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Transcription factors are essential DNA-binding proteins that regulate the
transcription rate of several genes and control the expression of genes inside
a cell. The prediction of transcription factors with high precision is important for
understanding biological processes such as cell differentiation, intracellular
signaling, and cell-cycle control. In this study, we developed a hybrid method
that combines alignment-based and alignment-free methods for predicting
transcription factors with higher accuracy. All models have been trained,
tested, and evaluated on a large dataset that contains 19,406 transcription
factors and 523,560 non-transcription factor protein sequences. To avoid
biases in evaluation, the datasets were divided into training and validation/
independent datasets, where 80% of the data was used for training, and the
remaining 20% was used for external validation. In the case of alignment-free
methods, models were developed using machine learning techniques and the
composition-based features of a protein. Our best alignment-free model
obtained an AUC of 0.97 on an independent dataset. In the case of the
alignment-based method, we used BLAST at different cut-offs to predict the
transcription factors. Although the alignment-based method demonstrated
excellent performance, it was unable to cover all transcription factors due to
instances of no hits. To combine the strengths of both methods, we developed a
hybrid method that combines alignment-free and alignment-based methods. In
the hybrid method, we added the scores of the alignment-free and alignment-
based methods and achieved a maximum AUC of 0.99 on the independent
dataset. The method proposed in this study performs better than existing
methods. We incorporated the best models in the webserver/Python Package
Index/standalone package of “TransFacPred” (https://webs.iiitd.edu.in/raghava/
transfacpred).
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1 Introduction

Transcription factors (TFs) are DNA-binding proteins that bind to specific DNA
segments to control the expression of the genes (Ortet et al., 2012; Lambert et al., 2018;
Miyazaki and Miyazaki, 2021). These TFs or regulators control specific cell types, cell
differentiation, gene regulatory pathways, and immune responses (Fong and Tapscott,
2013; Lee and Young, 2013; Singh et al., 2014). Recognition of TFs is the first step in
understanding the transcription regulatory system (Kim et al., 2021). Mis-regulation and
mutations in TFs or their binding regions lead to the development of disorders like
Rubinstein–Taybi, CHOPS syndromes, Coffin–Siris, etc. (Lee and Young, 2013; Sim et al.,
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2015; Izumi, 2016; Kircher et al., 2019). Several biological
mechanisms such as chromosomal translocation, aberrant gene
expression, point substitutions, and mutations associated with the
non-coding DNA result in the alteration of transcription factor
binding sites in various cancer types (Kleinjan and van Heyningen,
2005; Herceg and Hainaut, 2007; Bushweller, 2019; Jiramongkol and
Lam, 2020; Kishtagari et al., 2020). In addition, several inflammatory
autoimmune diseases and improper immune development are
associated with the misregulation of the NF-kB transcription
factor (Hayden and Ghosh, 2012). Studies have also revealed
that, with a better understanding of the transcriptional
regulations, it is possible to control gene expression in various
genetic perturbations (Munsky et al., 2012; Lee and Young, 2013;
Kemmeren et al., 2014). Several attempts in clinical research have
been made to target, inhibit, or modulate transcription factor DNA-
binding activity in various disease conditions (Bhagwat and Vakoc,
2015; Cheng et al., 2019; Li et al., 2020).

With the availability of enormous genome sequencing datasets,
many methods have been developed to identify TFs (Pereira et al.,
2020). It is not feasible to identify TFs in genomics using
experimental techniques. In order to overcome these limitations,
a number of in silico methods have been developed to annotate TFs
at the genome scale (Odom, 2011). Zheng and colleagues developed
a hybrid strategy utilizing support vector machine (SVM) and error-
correcting output coding (ECOC) algorithms to predict distinct
categories of TFs, such as helix-turn-helix, beta-scaffold, and zinc-
coordinating DNA-binding domains (Zheng et al., 2008). Eichner
and colleagues developed a four-step workflow that implemented
two complementary tools, TFpredict and SABINE, for identifying
the DNA-binding domains and discovering the DNA motif in a
protein. TFpredict uses machine/deep learning techniques to predict
a transcription factor (Eichner et al., 2013). Another tool, BART, has
been developed to predict functional factors that bind at cis-
regulatory regions from a gene list or a ChIP-seq dataset (Wang
et al., 2018). Recently, Kim et al. developed DeepTFactor, a deep
learning-based tool that predicts TFs using a convolutional neural
network (Kim et al., 2021). That study created and used the largest
possible dataset to develop an accurate and reliable method. The
existing methods are computationally expensive and need domain
expertise (e.g., understanding sources, types of information, and
limitations of the data).

