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Machine learning (ML) has shown great promise in genetics and genomics where
large and complex datasets have the potential to provide insight into many
aspects of disease risk, pathogenesis of genetic disorders, and prediction of
health and wellbeing. However, with this possibility there is a responsibility to
exercise caution against biases and inflation of results that can have harmful
unintended impacts. Therefore, researchers must understand themetrics used to
evaluate ML models which can influence the critical interpretation of results. In
this reviewwe provide an overview ofMLmetrics for clustering, classification, and
regression and highlight the advantages and disadvantages of each.We also detail
common pitfalls that occur during model evaluation. Finally, we provide
examples of how researchers can assess and utilise the results of ML models,
specifically from a genomics perspective.
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1 Introduction

The general hype around the generative artificial intelligence (AI) era has increased the
popularity of machine learning (ML) for a range of applications. Alongside this, the advent
of “plug and play” style ML tools, such as PyCaret, has dramatically increased the
accessibility of ML to scientists and researchers without a traditional computational
background (Ali, 2020; Manduchi et al., 2022; Whig et al., 2023). In genomics, ML is
becoming increasingly used to analyse large and complex datasets, including sequencing
data (Caudai et al., 2021; Chafai et al., 2024). Therefore, it is increasingly important that “all”
researchers understand what happens after an ML model has been deployed. This is
particularly true for the choice of performance metrics and how to interpret the validity of
the results. As such, without understanding the common metrics used in ML, together with
an awareness of the inherent strengths and weaknesses of such metrics, there is a possible
risk of result inflation (Kapoor and Narayanan, 2023). Therefore, understanding the
potential biases within the input data is essential to successfully interpret the results
(Vokinger et al., 2021).

Existing reviews of ML applications to genetic and genomic datasets either focus on
earlier stages of the ML pipeline (e.g., feature selection, method selection), or give an
overview of the whole process (Libbrecht and Noble, 2015; Ho et al., 2019; Musolf et al.,
2022; Pudjihartono et al., 2022). This review addresses an important gap in the literature by

OPEN ACCESS

EDITED BY

Keith A. Crandall,
George Washington University, United States

REVIEWED BY

Piyali Basak,
Merck (United States), United States
Ali Taheriyoun,
George Washington University, United States

*CORRESPONDENCE

Catriona Miller,
catriona.miller@auckland.ac.nz

Justin O’Sullivan,
justin.osullivan@auckland.ac.nz

RECEIVED 01 July 2024
ACCEPTED 27 August 2024
PUBLISHED 10 September 2024

CITATION

Miller C, Portlock T, Nyaga DM and
O’Sullivan JM (2024) A review of model
evaluation metrics for machine learning in
genetics and genomics.
Front. Bioinform. 4:1457619.
doi: 10.3389/fbinf.2024.1457619

COPYRIGHT

© 2024 Miller, Portlock, Nyaga and O’Sullivan.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Review
PUBLISHED 10 September 2024
DOI 10.3389/fbinf.2024.1457619

https://www.frontiersin.org/articles/10.3389/fbinf.2024.1457619/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1457619/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1457619/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2024.1457619&domain=pdf&date_stamp=2024-09-10
mailto:catriona.miller@auckland.ac.nz
mailto:catriona.miller@auckland.ac.nz
mailto:justin.osullivan@auckland.ac.nz
mailto:justin.osullivan@auckland.ac.nz
https://doi.org/10.3389/fbinf.2024.1457619
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2024.1457619


focusing on the final section of the ML pipeline –model evaluation.
Specifically, we cover the most common use cases of ML in genomics
before an in-depth analysis of the metrics used to evaluate each
subtype, including the advantages and disadvantages of each. We
finalise by cautioning researchers and scientists of the common
pitfalls that can bias model performance and inflate the
metrics reported.

1.1 Types of ML typically used in genomics

Supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning are the four main types of
ML algorithms used within genetic and genomic datasets (Figure 1)
(Libbrecht and Noble, 2015; Ho et al., 2019; Koumakis, 2020;
Bracher-Smith et al., 2021). Here we focus on unsupervised and
supervised learning and their subcategories: clustering
(unsupervised learning), classification and regression
(supervised learning).

Clustering algorithms are processes for the identification of
subgroups within a population. Clustering can be performed
when data is prelabelled (e.g., known disease subtypes) or with
no a priori information. Clustering has been successfully used to
improve prediction (Alyousef et al., 2018), to identify disease-related
gene clusters (Di Giovanni et al., 2023), or to better define complex

traits/diseases (Lottaz et al., 2007; Lopez et al., 2018; Yin et al., 2018;
Awada et al., 2021).

Classification algorithms encompass all machine learning
methods where pre-labelled data is used to train an algorithm
to predict the correct class, where class refers to all data points
with a given label (e.g., control class or a specific disease class).
These are commonly used within genomics to predict a trait/
disease (i.e., diagnostics) (Trakadis et al., 2019; Lee and Lee, 2020;
Ho et al., 2022), or to identify potential biomarkers (Al-Tashi
et al., 2023). However, they can struggle with imbalanced datasets,
where one class is significantly more prevalent than the other,
leading to biased predictions (Ramyachitra and
Manikandan, 2014).

