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Quantification of muscle fiber
malformations using edge
detection to investigate chronic
muscle pressure ulcers
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Background: Microscopy of regenerated tissue shows different morphologies
between the healing of acute wounds and chronic wounds. This difference
can be seen manually by biologists, but computational methods are needed
to automate the characterization of morphology and regenerative quality in
regenerated muscle tissue.

Results: From the detected edge segments, we computed several imaging
biomarkers of interest, such as median tortuosity, number of edge segments
normalized by area, median edge segment distance and interquartile range of
orientation angles of edge segments of the microscope images of successful
and unsuccessfulmuscle regeneration.Weobserved thatmuscle fibers in saline-
treated pressure ulcers had a larger interquartile range of orientation angles of
the edge segments (p = 0.05) and shorter edge segment distances (p = 0.003)
compared to those of acute cardiotoxin injuries.

Conclusion: Our edge detection method was able to identify statistically
significant differences in some of the imaging biomarkers between saline-
treated pressure ulcers and cardiotoxin injuries, suggesting that chronic
pressure ulcers have increased muscle fiber malformations compared to
cardiotoxin injuries.

KEYWORDS

edge detection, deep learning, imaging biomarkers, tissue morphology, muscle fibers,
pressure injuries

Abbreviations: mPU, muscle pressure ulcer; PU, pressure ulcer; RCF, Richer Convolutional Features;
τ is defined by Equation 2; c is defined by Equation 2; d is defined by Equation 2; X is defined by
Equation 1; l is defined by Equation 1; k is defined by Equation 1; Z is defined by Equation 1;W is defined
by Equation 1; b is defined by Equation 1; Y′ Output before sigmoid operation; I Composite image; P(E)
Edge probability map; E Edgemap; S Skeletonized edges; p pixels; A area;NNumber of edge segments;
h It is defined in Figure 6; w It is defined in Figure 6.
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1 Introduction

Tissue regeneration is responsible for repairing the function
and maintaining the quality of organs. The quality of tissue
regeneration depends not only on cell proliferation but on multi-
cellular geometry and meso-scale morphology (Anderson, 2022),
which can be assessed from microscope imaging. Computational
methods are required for automated analysis of tissue regeneration,
but the goals of analysis depend on the specific tissue being studied.

Muscle tissue has cylindrical fibers (myofibers) organized as
bundles of straight lines. While minor damage within the cell
membrane of muscle fibers is patched by fusing intracellular
vesicles with the damaged sarcolemma (Kaczmarek et al., 2021),
more severe muscle damage can be repaired by a myogenic process
where the muscle satellite stem cells proliferate and differentiate
into muscle progenitor cells. The progenitor cells then migrate
toward sites of injury and fuse to create a multi-nucleated myotube.
Finally, myotubes undergo amaturation process that includes lateral
fusion as well as intracellular rearrangements to form myofibers
(Grand and Rudnicki, 2007). When the myogenic sequence is
successful, the end result is the restoration of normal (straight
and parallel) myofiber morphology and contractile function.
Unsuccessful muscle regeneration occurs in many genetic disorders
(e.g., muscular dystrophy) and our recent work characterized
abnormal muscle regeneration in chronic wounds from pressure
(Nasir et al., 2022; Nasir et al., 2023).

Muscle pressure ulcers (mPU) are categorized as chronic
wounds because healing is often slow or incomplete (Mervis and
Phillips, 2019; Preston et al., 2017). Our recent work (Nasir et al.,
2023) collected samples of injured and regenerated muscle while
varying the type of injury and the type of post-injury treatment,
under controlled conditions in vivo, namely, deferoxamine
(DFO)-treated pressure ulcers, saline-treated pressure ulcers
and cardiotoxin injuries. This is a comparison between acute
injury (cardiotoxin), with myofibers being restored to their initial
morphology after a period of time, and chronic muscle pressure
ulcer, where myofibers regenerate incompletely and poorly with
branched fibers even after a prolonged period of time. These
recapitulate real world chronic muscle injuries where split fibers
are considered as defective regeneration (Eriksson et al., 2006) and
are especially vulnerable to reinjury (Pichavant et al., 2015). To
provide better samples for developing precision analysis methods,
confounding effects from infection and microbial colonization
were prevented by conducting the entire experiment in a specific-
pathogen-free facility.The resultingmicroscope images of successful
and unsuccessful muscle regeneration provide the starting point for
our current problem statement, which is to develop an automated
score of regeneration quality via computational quantification of
microscopic muscle morphology.

