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The phylogeny of the major lineages of Amphibia has received significant
attention in recent years, although evolutionary relationships within families
remain largely neglected. One such overlooked group is the subfamily
Holoadeninae, comprising 73 species across nine genera and characterized by
a disjunct geographical distribution. The lack of a fossil record for this subfamily
hampers the formulation of a comprehensive evolutionary hypothesis for their
diversification. Aiming to fill this gap, we inferred the phylogenetic relationships
and divergence times for Holoadeninae using molecular data and calibration
information derived from the fossil record of Neobatrachia. Our inferred
phylogeny confirmed most genus-level associations, and molecular dating
analysis placed the origin of Holoadeninae in the Eocene, with subsequent
splits also occurring during this period. The climatic and geological events that
occurred during the Oligocene-Miocene transition were crucial to the dynamic
biogeographical history of the subfamily. However, the wide highest posterior
density intervals in our divergence time estimates are primarily attributed to
the absence of Holoadeninae fossil information and, secondarily, to the limited
number of sampled nucleotide sites.
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Introduction

In recent decades, numerous attempts have been made to elucidate the phylogenetic
relationships within the Amphibia (Frost et al., 2006; Hedges et al., 2008; Pyron and
Wiens, 2011; Hime et al., 2021; Portik et al., 2023). The evolutionary relationships
among major amphibian lineages remain contentious. Most studies have tackled this
problem by maximizing taxonomic coverage and inferring large-scale phylogenies
from limited gene sets, which have yielded distinct relationships compared to analyses
that expanded gene sampling (Wiens et al., 2010; Pyron and Wiens, 2011; Feng et al.,
2017; Jetz and Pyron, 2018; Streicher et al., 2018; Hime et al., 2021; Portik et al.,
2023). Additionally, studies have also estimated timescales for large anuran groups
(Roelants et al., 2007; Pyron, 2014; Feng et al., 2017; Jetz and Pyron, 2018; Hime et al.,
2021; Portik et al., 2023; Frazão et al., 2015). However, little focus has been given
to elucidating the evolutionary scenario that occurred within the families, as
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studies have mainly concentrated on a few genera or used a limited
number of species and loci.

The South American subfamily Holoadeninae Hedges et al.,
2008, which comprises 73 frog species distributed across nine
genera within Strabomantidae (Miranda-Ribeiro, 1920; Barbour,
1930; Griffiths, 1959; Heyer, 1969; Frost et al., 2006; Hedges et al.,
2008; De La Riva et al., 2018; Catenazzi et al., 2020; Dubois et al.,
2021), is an anuran lineage with a scarce number of molecular
phylogenetic studies. Holoadeninae species are small (14–48 mm
of snout-vent length) direct-developing frogs (Hedges et al., 2008;
Vitt and Caldwell, 2014). Notably, the subfamily exhibits a
disjunct geographical distribution across diverse South American
biomes, encompassing the Brazilian Atlantic coastal rainforest, the
Brazilian savanna (known as the ‘Cerrado’), the Andes of Peru,
Ecuador and Bolivia, and lowlands in Amazonia, Ecuador, and
Colombia (Frost et al., 2006). Recent works focusing on species
description inferred molecular phylogenies for subclades within
this subfamily (De La Riva et al., 2018; Venegas et al., 2018; Reyes-
Puig et al., 2019; Santa-Cruz et al., 2019; Catenazzi et al., 2020;
Motta et al., 2021). However, no consensus has been reached
on the Holoadeninae phylogeny, although some evolutionary
relationships are frequently recovered, such as the grouping of
Euparkerella + Holoaden, and Bahius + (Barycholos + Noblella)
(Venegas et al., 2018; Motta et al., 2021).

Because Holoadeninae lacks a fossil record, no timescale
specifically focused on the group was ever estimated (Sanchiz
and Rocek, 1996; Agnolin et al., 2020; Barcelos and Dos Santos,
2023). For instance, the TimeTree database (Kumar et al. (2022),
last accessed on 16 May 2024) lists only 14 Holoadeninae species
and 11 divergences within the group, most of them dated in
a single study (Pyron, 2014). This, coupled with the absence
of a taxonomic representative phylogeny, makes it difficult to
construct an evolutionary scenario for this lineage, which is
crucial for studying the evolution of particular phenotypes, such as
miniaturization, which appears to have evolved independently in
this group (Duellman and Lehr, 2009; Fusinatto et al., 2013; Santa-
Cruz et al., 2019). A potential solution is to use alternative strategies
for molecular dating analysis, such as broadening taxonomic
sampling to include target calibration nodes. In this study we
implemented this approach by using a comprehensive molecular
dataset to infer the phylogenetic relationships and divergence times
of the Holoadeninae subfamily. We have increased the number
of divergence dates available at TimeTree database (http://www.
timetree.org), expanding the timetree of this lineage, providing a
more complete scenario for the diversification of this group.