Regression algorithms, like classification algorithms, predict a
target variable for each datapoint or individual; however, they are
applied in applications involving continuous variables. For example,
regression algorithms are commonly used for the prediction of
highly heterogeneous traits with known scales such as height,
systolic blood pressure, and waist-hip ratio (Bellot et al., 2018;
Lello et al., 2018). While regression algorithms can capture
complex relationships between variables, they are sensitive to
outliers which can impact the reliability of predictions (Wang,
2021). This review only covers regression for continuous
variables. Other methods, such as negative binomial and Poisson
used in mutation burden analysis and differential gene expression

FIGURE 1
Flowchart showing four categories ofmachine learning. This review focuses on three subcategories (classification, regression, and clustering) within
the supervised and unsupervised categories.
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analysis (Sun et al., 2017; Li et al., 2019; Zhang et al., 2020), are
outside of the scope.

Classification and regression algorithms have also been
applied to add context to genomic data such as predicting
the regulatory impacts of single nucleotide polymorphisms
(SNPs). For example, the interpretable deep learning
sequence model Sei predicts sequence regulatory activity
based on chromatin profiles (Chen et al., 2022). Such a
framework can be considered both classification and
regression as it predicts a variant’s sequence class
(classification) and provides a regulatory impact score
(regression). In this case, classification provides users with a
more understandable output (e.g., promoter) but loses some of
the information, whereas the regression score captures more
information but is less interpretable. Therefore, by providing
both a classification and regression output, users can decide
between increased interpretability and information.

Clustering, classification, and regression algorithms all have
multiple metrics for evaluating their performance and this review
focuses on the most commonly used ones in genomics (Figure 1).
This review focuses on their applicability for evaluating models in
the fields of genetics and genomics. However, the majority of the
metrics detailed are also used for hyperparameter tuning during
cross-validation. The choice of the metric for tuning can greatly
impact the model produced, often resulting in a model that scores
highly for the provided metric at the expense of the other metrics.
Therefore, the advantages and disadvantages (both general and
genomic specific) discussed for each metric in this review are still
largely relevant when choosing a metric for hyperparameter tuning.
Yang and Shami (2020) provides a review of hyperparameter
optimisation.

2 ML metrics for clustering

The choice of metric for evaluating clustering algorithms
largely depends on whether there is access to a “ground truth”
(Box 1). If there are known categories to compare the clusters to,

extrinsic measures can be used such as the Adjusted Rand Index
(Hubert and Arabie, 1985) or Mutual Information (Vinh et al.,
2010) (Figure 2). Without a ground truth, intrinsic measures must
be used (e.g., the Sillhouette index or Davies Bouldin index).
Intrinsic metrics measure the similarities between points within
the same cluster compared to the similarity between clusters
(Figure 2). They score highly if the intra-cluster similarity is
greater than the inter-cluster similarity. Extrinsic metrics score
highly if the clusters are similar to the known ground truth
clusters (Figure 2).

2.1 Adjusted Rand Index

The Adjusted Rand Index (ARI) is a measure of similarity
between two clusterings of the same dataset, while accounting for
similarities that occur by chance (Hubert and Arabie, 1985). For
example, the ARI can be used to compare the similarity between
calculated clusters within a disease group and known clusters based
on disease subtypes.

ARI � RI − E

1 − E
where RI � a + d

Cn
2

andE � ∑ Cni
2( ) ×∑ C

nj
2( )

Cn
2

Given:
- n = number of samples in the dataset
- a and d = number of pairs of samples in the same and different
clusters between the two clusterings respectively

- ni and nj = number of samples in clusters i and j respectively

If ARI = −1, it indicates complete disagreement (i.e., no
individuals are in the same cluster as the known ground
truth), while ARI = 0 indicates an agreement equivalent to
that from random chance, and ARI = 1 indicates perfect
agreement (i.e., all individuals are in the same cluster as the
known ground truth). Figure 2 shows most individuals placed in
the same cluster as the known ground truth, meaning the ARI
would be between 0 and 1.

ARI is a common metric choice for validating the performance
of a clustering technique within biology (Shi et al., 2022; Zhen
et al., 2022). However, ARI is based on the assumption that the
known clusters are correct for the use case. For example, if the aim
of clustering is to identify novel groups within a population
(diseased or otherwise) or to identify similarities between
genetic variants, comparing against known clusters would be
detrimental to the problem (Awada et al., 2021). Another
limitation is ARI’s bias to cluster size. If a clustering contains a
mixture of large and small sized clusters, ARI will be
predominantly influenced by the large clusters (Warrens and
van der Hoef, 2022).

2.2 Adjusted Mutual Information

Adjusted Mutual Information (AMI) is a clustering metric that
comes from information theory (Vinh et al., 2010). It calculates how
much information is shared between two clusterings (i.e., known
clusters and calculated clusters).

BOX 1 | Glossary
Class – a group of samples or individuals with the same target variable. For

example, a control and asthmatic would be two classes in a classification
analysis.

Clustering ground truth – a known set of clusters for a given dataset.
Decision boundary – a score threshold used in classification algorithms to

assign individuals to classes.
Euclidean distance – the length of the line segment that would connect two

points.
Imbalanced dataset – a dataset where one class(es) appears at a much

higher rate than the other class(es).
Intra-cluster similarity – similarity between datapoints assigned to the same

cluster.
Inter-cluster similarity – similarity between datapoints assigned to different

clusters.
True positive rate (TPR) – also known as recall. The percentage of

“positive” samples that have been correctly labelled as “positive”.
False positive rate (FPR) – the percentage of ‘negative’ samples that are

incorrectly classified as “positive”.
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AMI U,V( ) � MI U,V( ) − E MI U,V( )( )
avg H U( ), H V( )( ) − E MI U,V( )( )

- U and V = two clusterings (e.g., calculated clusters and
known clusters)

- H = individual entropy – a measure of expected uncertainty
- MI = mutual information algorithm described by Vinh
et al. (2010).