There is no current approach to automate quantification of
regenerative quality based on myofiber morphology in multi-
channel confocal images. Moreover, there is no formal classification
of fiber malformations such as tortuosity, non-parallel structures,
or the presence of split fibers (smaller or greater than 90°). In
particular, tortuosity has been investigated as a biomarker in
many areas, such as in the field of ophthalmology, where retinal
vascular tortuosity has been studied as a biomarker for retinal and
cardiovascular diseases (Poirier et al., 2024). Vessel tortuosity has

also been investigated in tumor vasculature and was able to predict
immune checkpoint inhibitor response (Alilou et al., 2022). These
muscle fiber malformations usually appear with increased waviness
or non-parallel bundles of fibers. Manual judgment of muscle fiber
malformations can also be subjective, varying by scientist, and the
scientific community requires a portable, invariant approach that
different scientists can use. In particular, one of the main features of
these muscle fibers were the edges, where straight and parallel lines
were indicative of normal myofiber morphology and wavy, non-
parallel and split lines were indicative of poor regenerative quality.
As one of the basic features in the edge, the image edges appear to
be extremely relevant in identifying thesemalformations. To capture
the extent of split, wavy and non-parallel lines, the density of edge
segments, edge segment distance, orientation of edge segments, and
waviness will be of relevance in a quantitative approach.

Early methods of edge detection, such as Canny edge detection
or Robert operator, often involved the use of intensity and color
gradients (Canny, 1986).The Robert operator (Roberts, 1965) works
as a local difference operator to detect the image contour. However,
these algorithms are usually sensitive to noise and edges could be lost
when excluding the noise (Rong et al., 2014). In addition, the Canny
edge detector works optimally in scenarios where high-contrast
edges were present, hence failing to detect edges where there was
only a gradual change in brightness (Martin et al., 2004).

Due to inadequacies in methods using intensity and color
gradient changes, more complex methods based on posterior
probability of a boundary using features such as brightness, color
and texture (Martin et al., 2004) were developed. Konishi et al.
(2003) utilized presegmented images to learn the probability
distributions of filter responses. Based on the filter responses, a
likelihood ratio test can be conducted to detect the edges. In
addition, structured learning was utilized by Dollár and Zitnick
(2013) to leverage on local edge patterns such as straight lines or T-
junctions to predict a structured segmentationmask.However, these
approaches often utilized handcrafted features for training models
to predict edges. These features might lack high level representation
to capture semantically meaningful edges. In multichannel confocal
images of muscle fibers, there could be low image contrast between
neighbouring muscle fibers, hence rendering methods based on
intensity or color gradient changes ineffective. Due to the low image
contrast, there could be a presence of false negatives, in which
semantically meaningful edges would be required.