Methods

Dataset assembly

We accessed the list of Holoadeninae species through the
Amphibian Species of the World reference website (https://
amphibiansoftheworld.amnh.org), which yielded a total of 73
species. To maximize loci coverage, we selected representative
lineages from the same family (Strabomantidae) as outgroups.
Additionally, we included non-Strabomantidae species for inclusion
of fossil calibration information. After a thorough search in the

NCBI database (Sayers et al., 2019), we selected six genes widely
available for Holoadeninae species: three nuclear loci (RAG1, TYR,
and POMC) and three mitochondrial loci (12S, 16S, and COI). The
final matrix consisted of 63 species, comprising 49 Holoadeninae
and 15 outgroups. The complete species list and GenBank accession
numbers are provided in the (Supplementary Table S1). In this
dataset, hereafter referred to as “DM”, the average number of loci
per species was 3.75 (62.5%), indicating a significant proportion
of missing data. To address this, we also compiled two smaller
datasets with higher levels of completeness. Dataset “D3” contained
only those terminals with at least three loci (50%), resulting in 49
species. Dataset “D4” comprised 40 species that presented at least
four loci (66.7%).

Phylogenetic inference

Each gene was aligned individually across all datasets. Coding
genes (RAG1, TYR, POMC, and COI) were aligned in the
SeaView software (Gouy et al., 2010), based on the amino acid
sequences, using Clustal with default options (Thompson et al.,
1994). Ribosomal genes 12S and 16S were aligned in the online
platform T-coffee (Notredame et al., 2000), using the secondary
structure (R-Coffee) option. Gene trees were inferred using
IQ-TREE2 software (Nguyen et al., 2015), with 1,000 UFBoot
replicates (Minh et al., 2013; Hoang et al., 2018) for each gene
across all datasets. The best-fit substitution models were inferred
using ModelFinder (Kalyaanamoorthy et al., 2017). To account
for incomplete lineage sorting, we used ASTRAL (Mirarab
and Warnow, 2015) to estimate species phylogeny from the
gene trees generated in IQ-TREE2. Poor supported branches
(UFBoot <30%) were collapsed for each gene tree to avoid the
recovery of high-supported unreliable clades. Statistical support
for branches of the ASTRAL tree was accessed by the quartet
support (Q1). For the sake of comparison, concatenated analyses
for all datasets were also carried out in IQ-TREE2, following the
same procedure.

Molecular dating

We selected dataset D3 for themolecular dating analysis because
the DM dataset, which had a high frequency of missing data,
resulted in a polyphyleticHoloadeninae.While datasetD4 recovered
a monophyletic Holoadeninae, it included fewer species and thus
did not represent most Holoadeninae diversity. Dated phylogenies
were inferred using the RelTime method in MEGA X (Kumar et al.,
2018) and in MCMCTree (Yang and Rannala, 2006), employing
the ASTRAL tree, the concatenated alignment and the GTR + G
substitution model (Tavaré, 1986; Yang, 1994). Calibration points
were chosen based on the fossil record of Neobatrachia.

I. The root of the phylogenetic tree, representing the split
between the outgroup (Rana temporaria) andNobleobatrachia
in our dataset, was assigned a minimum age of 100.5 Ma
based on the fossil Cratia gracilis (Báez et al., 2009),
and a maximum age of 161.2 Ma based on the fossil
Rhadinosteus parvus (Henrici, 1998).
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II. The split of Leptodactylidae and the remaining
Nobleobatrachia species was calibrated with a
maximum age of 125 Ma, based on the fossil
Eurycaphalella alciane (Báez et al., 2009).

III. The crown node of Terrarana was calibrated with a minimum
age of 33.9 Ma, based on the fossilEleutherodactylus sp. (Poinar
and Cannatella, 1987).

IV. The split between and Chacophrys and Ceratophrys was
calibrated with a minimum constraint of 9.07 Ma, based
on the age of the fossil Ceratophrys sp. (Barcelos and
Dos Santos, 2023).