- E = the expected value based on chance.

Both AMI and ARI adjust for chance and can be used to calculate
an algorithm’s performance when a “ground truth” is known.
Therefore, deciding when it is appropriate to prioritize one metric
over the other can be difficult. The key differentiating factor derives
from the fact that ARI scores solutions with similar sized clusters
higher. By contrast, AMI is biased towards “pure” clusters, consisting
of only one class type and are often imbalanced (Romano et al., 2016).
For example, if some disease subtypes are rarer than others resulting
in imbalanced cluster sizes, AMI is likely to be a more accurate metric
than ARI. Variations of AMI measures have been used in biology,
including to create gene regulatory networks (Shachaf et al., 2023),
identify SNP interactions (Cao et al., 2018), and to analyse similarities
between biomarkers (Keup et al., 2021).

2.3 Silhouette index

The Silhouette Index (SI) is a common metric that is typically
used when there are no labels for the data being clustered. It
compares the similarity within a cluster to the similarity between
clusters (Rousseeuw, 1987).

SI � 1
N

∑ s i( )where s i( ) � b i( ) − a i( )
max a{ i( ), b i( )}

Given:
- N = number of samples in the dataset
- a(i) = mean within cluster distance for sample i
- b(i) = mean distance between sample i and samples
within the nearest cluster

SI values range from −1 to 1 with negative values indicating that
the average sample has been assigned to “the wrong cluster.”Higher
scores (approaching 1) indicate robust clustering and the presence of
dense, well-separated clusters. In biological use cases, stratifying
individuals can be nuanced meaning clusters could be weaker. As
such, there is no guideline for an SI value that acts as a cut-off for
“good” clustering for biological data. Rather, the SI threshold varies
between use cases (Pagnuco et al., 2017; Zhao et al., 2018).

FIGURE 2
Illustration of cluster metric calculations. Extrinsic validationmethods require known clusters to compare against whilst intrinsic validation does not.
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The SI metric does not rely on labels or measure prediction validity.
Therefore, the SI metric is helpful for evaluating the comparative
performances of different clustering methods. However, the SI metric
cannot detect if the clustering is due to a bias in the data that is unrelated
to the trait (Chhabra et al., 2021). For example, when clustering whole
genome sequencing data, the clusters may be related to ancestry, sex, or
other traits distributed across the population and not the actual trait
being studied. Another disadvantage is the key assumption that clusters
are Gaussian, meaning that any SI values for data that does not follow a
spherical shape will be misleading (Thrun, 2018). For example, if a
disease has a limited number of genes associated with it, the genes would
not cover enough dimensions to be spherical and satisfy this assumption.
Sparsity can also result in irregular shapes. Therefore, the SI metric
would not be suitable in some cases, such as rare disease clustering, and
should always be used with caution. Nonetheless, it is a useful method in
genetics and genomics where clusters are often unknown so there are no
labels to compare against (Lopez et al., 2018; Yin et al., 2018).

2.4 Davies-Bouldin Index

A less common intrinsic method for evaluating clustering
performance is the Davies-Bouldin Index (DBI). This metric
compares the similarity between each cluster and the cluster
most similar to it (Davies and Bouldin, 1979).

DBI � 1
N

∑N
i�1
max Rij( )where Rij � si + sj

dij
and i ≠ j

Given:
- N = number of clusters
- si = the mean distance between each sample in cluster i and
cluster i’s centroid

- dij = the distance between cluster centroids i and j

DBI is an intrinsic method and shares many advantages and
disadvantages with the SI. However, unlike the SI, the lower the DBI,
the better the samples are clustered with zero being the minimum
score. The computation of the DBI is simpler and more efficient than
for the SI (Petrovi’c, 2006). This is a particularly valid consideration
for the analysis of large genomics datasets, particularly if the data
being clustered is whole-genome sequencing data. A limitation of DBI
is that the clustering algorithm for its generation requires the
Euclidean distance between cluster centroids (Davies and Bouldin,
1979). This is typically not a problem for genomics as Euclidean
distance is a common choice in bioinformatic analyses. However,
different distance matrices can provide different, even conflicting
results and there are times when another distance measure may be
more suitable for the research question (Jaskowiak et al., 2014). For
example, genomics datasets such as whole genome sequencing data
often suffer from sparsity meaning that most of the data is zeroes
(Yazdani et al., 2015). In these cases, DBI would not be suitable.

2.5 Other clustering metrics

While these four clustering metrics cover the majority of use
cases within genomics, there are other metrics that have their

advantages. These include internal metrics such as the Calinski-
Harabasz index (variance ratio criterion) (Caliñski and Harabasz,
1974; Babichev et al., 2017; Huang et al., 2021) as well as external
metrics such as the Fowlkes-Mallows index (Fowlkes and Mallows,
1983; Ryšavý and Železný, 2017; Lee et al., 2023). Methods such as
gap statistics are predominantly used for selecting the number of
clusters, however, can be used as a metric (Tibshirani et al., 2001;
Lugner et al., 2021). Advantages and disadvantages as well as
previous uses of these are included in Table 1.

