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The drug design process can be successfully supported using a variety of in silico
methods. Some of these are oriented toward molecular property prediction,
which is a key step in the early drug discovery stage. Before experimental
validation, drug candidates are usually compared with known experimental
data. Technically, this can be achieved using machine learning approaches, in
which selected experimental data are used to train the predictive models. The
proposed Python software is designed for this purpose. It supports the entire
workflow of molecular data processing, starting from raw data preparation
followed by molecular descriptor creation and machine learning model
training. The predictive capabilities of the resulting models were carefully
validated internally and externally. These models can be easily applied to new
compounds, including within more complex workflows involving generative
approaches.
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1 Introduction

Drug discovery is a process oriented towards the identification and development of
biologically active compounds. These molecules are expected to act selectively on
certain biological targets, such as enzymes or protein receptors, to influence their
biological behavior. A critical element of the drug design process is experimental
verification of the ability of a molecule to achieve the desired biological effect. In the
early drug discovery stage, this can lead to significant costs because of the large number
of drug candidates considered. To avoid this, one can attempt to predict the properties
based on existing experimental data. This allows the removal of many compounds and
ultimately leaves only the most promising candidates. To achieve this goal, it is
necessary to develop a predictive model that properly captures the relationship
between the structure of a molecule and its properties. The acronym QSAR
represents quantitative structure–activity relationship and relates to a set of
techniques capable of predicting the biological activities of compounds based on
their structural features. A similar term QSPR, which represents quantitative
structure–property relationship, is somewhat more generic and covers any
molecular property that can be inferred from the underlying molecular features.
The first attempts to QSAR modeling were carried out more than 60 years ago
Hansch et al. (1962); Free and Wilson (1964); Hansch and Fujita (1964), and till
now are still one of the most important computational tools in the hands of medicinal
chemists Tropsha et al. (2003); Murphy (2011). The applications of QSAR/QSPR
models are broad and include toxicity Ariëns (1984); Hansch et al. (1995, 1989); Votano
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(2004); Patlewicz et al. (2008) and metabolism predictions
Chohan et al. (2006); Sridhar et al. (2012). QSAR studies are
often oriented toward model development that supports virtual
screening for promising drug candidates for certain diseases,
such as malaria Zhang et al. (2013), schistosomiasis Neves et al.
(2016), and influenza Lian et al. (2016). QSAR/QSPR approaches
are specifically used in machine learning applications. There are
several commercially available programs that cover either
partially or completely the QSAR/QSPR workflow. Examples
include ADMET Predictor™ from Simulations-Plus (2023),
Deep AutoQSAR from Schrödinger Suite Dixon et al. (2016),
Biovia Discovery Studio from Dassault Systémes BIOVIA
Dassault Systémes (2023), MOE from the Chemical
Computing Group (CCG) Chemical Computing Group (2023),
VLifeQSAR from VLife Sciences VLife (2023), and Flare™ from
Cresset Cresset (2023). All these tools are capable of creating
QSPAR/QSAR predictive models based on the entire portfolio of
Machine Learning methodologies and various flavors of
molecular descriptors/fingerprints. For instance,
DeepAutoQSAR provides Deep Neural Network
methodologies based on custom implementation of molecular
descriptors, allowing for the training and application of state-of-
the-art quantitative structure-activity relationship (QSAR)
models. The Flare ™ module from Cresset provides a
Multilayer Perceptron method and a set of other Machine
Learning methodologies supporting the development of
consensus regression and classification models. Other vendors
provide tools that differ slightly in various aspects; however, their
common denominator is the commercial nature of their
programs. The main goal of the proposed software is to
provide an open-source alternative in the form of Python
scripts based exclusively on available open-source
cheminformatics and machine learning libraries, which
implement a complete QSAR/QSPR workflow. In addition, the
functional scope of the proposed QSPRmodeler software is
beyond the scope of standard machine learning or
cheminformatics libraries that are considered separately. The
main novelty of the proposed solution is that it combines these
two worlds into a single entity, allowing for the straightforward
management of chemical information and efficient extraction of
predictive signals. Moreover, the proposed functional design
enables the incorporation of new machine learning
methodologies, which makes the open-source society a toolset
capable of exploring novel predictive approaches in a
chemical context.