This calibration scheme is referred as calibration scenario 1.
However, given the significant impact that maximum calibration
constraints can have on final time estimates, we conducted
molecular dating analyses exploring additional calibration
scenarios, referred to here as calibration scenarios 2 and 3.
In scenario 2, calibration point I was adjusted to have a
maximum age of 185.5 Ma, based on the upper limits of the
confidence intervals for the divergence between Neobatrachia
and Pelobatoidea as provided in recent studies (Portik et al.,
2023; Hime et al., 2021). Additionally, for calibration point II, a
maximum constraint of 83 Ma was adopted, also based on the
upper limit of the confidence interval for the Hyloidea crown
node from the same studies. In calibration scenario 3, calibration
point I remained the same as in scenario 2, but calibration point
II was removed from the analysis due to some recent studies
suggesting an older origin for crown Hyloidea (e.g., Jetz and
Pyron, 2018). Calibration points III and IV were consistent across
all scenarios.

Because RelTime does not assume prior distributions to model
rate evolution and divergence times, and is a fast molecular
dating method, it is a valuable tool for investigating the impact
of calibrations on divergence time estimation (Battistuzzi et al.,
2015). Therefore, we ran RelTime without calibrations to infer
relative divergence times. Absolute divergence times were inferred
in MCMCTree. In this case, the minimum and maximum times
adopted as time constraints for calibration were used as boundaries
to delimit uniform prior distributions with soft bounds (left
and right tail probabilities equal 0.025). Calibration point II was
incorporated as a maximum bound prior (right tail probability
of 0.025), except in calibration scenario 3, where this calibration
was not used. Calibration points III and IV were informed as
minimum bound priors (left tail probabilities equal 0.025). The
time unit was set to 100 million years. To derive a rate estimate
to use as the prior mean for the overall rate parameter (rgene_
gamma = 0.274413 1), we ran baseml under the global clock model
with calibration information. The rate drift parameter was “sigma2_
gamma = 1 1” and the parameters of the birth-death process
were “BDparas = 2.828156 1.487060 1.000000”, retrieved using the
approach described in Tao et al. (2021). Markov chain Monte Carlo
(MCMC) was sampled every 100th generation until effective sample
size (ESS) values were higher than 200 (after removing the burn-
in period accordingly). Divergence times were estimated using
both autocorrelated and uncorrelated rate evolution models, using
the multivariate normal approximation (Reis and Yang, 2011). We
carried out the analysis twice under each rate evolution model to
ensure the convergence of the chains.

To estimate the extent to which the uncertainty associated
with divergence time estimates was impacted by the number of
sampled nucleotide sites or the variance of calibration priors, we
also conducted an infinite sites analysis using PAML’s infinitesites
software. This analysis estimates divergence times under the
theoretical expectation of infinitely long sequences. This approach
is useful for determining whether additional data would reduce the
uncertainty of divergence time estimates or if only the inclusion of
additional fossil calibrations can make estimates more precise. The
infinite sites theory predicts a linear relationship between divergence
time estimates and the widths of the highest posterior densities
(HPDs) of these estimates (Yang and Rannala, 2006; Rannala
and Yang, 2007). Using results from both the original and
infinite sites analyses, we built linear models in which the width
of the HPD intervals was the response variable ( y) and their
respective estimated node ages were entered as features (x). The
β coefficient of the regression line crossing the origin, y = βx,
measures how the uncertainty of age estimates are related to
divergence times.

Results

The tree inferred by ASTRAL using the D3 dataset was
selected as the most reliable and is depicted in Figure 1. This
choice was made because 1) the monophyly of Holoadeninae
was recovered, and 2) the number of species was higher than in
the D4 dataset, which also led to a monophyletic Holoadeninae.
Therefore, the results and discussion will consider the phylogenetic
hypothesis and divergence time estimation recovered from the
D3 dataset analyzed in ASTRAL. The inferred phylogenies based
on the DM and D4 datasets, using IQ-TREE and ASTRAL, are
included in the Supplementary Material.