3 ML metrics for classification

Classification is the machine learning category most frequently
used in genetics and genomics (Al-Tashi et al., 2023; Ho et al.,
2022; Lee and Lee, 2020; Trakadis et al., 2019). Whilst the
classification method complexity can range from simple logistic
regression to complicated deep learning algorithms, the metrics
remain predominantly the same. For parametric classifiers, the
choice of metric largely depends on (1) the distribution of the data
and (2) an understanding of the aim of the study. Nonparametric
decision boundaries do not make assumptions about the data’s
distribution (e.g., DD-classifier (Li et al., 2012)), however, these are
not covered in this paper. Common metrics include: accuracy, area
under the receiver-operator curve (AUROC), precision,
recall, and F1.

3.1 Accuracy

Accuracy is the simplest classification metric to understand and
is often reported in genomics papers (Chen et al., 2018; Trakadis
et al., 2019; Liu et al., 2021). Accuracy provides a measure of the
percentage of individuals who are correctly classified.

Accuracy � no. of correct classifications

total no. of classifications
× 100

The accuracy metric is used to evaluate how well an algorithm
assigns individuals to the correct category (e.g., predicting whether
someone has a particular trait or not). However, accuracy is heavily
impacted by imbalanced datasets (Bone et al., 2015; Poldrack et al.,
2020). For example, if a dataset of 100 individuals contains
10 diseased individuals and 90 healthy, an algorithm could get
an accuracy of 90% by predicting everyone to be healthy. This is a
real issue for genomic analyses, as they are often imbalanced due to
the ease of obtaining data from control in comparison to the
affected individuals, especially when dealing with rare traits/
diseases (Devarriya et al., 2020; Faviez et al., 2020; Dai et al.,
2021). Therefore, it is important to understand the dataset
structure to enable an objective assessment of the
accuracy measure.

3.2 Precision, recall, and F1

Confusion matrices (Figure 3A) are a simple way to display
predictions for a population by separating them into those that
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TABLE 1Overview of the common clustering, classification, and regressionmetrics including their advantages, disadvantages, and example uses in genetics
and genomics.

Metric
name

Description Advantages Disadvantages References

Adjusted Rand
Index (ARI)

Compare similarity between
calculated clusters and a ground
truth (or different clustering)
(Hubert and Arabie, 1985). For
example, predicted clusters in a
disease group and known disease
subtypes

- Compared to Rand Index, corrects
for when the number or size of
clusters could be impacted by
chance (Hubert and Arabie, 1985).
Important for genetics where there
is high dimensionality

- No bias toward certain cluster
shapes (Steinley, 2004)

- Requires a known ground truth
clustering set so cannot be used if you
want to identify new variant or disease
subtypes

- Biased to cluster size, influenced by
large clusters (Warrens and van der
Hoef, 2022)

- Not applicable to overlapping clusters
(e.g., genes in multiple pathways in
pathway analysis)

- Clustering of microbiome data (Shi
et al., 2022)

- Clustering of single-cell Hi-C data
(Zhen et al., 2022)

- Clustering differentially expressed
cancer genes (Wang et al., 2022)

Adjusted Mutual
Information
(AMI)

Compare similarity between
calculated clusters and a ground
truth (or different clustering) (Vinh
et al., 2010). Similar to ARI, but
more suitable for rare disease
subtypes (i.e., imbalanced clusters)

- Biased towards pure clusters, not
dependent on cluster size. More
suitable for imbalanced clusters
(e.g., rare diseases) (Romano et al.,
2016)

- Requires a known ground truth
clustering set so cannot be used if you
want to identify new variant or disease
subtypes

- Creating gene regulatory networks
(Shachaf et al., 2023)

- Identifying genetic variant
interactions (Cao et al., 2018)

- Analyse biomarker similarities
(Keup et al., 2021)

Fowlkes-Mallows
Index

Compare similarity between
calculated clusters and a ground
truth (or different clustering). The
geometric mean of precision and
recall for the clustering (Fowlkes
and Mallows, 1983)

- No bias toward certain cluster
shapes so can compare different
clustering algorithms (Fowlkes
and Mallows, 1983)

- The index is biased toward a small
number of clusters (Wagner and
Wagner, 2007)

- Estimating the sequence similarity
of two genomes (Ryšavý and
Železný, 2017)

- Creating genetic similarity matrices
for population substructures (Lee
et al., 2023)

Silhouette
Index (SI)

Compares the similarity within
clusters to the similarity between
clusters (Rousseeuw, 1987). For
example, finding the ‘best’
clustering to identify new disease
subtypes

- Usually handles outliers better
than DBI (Dixon et al., 2009)

- Useful for identifying the optimal
number of clusters (Shahapure
and Nicholas, 2020)

- Cannot detect if the clustering is due
to a bias in the data that is unrelated to
the trait (Chhabra et al., 2021)

- Assumptions rely on Gaussian clusters
so unsuitable for rare disease clusters
or sparse data (Thrun, 2018)

- Clustering Multiple Sclerosis (MS)
patients based on GWAS data
(Lopez et al., 2018)

- Clustering schizophrenia patients
based on clinical and genetic data
(Yin et al., 2018)

Davies-Bouldin
Index (DBI)

Compares the similarity between
each cluster and the cluster most
similar to it (Davies and Bouldin,
1979). For example, finding the
‘best’ clustering to identify new
disease subtypes

- Simpler and more efficient
computation than SI (Petrovi´c,
2006)

- Handles different shapes and
cluster count better than SI and
CHI (Davies and Bouldin, 1979)