2 Software description

The proposed software combines existing Python libraries to
cover all the key steps of the QSAR/QSPR modeling process. The
workflow is shown in Figure 1. The entire calculation depends on
three files: the data file with experimental values in csv form
(denoted as Experimental_data.csv), the training configuration
(denoted as Training_configuration.json), and the data
processing pipeline file (denoted as Pipeline_
configuration.json). The incoming data must be prepared in a
simple form of a csv file, with the SMILES Weininger (1988) code

accompanied by the experimental data. The experimental data
are usually IC50 or EC50 values expressed in molar units.
Multiple experimental values often exist for the same
compound. These values may have been derived from an
entirely independent experimental investigation involving
qualitatively different biological assays. Thus, an unwanted
effect is the potential inconsistency in the experimental
endpoints for the same compound. The raw data
prepossessing phase (denoted as “1” in Figure 1) measures the
level of inconsistency as a standard deviation and removes cases
in which it exceeds a certain threshold value, as defined in the
Training_configuration.json file (set at the level of 100 nM). For
the remaining consistent cases, the chosen aggregation strategy is
applied, for example, the arithmetic mean, median, maximum, or
minimum function. The resulting dataset is then a simple table
associating a certain molecule in the SMILES form Weininger
(1988) with single, potentially aggregated, experimental values.

FIGURE 1
General workflow of the QSPRmodeler program.
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In the next step, denoted as “2” in Figure 1, the molecular features
are calculated. In particular, various types of molecular
fingerprints, such as daylight fingerprints Daylight Chemical
Information Systems (2019), atom-pair fingerprints Carhart
et al. (1985), topological torsion fingerprints Nilakantan et al.
(1987), Morgan fingerprints Rogers and Hahn (2010) and
MACCS keys Durant et al. (2002) can be obtained. All these
are calculated using the open-source RDKit chemical informatics
library Landrum (2022). Selected molecular descriptors can also
be incorporated to augment the molecular feature space further.
To achieve this, we integrated the Mordreds library Moriwaki
et al. (2018) offering an implementation of 1825 molecular
descriptors. The next step of the workflow, denoted as “3” in
Figure 1 shows the standard data processing steps for molecular
descriptors, such as scaling and Principal Component Analysis
(PCA) transformation. The latter can be applied to both the
molecular fingerprints and descriptors. This step is accomplished
using the Scikit-learn library Pedregosa et al. (2011). Step “4” of
the workflow takes care of the processing of the target value, in
particular logarithm transformation of the numerical value in the
case of regression models or target binarization in the case of the
binary classifiers. Upon completion of this step, all data are
prepared for predictive analytics. The next step, denoted as
“5,” applies the chosen machine learning methodology to the
prepared, earlier data. Currently, six common predictive model
types are available: extreme gradient boosting (XGBoost) Chen
and Guestrin (2016), artificial neural networks in the form of
multilayer perceptrons Bishop (1995), support vector machines
Cortes and Vapnik (1995); Vapnik (1998), random forests Ho
(1995), ridges Hoerl and Kennard (1970), and bagging models.
With each of these methodologies, a definition of the
hyperparameter space is provided. The predictive model creation
step involves hyperparameter optimization within the Hyperopt
framework Bergstra et al. (2013), which implements the heuristics
of the Tree of Parzen Estimators Bergstra et al. (2011). The last step of
the workflow, denoted as ”6,” involves final quality measures
calculation and model serialization. The final predictive model is
stored in a dedicated file together with all the auxiliary information
required for the subsequent standalone application in the inference
mode. In particular, the entire data-processing pipeline is serialized
such that the only information required to perform the prediction is
the molecule provided in the form of a SMILES code. The program
automatically turns the SMILES representation into a feature space
compliant with the model interface and ultimately provides the
prediction. A serialized model is an autonomous artifact that is
easily integrated into various workflows and molecular predictive
use cases. The associated Github repository contains a set of Jupyter
notebooks that illustrate how QSPR models can be used in the
inference mode, for example, to predict the molecular/biological
properties of new compounds. One can imagine multiple, more
complex use cases, such as virtual screening of molecular
databases, application of unsupervised learning to molecular data,
or integration with generative chemistry workflows where models are
created that are responsible for criticizing new species against
optimized properties. The module is also prone to potential
extensions, and an intermediate Python programmer can easily
add a new predictive methodology or adopt the provided scripts
for particular needs.