In order to overcome the limitations of existing methods, we
developed an improved method for predicting transcription factors
with high accuracy. Initially, we developed homology or alignment-
based methods for the prediction of the TFs. These alignment-based
methods exhibit high performance if the query TF has high
similarity with the target TFs in the database. However, these
methods fail if a query TF has either poor similarity with the
known TFs in the database or high similarity with non-TFs. We
developed an alignment-free method to overcome these limitations.
In alignment-free methods, different machine learning techniques
are used to build prediction models using the composition of TFs as
an input feature. To combine the power of both alignment-free and
alignment-based methods, we developed a hybrid method. The
hybrid method leverages the efficiency and scalability of
alignment-free techniques while incorporating the precision of
alignment-based approaches, aiming to maximize predictive
performance and overcome the limitations inherent in using

either method alone. This integrated strategy ensures robust and
comprehensive analysis, enhancing the accuracy and reliability of
transcription factor predictions. To support the scientific
community, we developed the web server and standalone
software package TransFacPred, which is freely available at
https://webs.iiitd.edu.in/raghava/transfacpred and https://github.
com/raghavagps/transfacpred for predicting transcription factors
from protein sequences.

2 Materials and methods

2.1 Dataset collection and preprocessing

We obtained the TF and non-TF protein sequence dataset,
which was released in September 2019, from the UniProt
Knowledgebase (UniProtKB)/Swiss-Prot database (Bairoch and
Apweiler, 2000; Boutet et al., 2007). The dataset was parsed and
classified into TFs and non-TFs using the Gene Ontology (GO)
annotation. A protein sequence entry was annotated as a TF if it
met the following criteria: a) the entry has a GO annotation for
TF activity, or b) the entry has both a DNA-binding-related GO
annotation and a transcription regulation-related GO
annotation. The complete table for GO terms used to classify
the TFs and non-TFs is provided in Supplementary Table S1.
Here, we obtained 21,802 TF sequences and 539,374 non-TF
sequences. We have developed a generalized method to predict
the transcription factor. Therefore, we included transcription
factor sequences from a diverse array of organisms. Nearly 9% of
the transcription factor sequences in our dataset belong to Homo
sapiens, about 8% are derived from Arabidopsis thaliana,
approximately 6% come from Mus musculus, and around 2%
are from Rattus norvegicus. The remaining sequences encompass
a variety of other organisms, ensuring a broad and
comprehensive dataset that supports the generalization
capabilities of TransFacPred. This diverse inclusion aims to
facilitate accurate transcription factor prediction across
different species, paving the way for future developments that
may include organism-specific methods to further refine and
enhance prediction accuracy. We removed redundant sequences
and sequences with non-natural amino acids from the TF and
non-TF datasets. For the positive dataset, we obtained
19,406 unique TF sequences out of 21,802 sequences. For the
negative dataset, we obtained 523,560 non-TF sequences from
539,374 entries. The final dataset comprises 19,406 TFs (positive)
and 523,560 non-TFs (negative) protein sequences. Then, we
followed the standards used in previous studies (Dhall et al.,
2021; Dhall et al., 2022) and split the whole dataset into an 80%
training dataset comprising 434,373 sequences (15,525 TFs and
418,848 non-TFs) and a 20% independent dataset containing
108,594 sequences (3,882 TFs and 104,712 non-TFs). As of June
2024, the March 2024 release of Swiss-Prot contains a total of
571,609 proteins, of which 25,052 have been designated as
transcription factors based on the above-mentioned criteria.
After processing these transcription factor protein sequences,
we had a total of 21,125 sequences after removing the redundant
sequences and sequences with non-natural amino acids. Among
these, 1719 sequences were newly identified and were not
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available in the September 2019 release. These new sequences,
along with additional relevant information, are detailed in
Supplementary Table S2.

2.2 Feature generation

2.2.1 Composition-based features
Pfeature (Pande et al., 2023) was used in this study to compute the

amino acid composition- (AAC) and dipeptide composition (DPC)-
based features of positive and negative datasets. In the case of AAC, a
feature vector of length 20 was generated (using Eq. 1), which represents
the composition of 20 amino acids in the sequence. Dipeptide
composition is used to encapsulate the global information about each
sequence, which gives a fixed vector of length 400 (20 × 20) using Eq. 2.

AACi � Ri

L
(1)

where AACi is the AAC of residue type i; Ri and L are the number of
residues of type i and the length of the sequence, respectively.

DPCi � Dj
i

L − j
(2)

whereDPCi is the fraction or composition of a dipeptide of type
i for jth order. Dj

i and L are the number of dipeptides of type i and
the length of a protein sequence, respectively.

2.2.2 One-hot encoding (OHE)
We implemented one-hot encoding approach for feature

generation using TF and non-TF sequences. It is a representation of
categorical variables as binary vectors. First, it requires that the
categorical values be mapped to integer values. Then, each integer
value is represented as a binary vector that is all zero values except the
index of the integer, which ismarked with a 1. InOHE, each amino acid
is represented by the vector size of length 21; for instance, A is described
as 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; which consists of 20 natural
amino acids and one dummy variable, whereas X is represented as
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.