- Requires Euclidean distances which
are not always suitable, e.g., in sparse
datasets (Davies and Bouldin, 1979)

- Cannot compare between datasets
(Dixon et al., 2009)

- Gene expression clustering for
systematic autoinflammatory
diseases (Papagiannopoulos et al.,
2024)

- Clustering single-cell
transcriptomes for identification of
cell types and states (Zhao et al.,
2023)

Calsinki-Harabasz
Index (CHI)

Compares the similarity within
clusters to the distance from the
cluster to the global centre (Caliñski
and Harabasz, 1974). For example,
finding the ‘best’ clustering to
identify new disease subtypes

- Simple and efficient computation,
an important consideration for
large genomics datasets (Caliñski
and Harabasz, 1974)

- Assumes that clusters have equal size
and density (Caliñski and Harabasz,
1974). Spherical assumptions are
unsuitable for imbalanced clusters
(e.g., rare disease clusters)

- Risk stratification from electronic
health record data (Huang et al.,
2021)

- Gene clustering from single-cell
data with reduced uncertainty (Li
et al., 2023)

Gap Statistics Compares within cluster variation
to the expected value from a
reference distribution (Tibshirani
et al., 2001). A method for selecting
the optimal number of clusters but
can also be used as a metric with
higher values indicating it is
significantly better than random

- Useful for identifying optimal
cluster numbers (Tibshirani et al.,
2001)

- Useful for evaluating the clusters
with respect to random noise
(Tibshirani et al., 2001). This is
helpful in genomics where there is
uncertainty over whether the
disease or variants being clustered
have subtypes or not

- Not as direct as the previously listed
metrics

- Relies on comparison with random
distribution, not comparing clustering
properties (Tibshirani et al., 2001)

- Clustering type 2 diabetes based on
clinical biomarkers (Lugner et al.,
2021)

- Choosing the number of clusters for
population clustering based on short
tandem repeats (STRs) (Syukriani and
Hidayat, 2023)

Accuracy Percentage of samples correctly
predicted. For example, the
percentage of individuals correctly
labelled diseased or control

- Very simple to understand - Heavily impacted by imbalanced
datasets which are common in
genomics (Bone et al., 2015; Poldrack
et al., 2020)

- Prediction of schizophrenia from
genetic and clinical data on comorbid
conditions (Chen et al., 2018)

- Prediction of ADHD from genetic
variants (Liu et al., 2021)

Precision Percentage of samples predicted to
be “positive” that are actually
“positive”. For example, the
percentage of identified variants
that are predicted correctly

- Useful when false positives are
more detrimental than false
negatives

- Only considers the positive
predictions (e.g., predicted cases)

- Identifying drug sensitive cancer
cell lines (Naulaerts et al., 2017)

- Analysing gene expression profiles
from microarray data while
maintaining high precision (Salem
et al., 2017)

(Continued on following page)
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were correctly predicted to be controls (true negatives; TN),
correctly predicted to be cases (true positives; TP), incorrectly
predicted to be controls (false negatives; FN), and incorrectly

predicted to be cases (false positives; FP) (Figures 3A, B). The
precision, recall, and F1 classification scores can be calculated
from these four groups.

TABLE 1 (Continued) Overview of the common clustering, classification, and regression metrics including their advantages, disadvantages, and example
uses in genetics and genomics.

Metric
name

Description Advantages Disadvantages References

Recall Percentage of “positive” samples
that were correctly predicted. For
example, the percentage of breast
cancer cases correctly predicted

- Useful when false negatives are
more detrimental than false
positives

- Only considers the positive class (e.g.,
cases). You could get 100% recall by
predicting everyone to be a case

- Improving recall of taxonomic
metagenomic sequence
classification (Girotto et al., 2017)

- Early detection of cervical cancer
with high recall (Gupta et al., 2021)

F1 The harmonic mean of precision
and recall. For example, minimising
both missed diagnoses (false
negatives) and incorrect diagnoses
(false positives) in a genetic testing
algorithm

- Focusses on the trade-off between
precision and recall in one metric

- More suitable for imbalanced data
than accuracy, however, less so
than AUROC (Jeni et al., 2013)

- Does not consider true negatives
which can be important (e.g.,
identifying individuals who do not
carry a specific mutation in carrier
screening)

- Training geneformer, a model using
single-cell transcriptomes for
context aware predictions of, e.g.,
gene network dynamic (Theodoris
et al., 2023)

- Survival prediction of heptocelluar
cancer based on clinical data and
biomarkers (Książek et al., 2021)

Area Under
Receiver-Operator
Curve (AUROC)

The area under the curve (AUC) of
the true positive rate (TPR) plotted
against the false positive rate (FPR).
Often used to compare different ML
models for predicting a certain
disease or variant types

- Useful in an objective model
comparison, particularly when the
optimal decision boundary is
unknown

- Visualises the trade-off between
TPR and FPR.