3 Illustrative examples

3.1 Introduction

As illustrative examples, we applied the presented
methodology to QSAR modeling of the inhibitory effects of
the human androgen receptor (AR) and the activation effects
of the pregnane X receptor (PXR) receptor. The former (AR,
NR3C4) belongs to the nuclear receptor subfamily 3, a group C
nuclear receptor superfamily of proteins Burris et al. (2013). AR
acts as a transcription factor that regulates genes important for
the development and maintenance of primary and secondary
male characteristics Heemers and Tindall (2007). Similar to other
nuclear receptors, AR activity is regulated by low-molecular-
weight ligands. In the absence of a ligand, the AR resides in the
cytoplasm bind to heat shock proteins (HSPs). Upon binding to
the ligand, the receptor changes its conformation,
homodimerizes, and translocates into the nucleus to regulate
AR-dependent genes Prescott and Coetzee (2006). Testosterone
and dihydrotestosterone are the endogenous ligands of AR.
Under physiological conditions, AR is involved in the
development of prostate; however, the disturbed function of
these receptor leads to uncontrolled proliferation of prostate
cells and the appearance of cancer Lonergan and Tindall
(2011), Jernberg et al. (2017). Prostate cancer cells require
androgens for survival and proliferation, which is why
therapies that use anti-androgens targeting the function of AR
are generally effective Kokal et al. (2020).

The second receptor, PXR (NR1I2), regulates xenobiotic
metabolism and is involved in the maintenance of liver
physiology Cai et al. (2021). This receptor recognizes a wide
range of structurally diverse compounds, including endogenous
metabolites such as bile acids Staudinger et al. (2001), phthalates
Hurst andWaxman (2004), and mycotoxins Ratajewski et al. (2011),
and responds to various pharmacologic compounds, including but
not limited to rifampicin, dexamethasone, clotrimazole, etoposide,
trifluridine, and mycophenolic acid Moore et al. (2000); Ratajewski
et al. (2015); Yim et al. (2023). Interactions between
pharmacological compounds and PXR are crucial, as PXR
recognition can markedly enhance the liver transformation rate
of various xenobiotics, leading to potential drug-to-drug
interactions Lehmann et al. (1998); Fuhr (2000); Ratajewski
et al. (2015).

This encouraged us to use the presented computer-based
QSPRmodeler environment by applying machine learning to
identify novel chemical structures targeting the ligand-binding
domains (LBD) of both receptors. All available experimental
values, the IC50 values for AR, and the EC50 values for PXR
(half-maximal inhibitory and effective concentrations,
respectively, for IC50 and EC50), were retrieved from the
ChEMBL 3.3 database Gaulton et al. (2012). The experimental
IC50 data for the AR reflected the IC50 measurements of
1575 different chemical species. For the other receptor, we
found 1187 entries of EC50 values. Multiple experimental
values are often obtained for the same molecule using
different biochemical assays. The experimental values obtained
for the same molecule cannot always be combined; therefore, we
carefully analyzed the available data and excluded doubtful
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experimental endpoints. The resulting datasets were used to
create regression and binary classification models using the
QSPRmodeler toolset presented herein. The target value of the
regression model was chosen as the negative logarithm of IC50 or
EC50, denoted as pIC50 or pEC50, respectively. The classification
model was trained on the binarized data, that is, each molecule
was assigned to the ACTIVE or INACTIVE class with the class-
determining threshold value assumed to be 1000 and 12,000 nM,
respectively, for the IC50 values of the AR and EC50 values of the
PXR. According to the configured workflows, the models were
trained using the XGBoost method within a 5-fold
crossvalidation scheme. The space of molecular features was
limited to 8 descriptors: SLogP (octanol-water partition
coefficient), SMR (molar refractivity), naRing (number of
aromatic rings), nHBAcc (number of hydrogen bond
acceptors), nHBDon (number of hydrogen bond donors), nRot
(number of rotatable bonds), MW (molecular weight), and
TopoPSA (topological polar surface area). In addition, the

feature space was augmented with two drug-like filters, the
Lipinsky rule-of-five and Ghose filters, and 50 most important
principal components were calculated based on a 1024-bit long
Morgan fingerprint. Thus, each molecule was characterized by a
vector of 60 numbers, reflecting its topological and
physiochemical properties. The goal functions of the
hyperparameter optimization were chosen as the mean square
error (MSE) and accuracy for the regressor and classifier,
respectively. The Hyperopt module was used with default
settings, with the maximum number of evaluations set at 100.
Training was performed using 90% of the available data, whereas
the remaining 10% of data were used as a test set for final quality
estimation.