Recently, the feasibility of using deep learning in Computer
Vision meant that many low-level computer vision tasks, such as
edge detection, could now achieve SOTA performance, with an
optimal dataset scale metric reaching 0.894 on benchmark datasets
such as the Multicue Dataset for Boundary Detection (Soria et al.,
2021). This is coupled by the availability of datasets for developing
edge detection methods, such as the Berkeley Segmentation Dataset
500 (BSDS500) dataset (Arbelaez et al., 2010). This led to an
explosion of new deep-learning edge detectors using convolutional
neural networks (CNN). Convolutional neural networks are a type
of neural network which operate primarily on images. It comprises
convolutional layers which consist of convolutional kernels which
are optimized (O’shea and Nash, 2015). One of the first applications
of Deep Learning was DeepEdge by Bertasius et al. (2015) via a
multi-scale deep network to classify the presence of a contour and
to predict the fraction of labelers in consensus to the presence
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of a contour at a certain point. Xie and Tu (2015) proposed the
Holistically-Nested Edge Detection and resolved the detection of
edges via multiple scales. Other convolutional methods include
Richer Convolutional Features (RCF) (Liu et al., 2017), Deep Crisp
Boundaries (Wang et al., 2018) and DexiNed (Poma et al., 2020). In
particular, RCF aimed to leverage on features from all convolutional
layers in CNN-based models, tapping upon the rich feature
representations learned by these convolutional layers acrossmultiple
scales. RCF had been shown to outperform other deep learning
and non-deep learning approaches in Optimal Dataset Scale and
Optimal Image Scale metrics for the BSDS500 dataset (Liu et al.,
2017). Given the SOTA performance demonstrated by RCF and to
capture the rich convolutional features in different layers, we hence
proposed a combination of a deep-learning based edge detection
approach based on RCF together with image processing methods to
derive quantitative measures of these muscle fiber malformations.

Here, we first utilized an edge detector, RCF,
proposed by Liu et al. (2017) to condense all the convolutional
features at different stages of their neural network.The edge detector
is applied to the multi-channel confocal images of mouse muscle
with cardiotoxin injury, mPU treated with saline or mPU treated
with deferoxamine, to extract an edge probability map of these
muscle fibers. Thereafter, post-processing is done and relevant
biomarkers, such as tortuosity, number of edge segments normalized
by area, are quantified to provide a quantitative measure for muscle
fiber malformations.

2 Method

2.1 Mice

Animal experiments were approved by the institutional animal
care and use committee of SingHealth, Singapore (SHS/2016/1,257).
Five-month-old C57BL/6 mice were used for the experiments, both
male and female, with n = 6 mice per group. To conditionally label
the Pax7 expressing muscle satellite (stem) cells, we crossed the
Pax7-Cre-ERT2with the R26R-Confetti mouse. Once the Cre-ERT2
was activated, it would recombine the confetti construct, resulting
in the random expression of one of four fluorescent proteins,
mCerulean (CFPmem), hrGFP II (GFPnuc), mYFP (YFPcyt)
and tdimer2 (12) (RFPcyt). CFPmem would be localized to the
sarcolemma, GFPnuc would be localized in the nucleus and YFPcyt
and RFPcyt would be located in the cytoplasm.

2.2 Injury models

Figure 1 illustrates the experimental setup of the various injury
models. To induce muscle pressure injuries, a pair of ceramic
magnets (Magnetic Source, Castle Rock, CO, part number: CD14C,
grade 8) was applied to the mouse dorsal skinfold, which consists
of a muscle layer, the panniculus carnosus. Pressure ulcer induction
was performed in two cycles, as previously described in Nasir et al.
(2023). Each cycle was made up of a 12-h period of magnet
placement followed by a 12-h period without magnets. This
previously established procedure induced two pressure wounds on
the back of the mouse, on the left and right side of the dorsal

skinfold. To treat the pressure injuries, mice were subcutaneously
injected with 60 mg/kg deferoxamine (DFO) while control mice
were injected with 0.9% saline for 16 days. At day 90 post-injury,
mice were euthanized and wound tissues harvested, fixed in 4%
paraformaldehyde (PFA), and stored until image acquisition.

At day 90 post-injury, mice were euthanized and 1 cm by 1 cm of
the wounded skinfold, consisting of the skin layers and panniculus
carnosus muscle, was harvested. These tissues were fixed in 4%
paraformaldehyde (PFA), and stored until image acquisition. The
mice which were induced with pressure ulcers and treated withDFO
were referred to as the PU + DFO group, while the mice which were
induced with pressure ulcers and treated with saline were referred to
as the PU + saline group.

