Assay type Accessed from

-a Healthy control, Alzheimer’s
disease

Entorhinal cortex Single-cell transcriptomics Grubman et al. (2019)

ANMerge Healthy control, Alzheimer’s
disease

Blood plasma Proteomics Available on Synapse:
syn22252881

Alzheimer’s Disease
Neuroimaging Initiative
(ADNI)

Healthy control, Alzheimer’s
disease

Blood plasma Proteomics Petersen et al. (2010)

National Institute of
Neurological Disorders and
Stroke Parkinson’s Disease
Biomarker Program

Healthy control, Amyotrophic
lateral sclerosis, Parkinson’s
disease

Blood plasma Proteomics Posavi et al. (2019)

Banner Sun Health Research
Institute Study

Healthy control, Alzheimer’s
disease

Dorsolateral prefrontal cortex Proteomics Available on Synapse:
syn7170616

Baltimore Longitudinal Study
on Aging (BLSA) Study

Healthy control, Alzheimer’s
disease

Dorsolateral prefrontal cortex Proteomics Available on Synapse:
syn3606086

Emory Alzheimer’s Disease
Research Center (Emory
ADRC) Brain Bank Study

Healthy control, Alzheimer’s
disease

Dorsolateral prefrontal cortex Proteomics Available on Synapse:
syn3218563

aNot part of a program.

TABLE 2 Demographics of plasma proteomics data.

ADNI plasma
proteomics

ANMerge plasma
proteomics

PD-BP plasma proteomics

AD HC AD HC PD ALS HC

n 111 453 430 269 215 59 102

Agea 74.73 (8.07) 74.77 (7.21) 77.73 (6.35)b 75.25 (5.36) 66.7 (8.55) 61.9 (10.5) 66.1 (10.5)

Gender (Male/Female) 64/47 285/168 148/383 125/144 114/101 33/26 51/51

aData is presented as mean (standard deviation).
bn = 399.

by the R package edgeR with TMM-wsp normalization
(McCarthy et al., 2012; Robinson et al., 2010). The final adjusted
cut-off p-value was set as 0.05.

2.7 Cell-cell communication analysis

Astrocyte-to-neuronal cell communication was assessed with
the R package nichenetr (Browaeys et al., 2020). Briefly, astrocyte
and neuron transcriptomics subsets were extracted and filtered
for genes with less than 95% missing values. Expressed genes in
astrocytes were then matched against ligands in a curated ligand-
receptor database, and the extent to which expression of this gene
was able to predict the downstream gene expression in neurons of a
set of genes involved in neuronal deathwas calculated as a prediction
score. Ligands expressed in astrocytes were ranked by prediction

score, and interactions with relevant receptors on neurons were
quantified.

2.8 Regulatory network analysis

Using the R package SCENIC (Aibar et al., 2017), gene
regulatory networks were probed in astrocytes. Briefly, coexpression
networks of transcription factors (TFs) with astrocytic genes were
obtained using a called package GENIE3, which utilizes random
forest models to determine the presence of relationships between
TFs and other expressed genes. This process results in networks of
coexpressed potential downstream genes helmed by a TF, known as
a regulon. Regulatory motif enrichment on sequences surrounding
the downstream gene start site is then performed, and genes
without enriched motifs matching the binding site of its associated
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TABLE 3 Demographics of brain proteomics data.

Emory ADRC Banner BLSA

AD HC AD HC AD HC

n 8 8 100 101 20 13

Agea 64.50 (5.83) 65.75 (6.54) 83.25 (6.18) 85.31 (5.22) 84.75 (7.25) 80.15 (9.27)

Gender (Male/Female) 4/4 5/3 58/42 56/45 10/10 10/3

Brain region Middle frontal gyrus Middle frontal gyrus Middle frontal gyrus

aData is presented as mean (standard deviation). Where age was coded as ‘≥90’, the numerical value of 90 was taken for calculation of summary statistics.