Holoadeninaemonophyly was recovered with low support value
(Q1 = 0.6). Within Holoadeninae, only the genus Noblella was not
recovered as monophyletic: N. myermecoides and N. pygmaea were
recovered as a sister group to Psychrophrynella, while N. lochites
was recovered as sister to Bahius. The first lineage to diverge within
the subfamily was composed of Bryophryne species, forming a
monophyletic clade with low support (Q1 = 0.48). The second
lineage to diverge was composed of Barycholos species, Noblella
lochites, and Bahius bilineatus, which presented high support
value (Q1 = 0.89). Barycholos species formed a monophyletic
clade with high support value (Q1 = 1.0). Noblella lochites and
Bahius bilineatus grouped together with low support value (Q1
= 0.74). The lineage composed of Barycholos species, N. lochites
and Bahius bilineatus was the sister group of a clade including
Holoaden, Euparkerella, Psychrophrynella, Noblella myrmecoides,
Noblella pygmea, andMicrokayla. All these species grouped together
with low support (Q1 = 0.37). Euparkerella and Holoaden species
formed a monophyletic clade with high support (Q1 = 0.97), which
was the sister lineage of the group comprised of Psychrophrynella,
Noblellamyrmecoides,Noblella pygmea, andMicrokayla.The support
for the clade containing Holoaden, Euparkerella, Psychrophrynella,
Noblella myrmecoides, Noblella pygmea, and Microkayla species was
low (Q1 = 0.63). The genus Euparkerella was monophyletic (Q1 =
1.0), as well as Holoaden (Q1 = 0.8). Microkayla species comprised
a monophyletic lineage (Q1 = 0.99) that was the sister group of
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FIGURE 1
Holoadeninae Timetree estimated in MCMCTree using a correlated rates model and four fossil calibration points (calibration scenario 1). Calibrated
nodes are indicated with a dark-filled circle (calibration I is not shown because it corresponds to the divergence of the outgroup species, Rana
temporaria, which was removed from the figure). The numbers inside the circles correspond to the calibration numbers defined in the methods section.
Filled red circles indicate nodes that had Q1 support values from ASTRAL ≥0.75. Divergence time estimates are shown in black to the left of each node.

Psychrophrynella usurpator + (N. myrmecoides + N. pygmea) with
high support (Q1 = 0.84). Noblella myrmecoides and N. pygmea
grouped together with low support (Q1 = 0.67) and formed the sister
lineage of P. usurpator (Q1 = 0.88). The final normalized quartet
score from ASTRAL was 0.82, indicating a high level of discordance
among the gene trees.

Molecular dating analyses obtained in MCMCTree under
distinct calibration schemes and rate evolution models indicated
that the autocorrelated rates model produced more congruent
divergence time estimates across the distinct calibration
scenarios (Supplementary Figure S7). Calibration scenarios 1 and 3
showed congruence under an autocorrelated rates model (Slope =
1.03), while scenarios 1 and 2 displayed a lower correspondence
(Slope = 0.84). When using an uncorrelated rates model, the
correspondence between the different calibration scenarios
decreased. In this case, the estimated divergence times under
calibration scenario 3 were generally about 12% younger than
those under calibration scenario 1 (Slope = 0.88). Calibration

scenario 2 produced even younger time estimates, approximately
24% younger than those in scenario 1 (Slope = 0.760). These results
highlight that the timetree obtained using a maximum constraint
of 83 Ma to calibrate the divergence between Leptodactylidae and
other Nobleobatrachia (calibration scenario 2) should be viewed
with caution, as it led to much younger node ages. While it is
possible that divergence times are indeed younger, we believe that
a more conservative approach is more appropriate. Additionally,
relaxing the maximum constraint used to calibrate the root of the
phylogenetic tree (calibration scenario 3) had little impact on time
estimates obtained under a correlated rates model in MCMCTree.
This, combined with the finding that rate correlation produced
node ages more congruent with relative uncalibrated divergence
times (see below), suggested that the divergence times estimated
using correlated rates and calibration scenario 1 in MCMCTree was
the most robust.

The relative divergence times obtained with RelTime (without
calibration constraints) and the absolute node ages from
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FIGURE 2
Comparison of RelTime relative time estimates (without using
calibrations, x-axis) and MCMCTree absolute time estimates (using
Calibration Scenario 1, y-axis). MCMCTree estimates using a correlated
rate evolution model are represented by black dots, while estimates
using an uncorrelated rates model are depicted by gray triangles. The
dashed lines indicate the linear regressions through the origin,
considering correlated rates (black, R2 = 0.99) and uncorrelated rates
(gray, R2 = 0.97).