To induce acute cardiotoxin injuries, 30 μl of 10 μM cardiotoxin
(Merck, Darmstadt, Germany) or naniproin (a cardiotoxin
homologue) was injected intramuscularly into the panniculus
carnosus of the dorsal skinfold of each side (left and right) of the
mouse. These mice were injected with 0.9% saline for 16 days. At
day 40 post-injury, mice were euthanized and 1 cm by 1 cm of the
wounded skinfold, consisting of the skin layers and panniculus
carnosus muscle, was harvested. These tissues were fixed in 4%
paraformaldehyde (PFA), and stored until image acquisition.
For cardiotoxin injured muscle, the myofibers have completely
regenerated by day 40, thus day 40 was chosen as the endpoint.
However, because pressure injured muscle at day 40 still showed
signs of ongoing regeneration (with the presence of myoblastic cells
and immature myofibers), the day 90 timepoint was chosen for the
pressure ulcer group.Themice whichwere inducedwith cardiotoxin
injuries were referred to as the Cardiotoxin group.

2.3 Image acquisition

Ex vivo confetti-fluorescent skin tissues, previously fixed with
4% PFA, were imaged using an Olympus FV3000 laser scanning
confocal microscope (Olympus, Tokyo, Japan). Excitation and
detection wavelengths used for the respective fluorophores were:
CFPmem: Ex. 457 nm and Em. 466–495 nm, GFPnuc: Ex. 488 nm
and Em. 498–510 nm, YFPcyt: Ex. 515 nm and Em. 521–560 nm,
RFPcyt: Ex. 559 nm and Em. 590–650 nm. Each image was a 4
× 4 tile-scan taken with a 30X silicone oil immersion objective
lens (NA: 1.05). Images were processed and exported using Fiji
(ImageJ) software. 2-3 images were acquired from each mouse, and
one representative image per mouse (making 6 images per group)
was used in the downstream image analysis pipeline. The brightness
and contrast of the images were adjusted using pre-set microscope
settings applied to all images to account.

2.4 Statistical analysis

As there are three groups, a one-way ANOVA (analysis
of variance) followed by the Tukey-Kramer post hoc test was
performed. The one-way ANOVA followed by Tukey-Kramer post
hoc test was used because the three groups are independent and
the images were acquired from different animals. A comparison was
made based on the biomarkers associated with the muscle fibers.
Compared with multiple t-tests, an ANOVA test controls for the
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FIGURE 1
Experimental setup of various injury models.

probability of a Type I error. In order to find out the groups which
significantly differed from each other, a Tukey-Kramer post hoc test
was performed. Tests and relevant comparison plots for biomarkers
were generated by GraphPad Prism (version 9.0.0 for Windows,
GraphPad Software, CA, USA). A single asterisk (∗) denotes a p-
value less than 0.05 (p < 0.05), double asterisks (∗∗) denotes p <
0.01 (∗∗∗) triple asterisks denotes p < 0.001 and quadruple asterisks
(∗∗∗∗) denotes p < 0.0001.

2.5 Manual counting by a trained biologist

A trained biologist is defined as a biologist who was trained by a
board-certified veterinary pathologist to look at tissue morphology
includingmuscle fibermalformations andhas spentmore than 100 h
looking at brightfield (H&E) and fluorescent microscope images.
The independent biologist evaluated the 18 images and counted
the fiber malformations present in each image. A wavy fiber was
assigned as one malformation, and one branch point in a split fiber
was assigned as one malformation, where split fibers may have more
than one branch point.

2.6 Image analysis

2.6.1 Overview of our framework
An overview of the framework is shown in Figure 2. First, we

applied a pretrained model, RCF (Liu et al., 2017), to predict the
edges on the composite RGB images, I, exported using Fiji (ImageJ)
software. The edge probability of the composite RGB image, P(E),
was then converted into thin edgeswith non-maximumsuppression,
to obtain E. Double thresholding and edge tracking by hysteresis
were performed to remove theweak edges. Next, skeletonizationwas
done to reduce the detected edges into a 1 pixel wide representation,
obtaining S. Last but not least, simple filtering based on edge
segment distance and Euclidean distance was performed to obtain
the final output S′, which was then used for the computation of

biomarkers. In this section, the primary steps of the framework are
shown below in Figure 2.