TABLE 4 Demographics of single-cell transcriptomics data.

AD HC

n 6 6

Agea 80.8 (8.19) 79.2 (7.47)

Gender (Male/Female) 4/2 4/2

Number of cells

Total 5,764 6,120

Neurons 249 407

Microglia 172 277

Oligodendrocytes 4,655 2,777

Oligodendrocyte precursor
cells

179 899

Endothelial cells 37 61

Astrocytes 472 1,699

aData is presented as mean (standard deviation).

TF are pruned from the network. Finally, each cell is scored on
regulon activity.

3 Results

3.1 Discovery of AD biomarkers
upregulated in the AD plasma and brain
proteome

40 proteins were significantly dysregulated (p-adj<0.05) in AD
plasma samples compared to HC plasma samples, of which 29 were
upregulated (Supplementary Table S1). In brain cortical tissue, a
total of 1,111 proteins were found to be significantly dysregulated
(p-adj<0.05) in AD versus HC samples, of which 499 were found
to be upregulated (Supplementary Table S2). To obtain a putative
set of BBM proteins transported from the brain, the intersection of
the differentially upregulated proteins in both datasets was taken,
resulting in a preliminary set of six proteins (Table 5). Haptoglobin
was subsequently removed from the panel due to a lack of specificity

TABLE 5 Panel of BBM proteins.

Gene symbol Protein Fibrinogen
correlation
coefficient

APOD Apolipoprotein D -

B2M Beta-2 microglobulin 0.240

CFH Complement factor H 0.455

CLU Clusterin 0.319

C3 Complement 3 0.657

HP Haptoglobin -a

aRemoved from further analyses due to nonspecificity to AD.

to AD, resulting in a final panel of 5 BBM proteins, APOD, B2M,
CFH, CLU and C3.

B2M, CFH, CLU and C3 were also found to be significantly
correlated with brain fibrinogen levels after false-discovery
correction (p < 0.05). This validates the presence of concurrent
BBB dysregulation and BBM overabundance, lending support to the
brain-to-blood leakage hypothesis.

3.2 Candidate BBMs are specific to AD

To ascertain specificity of the BBMs to AD, association of the
panel with alternative disease states was investigated. As mentioned,
literature review of the candidate BBMs revealed that haptoglobin
is a positive acute phase protein (Gulhar et al., 2023), a class of
plasma proteins which is known to increase in response to general
inflammation. As such, it was removed from further analyses as its
increased abundance in AD samples was unlikely to be a result of
brain-to-blood transport. The levels of each protein in AD and HC
conditions in the final panel are shown in Figure 3. Using COVID-
19 as a standard for systemic inflammation, the BBM panel was
also validated to be independent of peripheral inflammation, based
on published data of differentially abundant proteins in COVID-19
patient sera by (Shen et al., 2020).

To further rule out association of the BBM panel with generic
neurodegenerative pathology, differential abundance analysis of
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FIGURE 3
Levels of BBM proteins in Alzheimer’s Disease (AD) and healthy control (HC) plasma samples. Measurements were taken in µg/mL (A) Apolipoprotein D,
(B) beta-2 microglobulin, (C) complement factor H, (D) clusterin, (E) complement 3.

plasma proteins was performed between plasma samples of HC
with other neurodegenerative diseases, such as amyotrophic lateral
sclerosis (ALS) and Parkinson’s disease (PD). None of the BBMs
were dysregulated in the plasma samples of other neurodegenerative
diseases (p-adj<0.05; Supplementary Table S3). Re-analysis of the
original plasma proteomics data with CSF-corrected AD diagnoses
also preservedAPOD, CLU andC3 as specific BBMs of Aβ pathology.
Results thus showed that the final panel of diagnostic BBMs, APOD,
B2M, CFH, CLU and C3, were highly specific to AD diagnosis and its
characteristicneuropathology, independentlyofnoise fromperipheral
inflammation and neurodegeneration as a whole.