- Alone it provides little clinical
significance as it is not at a specific
decision boundary

- Susceptible to biases from imbalanced
and small datasets which are common
in genomics (however, less so than
accuracy) (Faviez et al., 2020)

- Gives false positives and false negatives
the same weighting; often not the case
in genomics (Ioannidis et al., 2011)

- Prediction of Parkinson’s disease
from genetic variants (Ho et al.,
2022)

- Prediction of Alzheimer’s disease
from gene expression data (Lee and
Lee, 2020)

Matthews
Correlation
Coefficient (MCC)

A balanced metric to evaluate
classification predictions
considering true negatives (TN),
true positives (TP), false negatives
(FN), and false positives (FP)
(Matthews, 1975; Baldi et al., 2000)

- Considers all confusion matrix
components (TN, TP, FN, FP)

- Handles imbalanced data better
than accuracy, F1 and AUROC
(Chicco and Jurman, 2020; 2023)

- Currently less known so less familiar
to readers without a ML background

- Predicting melanoma from mRNA
and methylation data (Bhalla et al.,
2019)

- Predicting cancer progression from
RNAseq data (Singh et al., 2018)

Cohen’s kappa Evaluates the level of agreement
between two groups (originally
between two raters, now often
between predictions and ground
truth) taking into account chance
agreement (Ben-David, 2008)

- Accounts for agreement expected
by chance (Ben-David, 2008)

- Less intuitive to set a threshold in
clinical settings as it is a relative
measure

- Not robust to asymmetric confusion
matrices or imbalanced data and can
therefore give conflicting values to
MCC (Jeni et al., 2013; Delgado and
Tibau, 2019)

- Microbial risk assessment using
next-generation sequencing (NGS)
(Njage et al., 2019)

- Predicting individuals’ lithium
response from genetic variants
(Stone et al., 2021)

Mean Absolute
Error (MAE)

The average absolute difference
between the predicted values and
known values. For example, the
average distance (in kg) that a
model is from predicting birth
weight

- Easy to interpret as shares units
with measurements

- Low sensitivity to outliers
(Hodson, 2022)

- Cannot be used to compare the
predictions of datasets with different
variances

- Predicting bone mineral density
form genetic variants (Wu et al.,
2021)

- Predicting gene expression from
‘landmark genes’ using cluster-
based regression (Seok, 2021)

Root Mean
Squared Error
(RMSE)

Similar to MAE, it is the average
absolute difference between the
predicted values and known values.
However, it is the square root of the
mean squared error

- Easy to interpret as shares units
with measurements

- Higher outlier sensitivity than MAE
(Hodson, 2022)

- Predicting BMI from clinical and
genetic data (Harrison et al., 2017)

- Analysing association between body
fat and cardiovascular risk (Saito
et al., 2017)

R-squared
Error (R2)

Proportion of variation in the target
variable that the regression model
explains. For example, the
percentage of variation in height
explained by a regression model
with known biomarkers

- Unitless so easy to compare
different models

- Relying on a high R2 during model
tuning can lead to overfitting
(Bohrnstedt and Carter, 1971)

- Tends to increase as parameters added
(fixed with adjusted R2) (Bohrnstedt
and Carter, 1971)

- Analysing association between
genetic scores and birth weight.
Used R2 and adjusted R2 (Haulder
et al., 2022)

- Comparing predictability of genetic
risk scores for different traits across
different ancestral groups (Ekoru
et al., 2021)
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Precision � TP

TP + FP
Recall � TP

TP + FN
F1 � 2 × P × R

P + R

Given:
- TP: number of true positives
- FP: number of false positives
- FN: number of false negatives
- P: precision
- R: recall

Precision (or positive predictive value [PPV]) refers to the
percentage of samples predicted to be “positive” that are actually
“positive”; that is, a 100% precision means that there were no
samples incorrectly labelled as “positive”. However, precision
does not consider positive samples that were incorrectly labelled
“negative”. By contrast, recall (or sensitivity) refers to the percentage
of “positive” samples that were correctly labelled as positive; that is, a
100% recall score means that no positive samples were incorrectly
labelled as negative. The F1 score is the harmonic mean of these
precision and recall metrics. Therefore, a high F1 score requires both
a high precision and a high recall. The importance of the precision
and recall metrics varies according to the problem. For example, if
an algorithm has been designed for disease diagnosis, incorrectly
labelling an individual as health would be more harmful, making
recall more important than precision (Chen et al., 2017). On the

contrary, if an algorithm focuses on identifying genetic variants of
interest or transcriptional effects, it is more important that the
majority of the identified variants are correctly predicted, even at the
expense of missed variants (false negatives). In this case precision
would be more important than recall (Ioannidis et al., 2011).

3.3 Area under a receiver-operator curve

Area under a Receiver-Operator Curve (AUROC) is a common
metric used in genomics as it is helpful for model comparison (Lee
and Lee, 2020; Gupta et al., 2022; Ho et al., 2022). AUROC is
calculated by plotting the true positive rate (TPR; equivalent to
recall) against the false positive rate (FPR) and finding the area
underneath this curve (Figures 3C, D). AUROC quantifies how well
a model distinguishes between different classes by summarising the
model’s performance at all decision boundaries (Box 1) into one
value. This is different from other metrics (e.g., accuracy, precision,
and recall) that only consider the model at a given decision
boundary. However, even though AUROC is commonly used in
genomics, it is not always useful on its own as, despite being helpful
for model comparison, using AUROC alone provides little measure
of clinical significance. For example, AUROC does not provide
insight into howwell a specific model will perform upon deployment

FIGURE 3
Illustration of classificationmetrics. (A)Confusionmatrix used to calculate precision and recall. (B) the score distribution and threshold that gives the
confusion matrix in (A). Every score below the dashed line is assigned to the negative class whilst scores after the dashed line are assigned to the positive
class. (C) An Area Under the Receiver-Operator Curve (AUROC) graph for the given score distribution. Different chosen thresholds (dashed lines) give
different ratios of FPR to TPR. (D) AUROC graphs for the three distribution patterns. Pink shows complete separation, blue is partial separation, and
yellow is complete crossover.
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(e.g., for diagnosing a disease) as this requires a decision boundary to
have been chosen and validated.