2.6.2 Pre-processing
The images obtained from the FV3000 laser scanning

microscope were saved in their raw formats (.oir). The files were
then opened in Fiji (ImageJ). Four channels (green, cyan, yellow
and red) were captured, corresponding to the confetti expression of
the fibers. The brightness and contrast of the images were adjusted.
A composite color image was obtained by merging the different
channels and saved as a.jpg file. Due to computational constraints,
the images were resized to half their original size. Similar to the
pre-processing steps in RCF, the pixels were normalized in each
channel by subtracting the mean intensity in each channel used in
the BSDS500 dataset.

2.6.3 Extraction of edge probabilities with RCF
The Richer Convolution Features for Feature Detection is

adapted from the VGG16 network, where there are 13 convolutional
layers and 3 fully connected layers. Liu et al. (2017) proposed that
the use of rich hierarchical information could guide in the problem
of edge detection. This involves the extraction of feature maps from
the five stages of the convolutional network.

Let X represent the intermediate feature map after 3× 3
convolution at each stage of the network, and l denote a
convolutional layer of the kth stage in the network. A 1× 1
convolution is performed on Xl,k to obtain Zl,k.

Zl,k =Wl,k
x Xl,k + bl,kx (1)

while Wl,k
x ∈ RFl×Fx×1×1 and bl,kx denote the weight matrix and bias

vector for layer l. The resulting feature maps Zl,k of the same
stage are summed together. Another 1× 1 convolution is performed
on the summed feature maps to obtain Z′k, where Wk

z ∈ R
1×Fz×1×1

and bkz denote the weight matrix and bias vector for stage k
performed on the summed feature maps.

Z′k =Wk
z (Z

l,k +Zl+1,k) + bkz
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FIGURE 2
Proposed approach.

FIGURE 3
Results after prediction with RCF. (A) Multi-channel confocal image. (B) Inverse edge probability maps after prediction with RCF.

FIGURE 4
Results after non-maximum suppression. (A) Multi-channel confocal image. (B) Output after non-maximum suppression.
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FIGURE 5
Output after (A) double thresholding and hysteresis tracking and (B) skeletonization.

TABLE 1 Biomarkers and their description.

Biomarkers Description

Median tortuosity c
d

Number of edge segments normalized by area N
A

Edge segment distance d

Standard deviation of orientation angles σarctan 2 h
w

IQR of orientation angles IQRarctan 2 h
w

Thereafter, deconvolution was performed on Z′k to obtain an
upsampled feature map Ẑk for k ≥ 2. The upsampled feature maps
for each stage kwere then concatenated and convolved with another
1× 1 convolution matrix to obtain the fused feature maps for the
5 stages to obtain Y′. Finally, a sigmoid activation operation was
applied to Y′ to obtain the final edge probability output P(E).
The final probability output will be the same size as the given
input image.

For our analysis, we refer to the implementation by the authors1.
The pretrained model on the BSDS500+PASCAL dataset is also
provided in the Github link. We tested the pretrained model on our
dataset using the multiscale edge detection configuration. Figure 3
shows the inverse edge probability map of a sample multichannel
confocal image after prediction with RCF, with the original image
on the left.

2.6.4 Image processing of edge probability map
The inverse of the edge probability map was further processed

to get the edge segments. Non-maximum suppression was
implemented to the detected edges to thin the edges using Piotr’s
Structured Edge Detection Toolbox (Dollár and Zitnick, 2013;

1 The corresponding GitHub repository is https://github.com/yun-liu/RCF-

PyTorch.

Dollár and Zitnick, 2014; Zitnick and Dollár, 2014). From the non-
maximum suppression, we obtained a mixture of weak and strong
edges. The results obtained after non-maximal suppression can
be seen in Figure 4.

In order to filter out possible noise, double thresholding was
used. There are two thresholds used in double thresholding, a low
threshold and a high threshold. We assign new labels to the pixels
p, categorizing them as weak, strong or intermediate, according to
their intensity. I(p) was compared to the low and high threshold, tl
and th. Pixels in the strong set are edge pixels, while pixels in theweak
set are non-edge pixels.

p ∈ {strong} , if I (p) > th
p ∈ {weak} , if I (p) < tl
p ∈ {intermediate} , if tl ≤ I (p) ≤ th

Thereafter, the edges were tracked via hysteresis. This means
that for any pixel in the intermediate set, they will be considered as
an edge pixel if and only if any of their surrounding neighbors in
the 8-connected neighborhood belongs to the strong set. Otherwise,
they will be considered as non-edge pixels. The output was then
skeletonized to obtain 1-pixel thick representations. Figure 5 shows
the output obtained after hysteresis tracking and skeletonization.