MCMCTree under an autocorrelated clock were highly correlated
(R2 = 0.99, p < 0.01) (Figure 2). In contrast, the relationship
between RelTime relative times and MCMCTree estimates under
an uncorrelated clock showed a lower correlation (R2 = 0.97, p
< 0.01). Therefore, due to the independent convergence between
RelTime and MCMCTree autocorrelated results, combined with
the results that indicated that autocorrelated rates produced
more congruent divergence time estimates across the distinct
calibration scenarios, all time estimates referred from now on
will relate to the MCMCTree autocorrelated analysis (RelTime
and MCMCTree results under an uncorrelated rates model are
included in the Supplementary Material). Infinite sites analysis
indicated that sequencing additional nucleotide sites would be
unlikely to increase the precision of divergence time estimates.
The width of HPDs decreased by 2.0% of the estimated node ages
when comparing the inference based on the D3 alignment and the
inference under the infinite sites assumption (both using calibration
scenario 1). This indicates that sampling error accounted for only
2.0% of the uncertainty in divergence times. Thus, reducing HPD
intervals will require additional and accurate calibrations.

Holoadeninae diversification was dated at 44.0 Ma
(29.3–66.6 Ma). The time of the most recent common ancestor
(tMRCA) of Bryophryne species was dated around 23.0 Ma
(13.7–36.5 Ma). Barycholos + (Noblella lochites + Bahius bilineatus)
divergence from the remaining Holoadeninae lineages was
inferred as 42.8 Ma (28.5–64.8 Ma). The tMRCA of the group
composed of Barycholos + (Noblella lochites + Bahius bilineatus)
was estimated at 33.3 Ma (21.1–50.9 Ma). The split between Bahius

and Noblella lochites occurred at 27.1 Ma (16.4–42.4 Ma). The
divergence between the two Barycholos species was dated at 21.0 Ma
(11.8–34.0 Ma). The tMRCA of the clade containing Holoaden,
Euparkerella, Psychrophrynella, Noblella myrmecoides, Noblella
pygmea, and Microkayla was estimated at 41.4 Ma (27.4–62.6 Ma).
Holoaden and Euparkerella diverged at 28.4 Ma (17.5–44.0 Ma).
Holoaden bradei and H. luederwaldti shared a common ancestor
at 12.2 Ma (5.9–21.4 Ma), while Euparkerella species diversified at
16.3 Ma (8.9–26.8 Ma). The tMRCA of Psychrophrynella, Noblella
myrmecoides, Noblella pygmea, and Microkayla was dated at
33.6 Ma (21.8–51.0 Ma). The split between Psychrophrynella and
Noblella myrmecoides + Noblella pygmea was inferred at 21.5 Ma
(12.4–34.2 Ma). Noblella myrmecoides and N. pygmaea species
separated 17.4 Ma (9.6–28.4 Ma). Microkayla diversification was
estimated at 20.9 Ma (12.7–32.6 Ma).

Discussion

This study has inferred the most taxon- and loci-comprehensive
timetree of Holoadeninae, a Neotropical frog subfamily, including
representative species from all its genera, except for Qosqophryne.
Divergence time estimation was based on fossil calibrations,
providing an expanded timetree for this group, as the number
of dated divergence events has considerably increased. The
tMRCA of Holoadeninae was placed within the Eocene period,
contrasting with most previous studies that focused on inferring
the timescale of higher amphibian taxa (e.g., Gomez-Mestre et al.,
2012; Pyron, 2014; Hedges et al., 2015). Despite the wide HPD
intervals, we were able to allocate the origin and diversification
of most genera along the Miocene, a period marked by
significant geological and climatic changes in South America
(Hoorn et al., 2010; Latrubesse et al., 2010).

Our inferred tree topology generally aligns with the genus-level
relationships recently recovered by Jetz and Pyron (Jetz and Pyron,
2018). Except for COI, all genes employed in the present study were
included in Jetz and Pyron (2018)’s analysis, which may account for
the similarity in results. However, although both studies inferred
a close relationship between Bahius, Barycholos and some Noblella
species (since this genusmay be paraphyletic), we found Bryophryne
as the first lineage to diverge within this group, whereas Jetz and
Pyron (2018) retrieved the group comprising Bahius, Barycholos
and some Noblella species as the first splitting lineage. Other
studies have found genus-level phylogenetic relationships distinct
from our results (e.g., Hedges et al., 2008; Pyron and Wiens, 2011;
Canedo and Haddad, 2012; Padial et al., 2014; De La Riva et al.,
2018; Heinicke et al., 2018; Venegas et al., 2018; Reyes-Puig et al.,
2019; Santa-Cruz et al., 2019; Catenazzi et al., 2020; Motta et al.,
2021). Several factors could explain these discrepancies, such as
lower species coverage (Hedges et al., 2008; Pyron and Wiens,
2011; Canedo and Haddad, 2012; Padial et al., 2014) or the use
of different loci (Pyron and Wiens, 2011; Padial et al., 2014;
De La Riva et al., 2018; Jetz and Pyron, 2018; Venegas et al., 2018;
Motta et al., 2021; Portik et al., 2023).