3.2 Androgen receptor

Figure 2 compares the experimental and predicted values
calculated for the molecules from the test set containing
158 compounds. Approximately 80% of these molecules were
predicted within a range of 1.0 log unit, and the average MSE for
the entire test set was 0.61 log unit, which reflects the common
predictive strength of the QSAR models. The predictive capabilities
of the classification models, calculated using the hold-out test set, are
listed in Table 1. The classifier reached a satisfactory level of
accuracy of 82% with reasonable levels of both sensitivity and
specificity. The ROC curves presented in Figure 3, and the
relatively high values of the area under this curve, i.e. 0.81,
clearly demonstrate the presence of a predictive signal in the data
as well as the ability of the tool to extract this signal. It is worth
mentioning that although the discussed models were prepared
mainly for presentation purposes, they compared well relative to,
or even outperformed, the available models. For instance, the
accuracy, sensitivity, and specificity of the AR model were 82%,
85.4%, and 76.4%, respectively, which can be compared to the

FIGURE 2
The scatter plot showing the relation between the predicted and
experimental pIC50 values of androgen receptor. The predictions
were obtained for the held out test set.

TABLE 1 Predictive capabilities of the androgen and pregnane X receptors
classification model. The results were obtained with the held out test set
representing 10% of entire available data.

Measure Value for AR [%] Value for PXR [%]

Accuracy 82.0 82.4

Precision 85.4 82.9

Recall/Sensitivity 85.4 82.9

Specificity 76.4 80.0

F1-score 85.4 82.9

ROCAUC 80.9 82.4

Average precision 82.0 77.6

Matthew coefficient 61.8 64.8

FIGURE 3
The ROC curve of the binary classifier calculated for androgen
receptor. The predictions were obtained for the held out test set.
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FIGURE 4
The feature importance plot obtained for the XGBoost model trained on the AR data. The plot contains the information about the 40 features having
the highest influence on model predictions.

FIGURE 5
The scatter plot showing the relation between the predicted and experimental pEC50 values of the pregnane X receptror. The predictions were
obtained for the held out test set.
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Random Forest model with 73%, 72%, and 72% as described in Piir
et al. (2021). As an additional feature supporting the Machine
Learning model interpretability, we delivered the feature
importance capability. It is available for decision-tree-based
models and provides quantitative insights into the strength of the
features involved in model creation. As an example, Figure 4 shows
the most influential features with the strongest contributions to the
predictions for the XGBoost classifier developed for AR. The most
important feature is “nRot,” which represents the number of
rotatable bonds. This molecular descriptor reflects the compound
flexibility, which is important from the perspective of ligand binding
to the binding pocket of the receptor. Molecular descriptors and the
PCA features derived from molecular fingerprints were among the
40 most important features, reflecting the topological aspects of the
molecule. All configuration files and data are available in the
associated GitHub repository.

3.3 Pregnane X receptor

Similarly to the previous case, Figure 5 provides a detailed
comparison between the experimental and predicted values
calculated for the test set molecules associated with the PXR
receptor containing 112 compounds. This figure highlights that
the vast majority of these molecules - over 83% - were predicted
with relatively high degree of accuracy, falling within a range of
1.0 log unit of the experimental values. This level of precision
reflects the expected and consistent performance of QSAR
models, reinforcing their reliability in this context. The
predictive capabilities of the classification models, which
were rigorously evaluated using the hold-out test set, are
summarized in Table 1. The classifiers demonstrated a
commendable level of efficiency, achieving sensitivity and
specificity rates of 83%, indicating that the models are
equally proficient at identifying both true positives and true
negatives. Additionally, the model achieved an overall accuracy
of 82%, further underscoring the robustness in predicting the

biological activity of molecules within the PXR receptor dataset.
Moreover, the ROC curve presented in Figure 6, along with the
relatively high area under the curve (AUC) value of 0.82,
provides evidence of a predictive signal within the data. This
high AUC value not only confirms the presence of a meaningful
relationship between the molecular descriptors and biological
activity but also attests to the tool’s effectiveness in capturing
and utilizing this signal to make accurate predictions. Overall,
these results affirm the model’s practical utility and its potential
for application in drug discovery and other related fields. All
configuration files and data are available in the associated
GitHub repository.