The borders of the skeletonized output were discarded due to
edge related artifacts. Next, the edge segments were characterized
into different categories, namely, an endpoint-to-endpoint,
junction-to-endpoint, junction-to-junction and isolated cycle, using
the skan package (Nunez-Iglesias et al., 2018). A junction is when
the edge segment intersects with another edge segment. Edge
segments which are smaller than 100 microns in length and/or
smaller than 50 microns in Euclidean distance are excluded.

2.6.5 Quantification of biomarkers
The following biomarkers were quantified from the pre-

processed edge segments. The biomarkers are defined as shown
in table 1 [see Additional File 1]. A pictorial representation of the
different associated symbols is shown in Figure 6.
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FIGURE 6
Pictorial representation of associated symbols.

FIGURE 7
Project workflow. An overview of the murine experimental procedures, and computational methods and analysis.
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FIGURE 8
Median tortuosity of edge segments.

3 Results

3.1 Dataset

The dataset used consists of multi-channel confocal images of the
panniculusmuscle layerofmice.For themicewith saline-treatedmPU
andDFO-treatedmPU, they were imaged 90 days post-injury. On the
other hand, mice with acute cardiotoxin injuries were imaged 40 days
after injury, as regeneration was completed by that time-point. The
number of images in Cardiotoxin group, PU + saline and PU + DFO
groups is 6 each. As stem-cell lineage tracing is not one of the study
aims, color-related informationwould not be relevant. Figure 7 shows
an overview of the experimental and computational methods.

3.2 Quantification of imaging biomarkers

3.2.1 Comparison of tortuosity of edge segments
The tortuosity of the edge segments is computed using the arc-

chord ratio, i.e., the ratio between the length of the edge segment c
and the distance between the ends of the edge segment d.

τ = c
d

(2)

The median tortuosity of all the edge segments is computed
for each of the images. Figure 8 compares the computed median
tortuosity of all the edge segments across the three groups. We
compared the median tortuosity to reduce the effects of outliers

FIGURE 9
Number of edge segments normalized by area.

due to any misdetection caused by the shadows. It can be
observed that the tortuosity of the line segments is close to 1, and
hence the edge segments are close to a straight line for all the
images. Due to the noise from the shadows in the Cardiotoxin
images, there is no significant difference in tortuosity compared
to the PU + saline group. Hence, this does not reach statistical
significance.

3.2.2 Comparison of number of edge segments
normalized by area

Another possible quantification parameter is the number of
individual edge segments detected, normalized by the area of
the image. Figure 9 shows the comparison of this parameter
across the three groups. It can be observed that the normalized
number of edge segments is lower for PU + saline compared
to PU + DFO and Cardiotoxin. There is a trend between the
Cardiotoxin group and the PU + saline group, with an adjusted
p-value of 0.08.

3.2.3 Comparison of edge segment distances
The edge segment distance is defined as the length of the

edge segment. Figure 10 shows the comparison of the edge segment
distance between the 3 groups. There is a statistically significant
difference between theCardiotoxin group and the PU+ saline group,
with an adjusted p-value of 0.003.
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FIGURE 10
Median edge segment distance. A single asterisk (∗) denotes a p-value
less than 0.05 (p < 0.05), double asterisks (∗∗) denotes p < 0.01, (∗∗∗)
triple asterisks denotes p < 0.001 and quadruple asterisks (∗∗∗∗)
denotes p < 0.0001.