Two keys assumptions limit the use of AUROC. Firstly, AUROC
assumes false positives and false negatives are equally undesirable,
which is not always the case in genomic analyses where the
consequences of incorrectly predicting someone has not got a
particular condition (false negative) can be far greater than the
consequences of incorrectly predicting that they do (false positives)
(Ioannidis et al., 2011). Secondly, AUROC is susceptible to biases
from imbalanced and small datasets, both of which are common in
genomics, particularly within studies of rare diseases (Faviez et al.,
2020). Given these limitations, many studies will report the AUROC
metric alongside metrics that include accuracy, precision, and recall,
which are calculated at a given decision boundary and thus provide
more clinical significance (Gao et al., 2021; Liu et al., 2021).

3.4 Matthew’s correlation coefficient and
Cohen’s kappa

The above metrics are a selection of those most commonly used
in ML for genomics and are arguably the easiest to understand.
However, like with clustering, there are many other metrics
available. Two metrics that are increasing in popularity and
address some of the disadvantages of the metrics listed above are
Matthew’s correlation coefficient (MCC) (Singh et al., 2018; Bhalla
et al., 2019; Chicco and Jurman, 2020) and Cohen’s kappa (Ben-
David, 2008; Njage et al., 2019; Yu et al., 2019; Stone et al., 2021).
Particularly, MCC has been suggested as a preferential metric to the
more popular ones discussed in this section due to its increased
reliability with imbalanced datasets (Chicco and Jurman, 2020;
2023). Advantages, disadvantages, and use cases for these are
listed in Table 1.

4 ML metrics for regression

Regression is less common in genomic studies than
classification. However, it is helpful in predicting highly
heterogenous traits with known scales such as height, systolic
blood pressure, and waist-hip ratio (Bellot et al., 2018; Lello
et al., 2018). The choice of regression metric for a particular
analysis is also more nuanced than in classification studies, as the
advantages and disadvantages of each option are less obvious.
However, regression metrics that are commonly used include
mean absolute error (Shahid and Singh, 2020), root mean
squared error (Shmoish et al., 2021), and R2 (Harrison et al.,
2017; Haulder et al., 2022).

4.1 Mean absolute error

Mean absolute error (MAE) is a commonmethod for measuring
the average difference between the predicted values and the
known values.

MAE � ∑n

i�1
yi − xi

∣∣∣∣ ∣∣∣∣
n

Given:
- xi = predicted value i
- yi = true value i
- n = number of data points

The units for MAE are the same as the data points, making it
easier to understand. However, this means it is hard to compare
different predictions if the underlying data have different units. For
example, Lello et al. (2018) used machine learning to predict height,
heel bone density, and educational attainment from the same dataset
(UK Biobank). They chose to look at the total variance explained by
the model, however, had they chosen MAE as their metric instead,
they would not be able to easily compare the predictability of the
three traits – due to the different units used to measure each trait.

MAE has several strengths that make it useful, in particular
MAE is less sensitive to outliers as it gives equal weight to all errors
(Hodson, 2022). However, giving equal weighting to all errors means
MAE cannot be used to compare the predictions of datasets with
different variances even when these incorporate the same
measurement units (e.g., predicting two body measurements in
datasets with differing variance).

To take advantage of the strengths and restrict the impact of the
limitations associated with the use ofMAE,many researchers choose
to report MAE alongside other metrics, such as root mean squared
error and R2 (see below) (Shahid and Singh, 2020; Shmoish et al.,
2021; Zhang et al., 2021).

4.2 Root mean squared error

Root mean squared error (RMSE) is another frequently used
metric for measuring the average difference between the predicted
values and actual values in regression.

RMSE �
												∑n

i�1 yi − xi( )2
n

√

Given:
- xi = predicted value i
- yi = true value i
- n = number of data points

Similar to MAE, the units for RMSE are the same as those used
for the data points. However, RMSE is more sensitive to outliers than
MAE. This means RMSE gives larger weightings to these errors
(Hodson, 2022). As such, whether MAE or RMSE is a better error
metric has been hotly debated. Willmott et al. (2009) argued that
sums-of-square-based statistics such as RMSE can not be used to
represent average error as they vary in response to both error
variability and central location. Chai and Draxler (2014) debated
this, using simulations to show that RMSE is not only not
ambiguous, but is more valuable than the MAE when the
expected error distribution is Gaussian. It has also been
suggested that a ratio of the two metrics is a more accurate
metric than either option individually (Karunasingha, 2022).

RMSE has been used in genomic studies as a metric for
predicting heterogeneous traits (Harrison et al., 2017; Shmoish
et al., 2021). However, like MAE, RMSE is typically reported

Frontiers in Bioinformatics frontiersin.org09

Miller et al. 10.3389/fbinf.2024.1457619

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1457619


alongside the R2 error, which measures the proportion of variation
explained by the model (see below) (Harrison et al., 2017; Shmoish
et al., 2021).

4.3 R-squared error

The R-squared error (R2), also known as the coefficient of
determination, provides a measure of the proportion of variation
in the variable being predicted (target variable) that the regression
model explains.