3.3 Predictive validity of the candidate BBM
panel in a separate plasma proteomics
dataset

To assess predictive validity, ROC curveswere built with random
forest models trained on the original plasma dataset, as well as a
novel ANMerge dataset, to investigate robustness of the BBMresults.

An AUC of 0.750 was achieved in the original dataset, and an AUC
of 0.702 was obtained in the validation dataset (Figure 4). The BBM
panel was therefore able to successfully differentiate AD from HC
samples with a suitable level of accuracy and precision.

3.4 Upregulation of candidate BBMs is
preserved at the mRNA level in AD
astrocytes

Investigation into the mechanism of dysregulation of the BBMs
in the brain with AD was performed after confirmation of the
BBMs as valid and robust AD biomarkers. Since the hypothesis
heavily implicated transportation through the blood-brain barrier,
cell types in the neurovascular unit, namely, endothelia, astrocytes
and microglia were probed with differential expression analysis.
215 genes were found to be differentially expressed in endothelial
cells, while 2,450 genes were found to be differentially expressed
in astrocytes and 337 were dysregulated in microglia. Differential
expression of the BBM proteins was only observed in astrocytes,
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FIGURE 4
Predictive validity of the 5-protein BBM panel in the ADNI and ANMerge cohort. Random forest models were built with APOD, B2M, CFH, CLU and C3
levels as features for prediction of AD and HC. Datasets were separated with a 80-20 train-test split and assessed for predictive validity. (A) ADNI
plasma proteome dataset (B) ANMerge plasma proteome dataset.

TABLE 6 Log fold change of BBM proteins at the mRNA level in
astrocytes.

Gene symbol logFCa in astrocytes

APOD 0.311

B2M 0.364

CFH -

CLU 0.305

C3 0.968

alog fold change.

where APOD, B2M, CLU and C3 were upregulated at the mRNA
level in AD patients (Table 6). This provides evidence that the
upregulated BBM proteins are brain derived.

3.5 BBM proteins are directly upregulated
by AD-related gene regulatory processes
and may be involved in neurodegeneration

Specificity of the BBMs to AD and evidence of transcript
upregulation in AD astrocytes suggest that transcription and
translation of the five proteins may be directly influenced by AD
pathology. To investigate this, regulatory network analysis was
performed on astrocytes. Further, a causative role of the BBMs
in neuronal death was then investigated using cell-cell interaction
analysis between neurons and astrocytes.

Activity of the regulons identified by the SCENIC algorithm
were generally able to distinguish between AD and HC astrocytes,
forming two moderately segregated clusters with distinct centroids.

This may suggest the presence of an astrocytic regulatory phenotype
preferentially present in AD patients (Figure 5A). Figure 5B depicts
the average direction of differential regulation of TFs in AD.
Amongst the downregulated regulons, a disinhibition of C3 was
shown by the TFZEB1. Of the TFs that showed increases in activities
in AD, CEBPB and JUNB were identified as specific upstream
regulators of CLU and APOD respectively.

Interestingly, cell-cell interaction analysis further revealed
astrocytic CLU itself as a major upstream signaling regulator of
genes involved in neuronal death (Figure 6A).CLU in astrocytes was
co-expressed with the low-density lipoprotein-related protein two
receptor (LRP2) and APP found on neurons (Figure 6B), and these
proposed signaling interactions appeared to drive the upregulation
of apoptosis genes CASP3 and BCL2 in neurons. Taken together, it
can be concluded that increased activity of CEBPB in AD astrocytes
enhances transcription and translation of CLU, and the increased
amounts of CLU secreted interacts with neurons to directly trigger
neuronal death and degeneration.