3.2.4 Comparison of interquartile range of
orientation angles

The orientation angles of the edge segments are computed by
first finding the vector that describes the edge segment orientation
based on the two ends of the edge segment, followed by finding
the corresponding angle of the edge segment. We postulate that
normal healthy muscle fibers will be mostly parallel and hence
will have a small interquartile range of their orientation angles.
On the other hand, unhealthy muscle fibers will be non-parallel,
bent and split, which will be a larger interquartile range of
their orientation angles. Figure 11 shows the interquartile range
of the orientation angles of the edge segments. We can observe
that the values for PU + saline are much higher compared to
PU + DFO or Cardiotoxin. When comparing between PU +
saline and Cardiotoxin, there is a statistically significant difference
with an adjusted p-value of 0.05. When comparing between PU
+ saline and PU + DFO, there is a trend with an adjusted
p-value of 0.07.

3.2.5 Visualizations of detected edge segments
We can visualize the computed biomarkers against the

original multi-channel image as shown in Figure 12 for selected
images. From Figure 12, it is observed that the deep-learning
enabled edge detection approach is able to pick up a number
of edge segments. However, it is affected by noise associated

FIGURE 11
Interquartile range of orientation angles of edge segments (rad). A
single asterisk (∗) denotes a p-value less than 0.05 (p < 0.05), double
asterisks (∗∗) denotes p < 0.01, (∗∗∗) triple asterisks denotes p < 0.001
and quadruple asterisks (∗∗∗∗) denotes p < 0.0001.

with the shadows. For benchmarking, we also compared the
results of manual counting of muscle fiber malformations
by a trained biologist, against the biomarkers from our
computational method in Supplementary Table S1 [see Additional
File 2]. Currently, as per our knowledge, there are no available
quantitative method of muscle fiber malformation. The current gold
standard for quantifying themalformations wasmanual counting by
a trained biologist. Hence, we would like to benchmark the imaging
biomarkers that we have derived against the manual counting
outcomes by the biologist.

4 Discussion

For mice induced with muscle pressure ulcers (PU), it was
previously observed that the muscle failed to regenerate in
the panniculus muscle layer (Nasir et al., 2022). Iron chelator,
deferoxamine, or saline control were used to treat the pressure-
induced injuries, and DFO-treated wounds caused improvements
in long-term muscle regeneration compared to saline-treated
wounds. DFO-treated wounds also displayed better muscle fiber
morphology, and less frequent myofiber malformations. A high
proportion of regenerated myofibers in saline-treated wound
tissue was observed to be branched, split or wavy with disparate
bundles of fibers, and this frequency was reduced in DFO-treated
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FIGURE 12
Visualizations of detected edge segments. (A–C) An example of multichannel confocal images of Cardiotoxin, PU + DFO and PU + saline groups
respectively. (D–F) An example of overlaid edges on multichannel confocal images of Cardiotoxin, PU + DFO and PU + saline groups respectively. (G–I)
An example of detected edges of Cardiotoxin, PU + DFO and PU + saline groups.

FIGURE 13
Visualizations of shadow-induced misdetections. (A) An example of a multichannel confocal image with shadows. (B) An example of a multichannel
confocal image with overlaid edge segments. Shadow-induced misdetections can be observed.

tissues. On the other hand, mice with acute cardiotoxin injuries
regenerated normally and completely with straight, unbranched and
parallel fibers (Nasir et al., 2023).

We were able to derive certain biomarkers that can help to
quantify the differences between the three groups. Based on the
expected pathological morphology of split fibers, we would expect
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unhealthy fibers to be oriented in different angles compared to
healthymuscle fibers, which would be oriented in approximately the
same direction. More parallel muscle fibers would mean a similar
orientation direction, and hence a smaller interquartile range of
orientation angles. Indeed, based on the results of our algorithm,
we observe a statistically significant difference in the mean of the
PU + saline group compared to the mean of the Cardiotoxin group
for the interquartile range of the orientation angles of the edge
segments. From Figure 11, it can be observed that the fibers in the
PU + saline group are more split and have different orientations
compared to the muscle fibers for PU + DFO or Cardiotoxin which
have more fibers oriented in the same angles.