The most recent molecular phylogeny estimated for
Holoadeninae is the hypothesis proposed by Portik et al. (2023),
as part of a large timetree inferred for frogs (Portik et al., 2023).
The genus-level phylogenetic relationships recovered by this study
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differs from ours. Our results showed Bryophryne as the first
lineage to diverge within Holoadeninae, while Portik et al. (2023)
recovered this genus as related to Microkayla, Psychrophrynella and
some Noblella species. Another difference was that we estimated
Euparkerella + Holoaden as the sister lineage of a clade composed
by Psychrophrynella, Noblella myrmecoides, Noblella pygmea, and
Microkayla. In contrast, Portik et al. (2023) inferred Euparkerella
+ Holoaden as the sister clade of Barycholos and some Noblella
species. However, both studies found low support values for these
relationships. While Portik et al. (2023) included a few more
Holoadeninae species than our study (51 compared to the 36
species we sampled), their alignment matrix was highly incomplete
regarding Holoadeninae, with most species presenting more than
90% of missing data.

Importantly, low ASTRAL support values indicated that most
phylogenetic relationships within the subfamily are yet to be
resolved (Figure 1). The normalized quartet support from the
ASTRAL analysis (0.82) was higher than the recommended cutoff
value (0.75) (Mirarab, 2019; Rabiee et al., 2019), though the
difference was not substantial. These results suggest that incomplete
lineage sorting (ILS) may have been pervasive during the early
diversification of Holoadeninae. In fact, the estimated timetrees,
regardless of the rate evolution model and calibration scenario
used, indicated that the early divergences within the subfamily
occurred within a very narrow timeframe, of less than 10 million
years. Such short intervals between speciation events are known
to increase levels of ILS (Maddison, 1997; Maddison and Knowles,
2006; Degnan and Rosenberg, 2009; Edwards, 2009), which might
explain the poorly supported relationships.

Low supports for Holoadeninae divergences were retrieved
in previous molecular phylogenetic studies (e.g., Canedo and
Haddad, 2012; Reyes-Puig et al., 2019; Portik et al., 2023). However,
two phylogenetic relationships are repeatedly recovered and
highly supported across several works, namely, (i) the grouping
of Euparkerella and Holoaden (Canedo and Haddad, 2012;
De La Riva et al., 2018; Jetz and Pyron, 2018; Reyes-Puig et al.,
2019; Santa-Cruz et al., 2019; Motta et al., 2021; Portik et al., 2023);
and (ii) the paraphyly of Noblella (Hedges et al., 2008; Pyron
and Wiens, 2011; Canedo and Haddad, 2012; Padial et al., 2014;
De La Riva et al., 2018; Jetz and Pyron, 2018; Portik et al., 2023).
Our results suggested a close evolutionary affinity between some
Noblella species and Psychrophrynella, as previous works did
(e.g., Reyes-Puig et al., 2020; Portik et al., 2023). Additionally, we
estimated the relatedness of Microkayla, Psychrophrynella, and
some Noblella species, a finding that has been previously reported
in other studies (Santa-Cruz et al., 2019; Catenazzi et al., 2020;
Reyes-Puig et al., 2020; Motta et al., 2021; Portik et al., 2023).

The mean of the posterior distribution of node ages in
our inferred timescale suggests that Holoadeninae originated
during the Eocene, followed by a period of rapid diversification.
Large-scale studies that estimated divergence times for higher
taxa within Amphibia have generally obtained ancient ages
for the origin of this subfamily, placing it in the Paleocene
(Gomez-Mestre et al., 2012; Pyron, 2014; Hedges et al., 2015). In
contrast, studies focusing on lower-taxa have retrieved a younger
origin, in the Eocene (Heinicke et al., 2007; Gonzalez-Voyer et al.,
2011; Fouquet et al., 2022). The timetree presented in Figure 1
supports a more recent origin, with MCMCTree HPD indicating

that the tMRCA of Holoadeninae existed between 29.3 and
66.6 Ma. This result is in agreement with the recent study of
Portik et al. (2023), which focused on the timetree of anuran higher
taxa (Portik et al., 2023). However, our estimated times for the
diversification of Holoadeninae genera were generally older than
those provided by Portick et al. (2023).