4 Discussion

Overall, this study identified five diagnostic BBMs that were
able to differentiate AD samples from HC samples with AUCs
of up to 0.75. These BBMs were upregulated in the plasma
and brain proteome of AD patients, suggesting that the proteins
may be brain-derived and may have leaked out into peripheral
circulation as a result of increased BBB permeability seen in AD.
The panel was not implicated in plasma protein changes during
peripheral inflammation or in other neurodegenerative diseases
such as PD or ALS, and was largely preserved in a neuropathology-
corrected differential analysis, suggesting specificity to AD. Further
supporting the source of the BBMs as the brain, transcripts
of four proteins, APOD, B2M, CLU and C3 were found to
be overexpressed in AD astrocytes. APOD, CLU and C3 were
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FIGURE 5
AD astrocytes have different regulatory network activities compared to HC astrocytes. As part of the SCENIC algorithm, single-cell transcriptomic data
from astrocytes were subject to gene coexpression analyses with known TFs to generate regulatory networks. Membership was confirmed by presence
of TF-binding motifs near the start site of the gene and cells were scored on regulon activity. (A) AD astrocytes segregated clearly in a t-SNE plot based
on activities in 96 regulons and 50 principal components, (B) Scores generated by SCENIC on each regulon based on diagnosis.

also highlighted as direct downstream targets of AD-dysregulated
signaling pathways in astrocytes. In particular, it was also shown that
upregulation of CLU, activated by the TF CEBPB, contributes to the
neurodegenerative phenotype of the disease.

4.1 BBB permeability in AD

Thecore hypothesis of this studywas that BBMswere upregulated
in the AD brain and subsequently transported across the impaired
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FIGURE 6
Astrocytic CLU is a significant regulator of neuronal apoptosis via interactions with LRP2 and APP. The top five astrocytic ligands best able to predict
downstream neuronal death gene expression are plotted. (A) CLU from astrocytes was significantly co-expressed with LRP2 on neurons, and (B) was
significantly able to predict downstream neuronal death genes.
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BBB, of which a key assumption is the impairment of the BBB in
AD. Transport across the BBB can occur by either paracellular or
transcellular mechanisms, and both pathways are highly suppressed
under healthy conditions (Sweeney et al., 2018). As such, damage to
the BBB on top of brain proteomic dysregulation is required
to transpose proteomic changes from the brain to the plasma
(Das Gupta et al., 2019), thus suggesting a two-part mechanism
for leakage of the BBMs into the plasma. In AD, BBB
disruption encompasses a wide variety of phenotypes such as
endothelial degeneration and pericyte loss (Sagare et al., 2013;
Salmina et al., 2010; Yang et al., 2022a). Since only a limited number
of proteins were found to be similarly upregulated in the brain and the
plasma, a protein-specificmechanism that only allows certainproteins
to cross the BBB into systemic circulation for detection as a BBM is
necessary, thus favouring the receptor-mediated transcytosis (RMT)
pathway over the nonspecific, size-dependent paracellular pathway.

Few studies investigate transcytosis across the BBB, especially
with regard to AD. Nevertheless, some evidence does exist for
the dysregulation of protein-specific transcytosis pathways in AD.
Dysfunction of blood-to-brain transcytotic processes have been
previously reported with age (Yang et al., 2022b), though protein
transport in the reverse direction was not studied. As mentioned
above, mechanisms of leakage of the five proteins through the BBB
was unable to be identified in this study, however pathways for some
have been proposed and experimentally validated in the literature.
The BBMs and their hypothesised pathways are discussed below.

4.2 Significance of BBMs in AD

Robust evidence in the literature links the BBM panel to
AD, with brain protein levels and upstream regulatory pathways
tightly associated to either the induction or consequence of AD
neuropathology.This provides a crucial evidence base substantiating
why the five proteins may be specifically upregulated in the AD
brain, and as such are able to be found in significantly larger amounts
in the plasma of AD patients.