4 Summary

Here, we present a Python module called QSPRmodeler, a tool
dedicated to the creation of binary classifiers and regression
predictive models oriented toward predicting the biological and
molecular properties of molecules. The tool utilizes the Python
libraries RDKit and Mordred available from the cheminformatics
site and a set of popular machine learning libraries to solve
predictive analytics problems (extreme gradient boosting
(XGBoost) Chen and Guestrin (2016), artificial neural networks
in the form of multilayer perceptrons Bishop (1995), support vector
machines Cortes and Vapnik (1995); Vapnik (1998), random forests
Ho (1995), ridges Hoerl and Kennard (1970), and bagging models).
The user input is limited to providing the data in an expected
manner, creating the configuration files, and managing the data
transformation and hyperparameter optimization. The proposed
solution implements well-established machine learning practices
in the context of molecules. The capabilities of the QSPRmodeler
were illustrated using an exemplary application to human
androgen and pregnane X receptors based on publicly
available data. The resulting regression and classification
models exhibited predictive capabilities and could be easily
applied to various custom workflows. The implementation was
provided within a permissive open-source licensing model and is
available in the public GitHub repository. It is worth mentioning
that the proposed tool was recently applied to the virtual
screening of a large database of compounds, resulting in the
discovery and experimental verification of new biologically active
ligands for the RORγ receptor Bachorz et al. (2023). As potential
development avenues, we now see the inclusion of more
capabilities supporting the Machine Learning model
interpretability available in the Dalex library Baniecki et al.
(2021), extension of the feature set to include the context of
the receptor Li et al. (2024), and possibly the incorporation of
complex network processing tasks that reduce the prediction
error from the perspective of clustering Hu et al. (2022).

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/rafalbachorz/
qsprmodeler.

FIGURE 6
The ROC curve of the binary classifier calculated for pregnane X
receptor. The predictions were obtained for the held out test set.

Frontiers in Bioinformatics frontiersin.org06

Bachorz et al. 10.3389/fbinf.2024.1441024

https://github.com/rafalbachorz/qsprmodeler
https://github.com/rafalbachorz/qsprmodeler
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1441024


Author contributions

RB: Conceptualization, Data curation, Methodology, Software,
Validation, Writing - original draft. DN: Data curation, Writing -
original draft, Software. MR: Conceptualization, Software, Writing -
original draft, Funding acquisition.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by the National Science Center, Project number
2019/33/B/NZ7/00795.

Conflict of interest

The authors declare that this study was conducted in the absence
of any commercial or financial relationships that could be construed
as potential conflicts of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Ariëns, E. J. (1984). Domestication of chemistry by design of safer chemicals:
structure-activity relationships. Drug Metab. Rev. 15, 425–504. doi:10.3109/
03602538409029970

Bachorz, R. A., Pastwinska, J., Nowak, D., Karas, K., Karwaciak, I., and Ratajewski, M.
(2023). The application of machine learning methods to the prediction of novel ligands
for ROR γ/ROR γ T receptors. Comput. Struct. Biotechnol. J. 21, 5491–5505. doi:10.
1016/j.csbj.2023.10.021

Baniecki, H., Kretowicz, W., Piatyszek, P., Wisniewski, J., and Biecek, P. (2021). dalex:
responsible machine learning with interactive explainability and fairness in python.
J. Mach. Learn. Res. 22, 1–7.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). “Algorithms for hyper-parameter
optimization,”. Advances in neural information processing Systems. Editors J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger (USA: Curran Associates, Inc.), 24, 1–9.

Bergstra, J., Yamins, D., and Cox, D. (2013). “Making a science of model search:
hyperparameter optimization in hundreds of dimensions for vision architectures,” in
Proceedings of the 30th international conference on machine learning. 28 of Proceedings
of machine learning research. Editors S. Dasgupta and D. McAllester (Atlanta, Georgia,
USA: PMLR), 115–123.

Bishop, C. M. (1995). Neural networks for pattern recognition

Burris, T. P., Solt, L. A., Wang, Y., Crumbley, C., Banerjee, S., Griffett, K., et al. (2013).
Nuclear receptors and their selective pharmacologic modulators. Pharmacol. Rev. 65,
710–778. doi:10.1124/pr.112.006833

Cai, X., Young, G. M., and Xie, W. (2021). The xenobiotic receptors pxr and car in
liver physiology, an update. Biochimica Biophysica Acta. Mol. Basis Dis. 1867, 166101.
doi:10.1016/j.bbadis.2021.166101

Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985). Atom pairs as
molecular features in structure-activity studies: definition and applications. J. Chem.
Inf. Comput. Sci. 25, 64–73. doi:10.1021/ci00046a002

Chemical Computing Group (2023). MOE: molecular operating environment. Chem.
Comput. Group. Available at: https://www.chemcomp.com/.

Chen, T., andGuestrin, C. (2016). “Xgboost: a scalable tree boosting system,” in Proceedings
of the 22nd ACM SIGKDD international Conference on knowledge Discovery and datamining
(san francisco California USA: acm), 785–794. doi:10.1145/2939672.2939785

Chohan, K., Paine, S., and Waters, N. (2006). Quantitative structure activity
relationships in drug metabolism. Curr. Top. Med. Chem. 6, 1569–1578. doi:10.
2174/156802606778108960

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi:10.1007/bf00994018

Cresset (2023). Flare. United Kingdom: Cresset Ltd. Available at: https://www.cresset-
group.com/software/flare/.