R2 � 1 − ∑n
i�1 yi − xi( )2∑n

i�1 yi − ymean( )2
Given:

- xi = predicted value i
- yi = true value i
- ymean = mean of true values
- n = number of data points

Unlike MAE and RMSE, R2 error is not measured in the same
units as the data points but instead varies from 0 (model explains 0%
of target variable variance) to 1 (model explains 100% of target
variable variance). Because of this, R2 error is easily used to compare
different models. A large R2 suggests that the model is a good fit for
the data. On the other hand, low R2 values can mean that there is a
significant amount of noise compared to signal (i.e., low signal-to-
noise ratio). A low R2 is not always bad, however, as it may just be
indicative of low effect sizes which are common in complex disease
genetics (Marian, 2012). Conversely, a high R2 is not always good.
Relying on a high R2 for model tuning can result in overfitting as it is
not robust to the number of predictors (Bohrnstedt and Carter,
1971). Notably, R2 tends to increase when new variables are added to
the model, even if they do not cause significant improvement(s)
(Bohrnstedt and Carter, 1971). This can be compensated for by
using the adjusted R2.

Adjusted R2 � 1 − 1 − R2( ) n − 1( )
n − p − 1

Given:
- n = number of data points
- p = number of independent variables/predictors

The adjusted R2 decreases if the additional parameters do not
increase the model’s predictability. Therefore, the adjusted R2 is
often a more suitable measure for genomic studies, where models
frequently use many variables (e.g., many genes, clinical scores, sex,
and anthropometric measures) to predict target variables (e.g.,
birthweight) (Haulder et al., 2022).

5 Common pitfalls that lead to
exaggerated metrics

Regardless of the chosenmetric, some common pitfalls can result in
the wrong conclusions being drawn. This can be particularly
problematic in genetic and genomic studies, especially if a published

model is thought to be more accurate at predicting a disease than it is.
However, overfitting of data is the main cause of exaggerated metrics
(England and Cheng, 2019). A model is considered overfit if it predicts
extremely well for the training data but is a poor predictor outside the
context. The chance of overfitting is greatly reduced by splitting the data
into a training and test dataset, however, if enough models are trained
on the training dataset, it is possible to find one that performs well on
the test dataset by chance. For example, Chekroud et al. (2024) found
that a machine learning model designed to predict patient outcomes of
individuals in schizophrenia drug trials had high accuracy for
predictions within the trial dataset used to train the model.
However, in other trials its performance was no better than chance
(Chekroud et al., 2024). Therefore, when optimising a model to achieve
higher scores in the chosen metrics, it is crucial to remember that the
scores are only relevant for the dataset(s) that the model is trained and
tested on. This relates to the concept “bias-variance tradeoff”where high
bias comes from a simplified model and leads to underfitting whereas
high variance comes from a complex model with low training errors,
leading to overfitting (Geman et al., 1992). As mentioned in the
previous section, some metrics (including R2) are more prone to
overfitting, and adjustments can be made to minimise this problem
(e.g., adjusted R2). Reproducibility is critical so that the pipeline can be
repeated on another dataset to confirm the validity of themodel’s claims
(Pineau et al., 2021) and identify overfitting.

Another common cause of exaggerated metrics is if the test data
does not remain unseen by the model during training. That is, the test
data must be kept hidden throughout feature selection and model
training. Otherwise the model may learn features from the test dataset
that it would not have otherwise learnt. A common mistake is to split
the data after feature selection has begun (e.g., after genes or SNPs have
been selected based on a statistical test), however, doing so will lead to
inflated metrics (Kapoor and Narayanan, 2023). For example, Barnett
et al. (2023) found that 44% of the genomic studies they investigated
had inflated metrics due to data leakage during feature selection. On
average, they saw an AUROC increase of 0.18 because of this data
leakage. Unlike with overfitting, all metrics are equally impacted by this
bias so care must be taken both during model training and when
evaluating the metric scores. Again, reproducibility is essential to
confirm the validity of the model’s claims and identify any biases.

Even if an effort is made to ensure the data is not overfit to the
training data and the test data remains unseen, it is important to
understand the limitations of the dataset.Models createdwith data from
a specific subpopulation may not be meaningful when applied to other
populations (De Roos et al., 2009; Gurdasani et al., 2019). For example,
an algorithm using SNP information within a European population to
predict a disease may not be as accurate when applied to different
population groups. Understanding the dataset means it is easier to
check for any biases inflating the reported metrics. For a dataset of
individuals with and without a particular disease, if there is information
on ancestry or sex, a simple check should be performed to confirm that
the model remains unbiased toward a specific group. If there is a
disparity in metric scores between groups, reporting the metrics for the
different groups separately brings awareness to these biases.

A checklist of standards for publishing papers on AI-based
science has been created that covers eight sections, including
metrics and reproducibility (Kapoor et al., 2023). Specific
reproducibility standards for the life sciences have also been
published (Heil et al., 2021).
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6 Discussion

Machine learning is a powerful tool within genetic and genomic
research and has become increasingly accessible to researchers.
However, care must be taken when choosing a metric for
evaluating model outputs and interpreting the results. There is
no one-size-fits-all metric available. We contend that multiple
suitable performance metrics should be chosen based on an
understanding of the dataset and the research question. Result
reproducibility is crucial for readers to trust the reported metrics,
as is a discussion of potential biases within the data and model that
could have impacted the metrics. After reporting on the model’s
performance, biases should be considered. It is best to keep the
research question and data context in mind throughout the process
to ensure reliable and confident results.
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