This study highlighted CLU as a downstream target of increased
CEBPB activation with AD, which in turn enhances apoptotic
signaling in neurons. Also known as ApoJ, the CLU protein
is purported to perform many functions, including complement
inhibition, the transport of lipids, as well as the induction of
apoptosis [Foster]. Specifically in AD, CLU has been reported as a
plasma biomarker for cognitive ability (Meng et al., 2015). In the
brain, it co-localizes with Aβ plaques, and protects against AD by
inhibiting Aβ aggregation (Chen et al., 2021; Spatharas et al., 2022;
Wojtas et al., 2020), suggesting that upregulation of brain CLU in
AD may be compensatory and triggered in response to increased
Aβ load. Multiple single-nucleotide polymorphisms (SNPs) have
been reported in the CLU gene which significantly increase risk of
AD, suggested to be associated with dysregulated CLU transcript
levels (Dauar et al., 2022; Szymanski et al., 2011).Most interestingly,
CLU has also been ascribed a role in clearance of Aβ aggregates
across the BBB, due to its interactions with LRP2 at the basal
surface of endothelial BBB cells (Bell et al., 2007; Liu et al., 2022;
Zlokovic et al., 1996), presenting an established and validated RMT
pathway of CLU transport across the BBB. Interaction of astrocytic
CLU with endothelial LRP2 was unable to be assessed in this

study, as LRP2 mRNA was not reliably detected in endothelial cells,
irrespective of diagnosis. This is supported by a well-documented
difficulty in detecting LRP2 mRNA in cerebral microvessels, despite
the fact that LRP2 proteins are consistently found in brain endothelia
(Chun et al., 1999; Gosselet et al., 2009).

Another identified BBM of interest is the primary
histocompatibility complex I subunit B2M. Primarily an immune
response mediator [Li], upregulation of B2M in the AD brain may
be a marker of the severity of AD pathology. B2M has been shown
to exacerbate amyloid pathology in AD brains, and may be directly
responsible for the neurotoxic effects of Aβ aggregation (Zhao et al.,
2023). Increased plasma B2M levels have further been associated
with cognitive performance (Huang et al., 2023). Cross-BBB
transport of B2M has not yet been tied to any receptor (Smith et al.,
2015), however transport across the proximal convoluted tubule
in the kidney has interestingly been documented to be mediated
by LRP2 (Argyropoulos et al., 2017; Nomura et al., 2014), the same
receptor responsible for cross-BBB CLU transport. Further research
into B2M transport across the BBB would be necessary to confirm
such an association, however preliminary evidence may suggest
dysregulation of LRP2 function on the AD BBB in relation to
transcytotic protein leakage.

The remaining BBM proteins have received less attention
in terms of identification of transcytotic transport mechanisms.
However, upregulation of the proteins has been similarly implicated
in AD pathology. APOD, a transporter of small hydrophobic
molecules, has been shown to colocalize with Aβ plaques in the
cortex (Muffat et al., 2008), and plays a protective role by decreasing
the expression of the β-amyloid precursor protein in astroglial cell
cultures (Bhatia et al., 2019; Dassati et al., 2014; Rassart et al., 2020).
Upregulation of APOD may thereby aid in reducing plaque load
(Li et al., 2015). C3, one of the most robustly replicated plasma
BBMsofAD, is a crucialmodulator ofAβ plaque-associated synaptic
loss via interactions between astrocytes, the major producer of C3,
and microglia (Batista et al., 2024; Hong et al., 2016; Shi et al., 2017;
Wu et al., 2019). Finally, the complement pathway regulator CFH
has been identified as a genetic risk factor for AD, where risk alleles
represent dysregulations in CFH transcript levels (Veteleanu et al.,
2023). AD-related CFH SNPs are shown to affect cortical thickness
of the entorhinal cortex in AD patients, suggesting a CFH-driven
increase in cortical atrophy rate (Zhang et al., 2016).