Dassault Systémes (2023). Biovia discovery Studio. France: Dassault Systémes
BIOVIA.

Daylight Chemical Information Systems, I. (2019). Fingerprints - screening and
similarity

Dixon, S. L., Duan, J., Smith, E., Von Bargen, C. D., Sherman, W., and Repasky, M. P.
(2016). Autoqsar: an automated machine learning tool for best-practice quantitative
structure–activity relationship modeling. Future Med. Chem. 8, 1825–1839. doi:10.
4155/fmc-2016-0093

Durant, J. L., Leland, B. A., Henry, D. R., and Nourse, J. G. (2002). Reoptimization of
mdl keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 42, 1273–1280. doi:10.
1021/ci010132r

Free, S. M., and Wilson, J. W. (1964). A mathematical contribution to structure-
activity studies. J. Med. Chem. 7, 395–399. doi:10.1021/jm00334a001

Fuhr, U. (2000). Induction of drug metabolising enzymes: pharmacokinetic and
toxicological consequences in humans. Clin. Pharmacokinet. 38, 493–504. doi:10.2165/
00003088-200038060-00003

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al.
(2012). Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Res.
40, D1100–D1107. doi:10.1093/nar/gkr777

Hansch, C., and Fujita, T. (1964). p-σ-π Analysis. A method for the correlation of
biological activity and chemical structure. J. Am. Chem. Soc. 86, 1616–1626. doi:10.
1021/ja01062a035

Hansch, C., Hoekman, D., Leo, A., Zhang, L., and Li, P. (1995). The expanding role of
quantitative structure-activity relationships (qsar) in toxicology. Toxicol. Lett. 79,
45–53. doi:10.1016/0378-4274(95)03356-P

Hansch, C., Kim, D., Leo, A. J., Novellino, E., Silipo, C., Vittoria, A., et al. (1989).
Toward a quantitative comparative toxicology of organic compounds. CRC Crit. Rev.
Toxicol. 19, 185–226. doi:10.3109/10408448909037471

Hansch, C., Maloney, P. P., Fujita, T., and Muir, R. M. (1962). Correlation of
biological activity of phenoxyacetic acids with hammett substituent constants and
partition coefficients. Nature 194, 178–180. doi:10.1038/194178b0

Heemers, H. V., and Tindall, D. J. (2007). Androgen receptor (ar) coregulators: a
diversity of functions converging on and regulating the ar transcriptional complex.
Endocr. Rev. 28, 778–808. doi:10.1210/er.2007-0019

Ho, T. K. (1995). Random decision forests. Proc. 3rd Int. Conf. document analysis
Recognit. (IEEE) 1, 278–282. doi:10.1109/ICDAR.1995.598994

Hoerl, A. E., and Kennard, R. W. (1970). Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 12, 55–67. doi:10.1080/00401706.1970.
10488634

Hu, L., Pan, X., Tang, Z., and Luo, X. (2022). A fast fuzzy clustering algorithm for
complex networks via a generalized momentum method. IEEE Trans. Fuzzy Syst. 30,
3473–3485. doi:10.1109/TFUZZ.2021.3117442

Hurst, C. H., and Waxman, D. J. (2004). Environmental phthalate monoesters
activate pregnane x receptor-mediated transcription. Toxicol. Appl. Pharmacol. 199,
266–274. doi:10.1016/j.taap.2003.11.028

Jernberg, E., Bergh, A., and Wikström, P. (2017). Clinical relevance of androgen receptor
alterations in prostate cancer. Endocr. Connect. 6, R146–R161. doi:10.1530/EC-17-0118

Kokal, M., Mirzakhani, K., Pungsrinont, T., and Baniahmad, A. (2020). Mechanisms
of androgen receptor agonist- and antagonist-mediated cellular senescence in prostate
cancer. Cancers 12, 1833. doi:10.3390/cancers12071833

Landrum, G. (2022). Rdkit: open-source cheminformatics software

Lehmann, J. M., McKee, D. D., Watson, M. A., Willson, T. M., Moore, J. T., and
Kliewer, S. A. (1998). The human orphan nuclear receptor pxr is activated by
compounds that regulate cyp3a4 gene expression and cause drug interactions.
J. Clin. Investigation 102, 1016–1023. doi:10.1172/JCI3703

Li, G., Zhao, B., Su, X., Yang, Y., Hu, P., Zhou, X., et al. (2024). Discovering consensus
regions for interpretable identification of rna n6-methyladenosine modification sites via
graph contrastive clustering. IEEE J. Biomed. Health Inf. 28, 2362–2372. doi:10.1109/
JBHI.2024.3357979