The absence of a fossil record may be driving the different
tMRCAs estimated for Holoadeninae. Most studies conducted so
far have used limited loci sampling or largely incomplete alignment
matrices, which can make the estimated divergence times sensitive
to taxon sampling and the markers chosen. Due to the lack of
temporal information to adjust rates and infer times, the final
estimated times are more susceptible to methodological artifacts.
It is also important to note that the divergence time estimates
we obtained in MCMCTree using an uncorrelated rate prior led
to older node ages, making them closer to the Paleocene origin
suggested by some studies (Figure 2). In this case, Holoadeninae
tMRCA was dated at 54.7 Ma (HPD 34.9–78.8 Ma). However, two
factors argue against this scenario: 1) theweaker correlation between
RelTime relative time estimates and those obtained by MCMCTree
using an uncorrelated rates prior, and 2) the higher sensitivity of
time estimates to different calibration scenarios when using the
uncorrelated rates model.

The inferred Holoadeninae timetree indicates that genera may
have diversified mainly throughout the Miocene. A Miocene
diversification is a pattern also observed in other South American
frog lineages (Santos et al., 2009; Castroviejo-Fisher et al., 2014;
Réjaud et al., 2020; Ortiz et al., 2023). Regarding the colonization
of the Atlantic Forest, our results support two possible scenarios,
both occurring during the Oligocene-Miocene transition. During
this period, significant geological changes took place in South
America, including shifts in temperature and humidity that
favored the expansion of theNeotropical rainforests (Jaramillo et al.,
2006; Hoorn et al., 2010; Jaramillo, 2023). The first scenario
involves two independent colonizations of the Atlantic Forest:
one by the ancestor of Holoaden and Euparkerella, and another
involving Bahius bilineatus (though the placement of this species
is not well supported). Evidence suggests that several vertebrate
lineages colonized the Atlantic Forest via biotic interchanges
routes stablished as early as the Upper Oligocene between the
Amazon and the Brazilian Atlantic coastal rainforest (Ledo and
Colli, 2017; Prates et al., 2017; Pirani et al., 2020), supporting this
scenario. The second possibility is that ancestral lineages of
Holoadeninae were distributed continuously from east to west
South America, and after the formation of the Brazilian savannah
(Cerrado) in the Oligocene-Miocene transition, the ancestors of
Holoaden + Euparkerella and of Bahius billineatus remained in
the Brazilian Atlantic coastal rainforest, as well as the ancestor of
Barycholos ternetzi in the Cerrado, as relictual lineages. In this
case, vicariance events would explain the disjunct distribution of
Holoadeninae. The currently broad South American distribution of
Barycholos, from the Pacific coast and lowlands of Ecuador to the
central regions of Brazil, reinforces this latter hypothesis. Future
biogeographical studies are needed to shed more light on these
historical events.

Our study presents a timetree for the Holoadeninae subfamily,
shedding light on the evolutionary history of this diverse group
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of Neotropical frogs. Our divergence time estimates suggest that
Holoadeninae originated during the Eocene and that genera
diversified primarily throughout the Miocene, an epoch marked
by significant geological and climatic changes in South America.
Additionally, the climatic and geological events that occurred
during the Oligocene-Miocene transition likely played a significant
role in the disjunct distribution of the subfamily. Although
some phylogenetic relationships remain unresolved due to low
support values, certain genus-level relationships were consistently
recovered across various studies, highlighting their robustness.
We demonstrated that the wide HPD intervals were primarily
due to poor fossil information. Therefore, new fossil discoveries
would enhance the precision of the Holoadeninae timescale.
Nevertheless, future efforts to generate genomic data for species
within this subfamily are highly valuable, as genome-wide data
enables sophisticated phylogenetic analyses under the multispecies
coalescent framework. This approach will not only improve our
understanding of the biological aspects of this neglected frog lineage
but also provide deeper insights into the evolutionary processes that
have shaped Holoadeninae diversity and geographical distribution.
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