Upstream of the increased levels of candidate proteins in the
brain, AD-related dysregulation of astrocytic transcription signalling
pathways was also revealed, namely, upregulation of CEBPB and
JUNB pathways and downregulation of the ZEB1 pathway. Activity
of the CCAAT-enhancer-binding TF CEBPB in glia cells has been
previously shown to be directly enhanced by the presence of Aβ
(Ramberg et al., 2011; Yao et al., 1833-1852), suggesting a direct link
between AD pathology and CLU upregulation. Other downstream
effects of CEBPB signaling include cytokine production, which causes
neuroinflammation, as well as upregulation of δ-secretase, a key
mediator of AD onset and progression which acts by cleaving both
tau and Aβ to trigger formation of plaques and neurofibrillary tangles
(Wang et al., 2018). However, while CEBPB signaling is strongly
associated with AD in literature, ZEB1 and JUNB pathways, which
regulate C3 and APOD respectively, are less well characterized.
Outside of AD, the ZEB1 regulatory network has been implicated
in neuroinflammation and astrogliosis (Poonaki et al., 2022), and
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interestingly, can regulate permeability of BBB endothelia under
hypoxia (Leduc-Galindo et al., 2019). Additionally, while the JUNB
regulatory network has not been implicated in AD processes,
the kinase signaling pathway of its TF binding partner, cJun,
has been consistently proven as a regulator of many AD-related
phenotypes, such as cognitive impairment, altered synaptic function,
glial clearance of Aβ plaques and neuronal death (MacDonald et al.,
2013; Sclip et al., 2014; Scopa et al., 2023). Investigation of these
novel signaling pathways in AD glial cells may be useful to
further our understanding of the molecular complexity of AD
effects on brain pathology.

4.3 Limitations and future work

Most primarily, this study is limited by a lack of direct evidence
supporting the increased BBB leakage mechanism of the BBMs
into AD systemic circulation. This is as BBB changes are difficult
to observe in proteomic or transcriptomic data, and largely rely
on neuroimaging data or post-mortem brain tissue analysis for
detection (Barisano et al., 2022). Thus, as a purely data study,
validation of increased protein transport across the BBB was
unable to be performed, potentially undermining the biological
relevance of 5 BBMs. In addition, AD has been increasingly
recognized as a stagewise, progressive disease, beginning from
a healthy stage to one of subjective memory complaints, mild
cognitive impairment (prodromal AD), and finally full-blown AD
(Kim et al., 2022). As such, investigating changes in the plasma
proteome in a stagewise manner and over a longitudinal time
frame may be better suited for management of this disease
to identify individuals at risk of progressing along the
trajectory (Guo et al., 2024), rather than the cross-sectional
methodology applied here.

Nevertheless, the integration of multiple datasets across three
different data modalities employed in this study provides a measure
of reliability and increases confidence in the validity of the identified
BBMs, allowing the panel to serve as a preliminary theoretical
foundation on which future investigations can be based on. Robust
specificity analyses eliminating noise from peripheral inflammation
and general neurodegenerative processes further substantiate the
panel’s efficacy in AD diagnosis. Although the AUROCs obtained in
this studymay not reach standards achieved by previously published
BBM panels (Jiang et al., 2022; Wang et al., 2023), its theory-based
approach may lend itself to greater replicability in different samples
and populations, especially crucial in a field where inter-study
heterogeneity is a significant problem. Undoubtedly, future studies
embarking on clinical validation of the protein panel in a real-world
population of AD and HC samples are necessary to conclude on the
efficacy of the panel as AD BBMs.

To conclude, 5 BBMs specifically dysregulated in AD were
obtained for AD diagnosis. Panel proteins were shown to be
upregulated in the brain in response to AD brain neuropathology,
supporting the brain source hypothesis, and may leak out into the
blood through dysregulated LRP family receptors on disrupted BBB
endothelia which mediate transcytosis across the BBB. Discovery of
this panel has implications on future clinical use, and may also serve
as a foundation for further research into brain-to-blood protein
transport in diseases involving BBB disruption.
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