Lian, W., Fang, J., Li, C., Pang, X., Liu, A.-L., and Du, G.-H. (2016). Discovery of
influenza a virus neuraminidase inhibitors using support vector machine and naïve
bayesian models. Mol. Divers. 20, 439–451. doi:10.1007/s11030-015-9641-z

Frontiers in Bioinformatics frontiersin.org07

Bachorz et al. 10.3389/fbinf.2024.1441024

https://doi.org/10.3109/03602538409029970
https://doi.org/10.3109/03602538409029970
https://doi.org/10.1016/j.csbj.2023.10.021
https://doi.org/10.1016/j.csbj.2023.10.021
https://doi.org/10.1124/pr.112.006833
https://doi.org/10.1016/j.bbadis.2021.166101
https://doi.org/10.1021/ci00046a002
https://www.chemcomp.com/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.2174/156802606778108960
https://doi.org/10.2174/156802606778108960
https://doi.org/10.1007/bf00994018
https://www.cresset-group.com/software/flare/
https://www.cresset-group.com/software/flare/
https://doi.org/10.4155/fmc-2016-0093
https://doi.org/10.4155/fmc-2016-0093
https://doi.org/10.1021/ci010132r
https://doi.org/10.1021/ci010132r
https://doi.org/10.1021/jm00334a001
https://doi.org/10.2165/00003088-200038060-00003
https://doi.org/10.2165/00003088-200038060-00003
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1021/ja01062a035
https://doi.org/10.1021/ja01062a035
https://doi.org/10.1016/0378-4274(95)03356-P
https://doi.org/10.3109/10408448909037471
https://doi.org/10.1038/194178b0
https://doi.org/10.1210/er.2007-0019
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1109/TFUZZ.2021.3117442
https://doi.org/10.1016/j.taap.2003.11.028
https://doi.org/10.1530/EC-17-0118
https://doi.org/10.3390/cancers12071833
https://doi.org/10.1172/JCI3703
https://doi.org/10.1109/JBHI.2024.3357979
https://doi.org/10.1109/JBHI.2024.3357979
https://doi.org/10.1007/s11030-015-9641-z
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1441024


Lonergan, P. E., and Tindall, D. J. (2011). Androgen receptor signaling in prostate
cancer development and progression. J. Carcinog. 10, 20. doi:10.4103/1477-3163.83937

Moore, L. B., Parks, D. J., Jones, S. A., Bledsoe, R. K., Consler, T. G., Stimmel, J. B.,
et al. (2000). Orphan nuclear receptors constitutive androstane receptor and pregnane x
receptor share xenobiotic and steroid ligands. J. Biol. Chem. 275, 15122–15127. doi:10.
1074/jbc.M001215200

Moriwaki, H., Tian, Y.-S., Kawashita, N., and Takagi, T. (2018). Mordred: a molecular
descriptor calculator. J. Cheminformatics 10, 4. doi:10.1186/s13321-018-0258-y

Murphy, R. F. (2011). An active role for machine learning in drug development. Nat.
Chem. Biol. 7, 327–330. doi:10.1038/nchembio.576

Neves, B. J., Dantas, R. F., Senger, M. R., Melo-Filho, C. C., Valente, W. C. G., de
Almeida, A. C. M., et al. (2016). Discovery of new anti-schistosomal hits by integration
of qsar-based virtual screening and high content screening. J. Med. Chem. 59,
7075–7088. doi:10.1021/acs.jmedchem.5b02038

Nilakantan, R., Bauman, N., Dixon, J. S., and Venkataraghavan, R. (1987).
Topological torsion: a new molecular descriptor for sar applications.
comparison with other descriptors. J. Chem. Inf. Comput. Sci. 27, 82–85. doi:10.
1021/ci00054a008

Patlewicz, G., Roberts, D. W., and Uriarte, E. (2008). A comparison of reactivity
schemes for the prediction skin sensitization potential. Chem. Res. Toxicol. 21, 521–541.
doi:10.1021/tx700338q

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Piir, G., Sild, S., and Maran, U. (2021). Binary and multi-class classification for
androgen receptor agonists, antagonists and binders. Chemosphere 262, 128313. doi:10.
1016/j.chemosphere.2020.128313

Prescott, J., and Coetzee, G. A. (2006). Molecular chaperones throughout the life cycle
of the androgen receptor. Cancer Lett. 231, 12–19. doi:10.1016/j.canlet.2004.12.037