In addition, given that unhealthymyofibers are branched or split,
we would expect that there would be a lower frequency of them
being continuous. In healthy muscle tissue, the myotubes undergo
a maturation process that includes lateral fusion and intracellular
arrangement, which results in straight bundles of myofibers. When
the muscle regeneration is unsuccessful, the maturation process is
disrupted and the myofibers are not formed completely. In mice
with cardiotoxin injuries, we would expect normal regeneration
of muscle, while for mice with pressure-induced injuries, it was
observed that the muscles would fail to regenerate. As a result, the
edge segment distance of the PU + saline group is significantly lower
than Cardiotoxin.

We would also expect to observe a higher median tortuosity
for PU + saline compared to Cardiotoxin, given increased
waviness of these unhealthy muscle fibers. However, the presence
of shadows caused shadow-induced misdetections in the edges,
as shown in Figure 13. The number of edge segments per unit area
was also expected to be lower in the PU + saline group compared
to the PU + DFO or Cardiotoxin group, given worse muscle
regeneration observed in the PU + saline group. Nevertheless, given
that not all the edges between the muscle fibers were picked up
successfully in the Cardiotoxin and PU + DFO group, there was no
statistical significance observed for this biomarker.

However, albeit not statistically significant, we see a downward
trend of the number of edge segments per unit area from healthy
fibers (cardiotoxin injury) to unhealthy fibers (PU + saline).
Similarly, we see an increasing trend of tortuosity from cardiotoxin
injury to PU + saline, matching our manual analysis of myofiber
deformations (Nasir et al., 2023).

In the PU + DFO group, the mean of the “number of edge
segments per unit area” and mean of the “median edge segment
distance” for PU + DFO was in the intermediate range of values
between cardiotoxin and PU + saline, whereas the interquartile
range of orientation angle of PU + DFO was comparable to the
cardiotoxin group. Thus, we infer that DFO treatment of PU
improved the morphology of regenerated muscle fibers and lowered
the frequency of fiber malformations.

For benchmarking, we compared the results from manual
counting of myofiber malformations against the computational
analysis of various biomarkers in Supplementary Table S1 [see
Additional File 2]. The computational method had some statistically
significant comparisons and larger p values compared to manual
counting by a trained biologist. A possible reason for greater p
values in the computational analysis is the reduced ability of the
edge detection system to identify edge segments, making visual
counting by eye more effective. Manual counting showed greater

statistical significance but was unable to distinguish between types
of fiber malformations (e.g., tortuosity vs split fibers) and was more
subjective, while the automated approachwas able to provide greater
granularity and enable for characterization of different type of
malformations. For example, split fibers would result in an increase
in interquartile range of orientation angles as these fibers would be
positioned in various directions. The waviness of unhealthy fibers
would be best quantified by the tortuosity of these fibers.

Nevertheless, due to the presence of shadows, edge detection
might not performmost optimally andmight result in the inaccurate
quantification of biomarkers such as edge segment distance. To
account for possible outliers due to the shadows, we have decided
to compare the median edge segment distance, instead of the
mean, across the three groups. Future improvements can be done
to increase the robustness of the edge detection approach to the
presence of shadows in the image. In addition, there is currently
no validation done for the CNN model beyond comparing with
the manual counting results. Further validation of our approach
can be done by comparing with manual annotation of the edges,
which can be used for comparison with the CNN model. Another
possible limitation would be our use of Fiji for image visualization.
AlthoughFiji provided sufficient resolution for downstream imaging
biomarker analysis, its output imagesmight pale in comparisonwith
those fromother image visualization software likeApotome 3, which
we did not have access to.

In our experiments, the proposed deep-learning enabled edge-
detectionmethod was able to detect edges between themuscle fibers
under different conditions, which can then be used to compute
relevant imaging biomarkers that can differentiate between the
Cardiotoxin, PU + DFO and PU + saline. The edges can be
associated with the different muscle fibers segments and hence
characterize the muscle fiber morphology. The proposed approach
is the first automated approach for quantifying muscle fiber
artifacts in the panniculus muscle layer, which would otherwise
be counted manually and subject to between observer variability.
Future improvements would include improving the edge detection
approach to increase the robustness to the presence of shadows
in the image.
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