Ratajewski, M., Grzelak, I., Wiśniewska, K., Ryba, K., Gorzkiewicz, M., Walczak-
Drzewiecka, A., et al. (2015). Screening of a chemical library reveals novel pxr-activating
pharmacologic compounds. Toxicol. Lett. 232, 193–202. doi:10.1016/j.toxlet.2014.
10.009

Ratajewski, M., Walczak-Drzewiecka, A., Sałkowska, A., and Dastych, J. (2011).
Aflatoxins upregulate cyp3a4 mrna expression in a process that involves the pxr
transcription factor. Toxicol. Lett. 205, 146–153. doi:10.1016/j.toxlet.2011.05.1034

Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf.
Model. 50, 742–754. doi:10.1021/ci100050t

Simulations-Plus (2023). ADMET predictor. Simulations Plus. Available at: https://
www.simulations-plus.com/software/admetpredictor/.

Sridhar, J., Liu, J., Foroozesh, M., and Stevens, C. L. K. (2012). Insights on cytochrome
p450 enzymes and inhibitors obtained through qsar studies. Molecules 17, 9283–9305.
doi:10.3390/molecules17089283

Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour,
A., et al. (2001). The nuclear receptor pxr is a lithocholic acid sensor that protects against liver
toxicity. Proc. Natl. Acad. Sci. U. S. A. 98, 3369–3374. doi:10.1073/pnas.051551698

Tropsha, A., Gramatica, P., and Gombar, V. (2003). The importance of being earnest:
validation is the absolute essential for successful application and interpretation of QSPR
models. QSAR & Comb. Sci. 22, 69–77. doi:10.1002/qsar.200390007

Vapnik, V. (1998). The support vector method of function estimation. Boston, MA:
Springer US, 55–85. doi:10.1007/978-1-4615-5703-6_3

VLife (2023). VLife technologie. QSARpro, Accurate activity prediction; new
molecule design. Available at: https://www.vlifesciences.com/products/QSARPro/
Product_QSARpro.php.

Votano, J. R. (2004). Three new consensus qsar models for the prediction of ames
genotoxicity. Mutagenesis 19, 365–377. doi:10.1093/mutage/geh043

Weininger, D. (1988). Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36.
doi:10.1021/ci00057a005

Yim, R. M., Sahni, V. N., and Mathis, J. G. (2023). Mycophenolate mofetil-induced
hyperlipidemiawith cutaneousmanifestations.Clin. Case Rep. 11, e7056. doi:10.1002/ccr3.7056

Zhang, L., Fourches, D., Sedykh, A., Zhu, H., Golbraikh, A., Ekins, S., et al. (2013).
Discovery of novel antimalarial compounds enabled by qsar-based virtual screening.
J. Chem. Inf. Model. 53, 475–492. doi:10.1021/ci300421n

Frontiers in Bioinformatics frontiersin.org08

Bachorz et al. 10.3389/fbinf.2024.1441024

https://doi.org/10.4103/1477-3163.83937
https://doi.org/10.1074/jbc.M001215200
https://doi.org/10.1074/jbc.M001215200
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1038/nchembio.576
https://doi.org/10.1021/acs.jmedchem.5b02038
https://doi.org/10.1021/ci00054a008
https://doi.org/10.1021/ci00054a008
https://doi.org/10.1021/tx700338q
https://doi.org/10.1016/j.chemosphere.2020.128313
https://doi.org/10.1016/j.chemosphere.2020.128313
https://doi.org/10.1016/j.canlet.2004.12.037
https://doi.org/10.1016/j.toxlet.2014.10.009
https://doi.org/10.1016/j.toxlet.2014.10.009
https://doi.org/10.1016/j.toxlet.2011.05.1034
https://doi.org/10.1021/ci100050t
https://www.simulations-plus.com/software/admetpredictor/
https://www.simulations-plus.com/software/admetpredictor/
https://doi.org/10.3390/molecules17089283
https://doi.org/10.1073/pnas.051551698
https://doi.org/10.1002/qsar.200390007
https://doi.org/10.1007/978-1-4615-5703-6_3
https://www.vlifesciences.com/products/QSARPro/Product_QSARpro.php
https://www.vlifesciences.com/products/QSARPro/Product_QSARpro.php
https://doi.org/10.1093/mutage/geh043
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1002/ccr3.7056
https://doi.org/10.1021/ci300421n
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1441024

	QSPRmodeler - An open source application for molecular predictive analytics
	1 Introduction
	2 Software description
	3 Illustrative examples
	3.1 Introduction
	3.2 Androgen receptor
	3.3 Pregnane X receptor

	4 Summary
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