2.3 Model development

We implemented a number of classifiers to develop prediction
models to predict the transcription factors using sequence
information. Here, we used Scikit-learn-based traditional machine
learning algorithms such as decision tree (DT), eXtreme gradient
boosting (XGB), random forest (RF), Gaussian naïve Bayes (GNB),
K-nearest neighbor (KNN), extra tree (ET), logistic regression (LR),
and support vector classifier (SVC). We implemented a variety of
classifiers based on different algorithms, such as DT, RF, and ET,
which are tree-based approaches. DT is a non-parametric supervised
learning method. It works by splitting the data into subsets based on
the most significant feature at each node, leading to a tree-like model
of decisions. RF is an ensemble method that constructs multiple
decision trees during training. It outputs the class, which is the mode
of the classes of the individual trees, improving predictive accuracy
and controlling overfitting. ET is similar to RF but differs in the way
splits are chosen. ET selects splits randomly, reducing variance and

improving the model’s robustness. XGB is a boosting-based
approach; it is an advanced implementation of gradient boosting.
It builds trees sequentially, with each tree correcting errors from the
previous trees, leading to high predictive performance and
robustness against overfitting. GNB is a Bayesian-based approach
that is based on Bayes’ theorem with the assumption of feature
independence. It models the distribution of the data using Gaussian
distributions. KNN is an instance-based learning method that
classifies a sample based on the majority label among its closest
neighbors in the feature space. It is simple and effective but can be
computationally intensive. LR models the probability of a binary
outcome using a logistic function. It is a linear model used for binary
classification, where the output is interpreted as the probability of a
particular class. SVC constructs hyperplanes in a high-dimensional
space to separate different classes. It optimizes the margin between
the classes, which helps improve classification accuracy and
generalization.

We employed a hyperparameter tuning technique using the grid
search approach available in Python’s Scikit-learn library to identify
the optimal parameters for each classifier. This method exhaustively
searches over a specified parameter grid to determine the best
combination of parameters that yields the highest performance
for each model. The most effective parameters and their
corresponding values, as determined by grid search, are
documented in Supplementary Table S3. This table provides a
comprehensive overview of the tuned parameters for each
classifier, ensuring reproducibility and transparency of the results.

2.4 Five-fold cross-validation

To avoid the curse of biases and overfitting of models, we
performed five-fold cross-validation on the training dataset
(Patiyal et al., 2020; Dhall et al., 2021; Patiyal et al., 2022). In
this approach, the training dataset is stratified into five sets, where
the model is trained on four sets and tested on the remaining one.
The same process is repeated five times in such a way that each set
acts as a testing dataset. The final performance is the average of
performances resulting from each iteration.

2.5 Similarity search approach

We also implemented similarity search using BLAST (McGinnis
and Madden, 2004), a widely used tool to annotate the sequences.
We used it to classify the sequences as transcription factors or non-
transcription factors based on their similarity. The BLASTP suite of
NCBI-BLAST + version 2.2.29 was used to perform the similarity
search. The training dataset was used to create the custom database,
and the makeblastdb application of NCBI-BLAST+ was used for the
same. Sequences in the independent dataset were hit against the
custom database to assign the class as a transcription factor or non-
transcription factor based on their similarity with the sequences in
the database. We considered the top hit of BLAST to assign the
classes, such that if the top hit of the BLAST is against the
transcription factor sequence of the database, then the query
protein is assigned as a transcription factor; otherwise, it was
labeled as a non-transcription factor. We ran the BLAST at
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different e-value cut-offs varying from 1e − 6 to 1e + 3 in order to
find the optimal value to classify the transcription factors.

2.6 Performance evaluation

We used various performance evaluation parameters such as
accuracy, sensitivity, specificity, F1-score, area under the receiver
operating characteristics curve (AUC), and Matthews correlation
coefficient (MCC). Sensitivity (see Eq. (3)), specificity (see Eq. (4)),
accuracy (see Eq. 5), F1-score (see Eq. (6)), and MCC (see Eq. (7))
are threshold-dependent parameters. In contrast, AUC is a
threshold-independent parameter. The various performance
evaluation parameter equations are provided below.

Sensitivity � TP
TP + FN

p 100 (3)

Specif icity � TN
TN + FP

p100 (4)

Accuracy � TP + TN
TP + FP + TN + FN

p100 (5)

F1 − score � 2TP
FP + FN

(6)

MCC � TPpTN( ) − FPpFN( )
�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (7)

where FP is False Positive, FN is False Negative, TP is True Positive,
and TN is True Negative.

3 Results

3.1 Compositional analysis

We performed the amino acid-based compositional analysis for
the TF, non-TF, and general proteome classes to compare the
abundance of the residues in these classes. Figure 1 represents
the average percent composition of each residue in proteins

belonging to the TF and non-TF classes. It compares the same
with the average percent composition of general proteome derived
from the Swiss-Prot database. As exhibited by the bar plot,
transcription factors are rich in E, P, Q, R, and S residues
compared to the non-transcription factors, whereas residues A,
G, I, and V are abundant in non-transcription factor proteins.

3.2 Performance on alignment-
based method

To classify the transcription factors using an alignment-based
method, we performed the similarity search using BLAST by
varying the e-value from 1.00E−06 to 1.00E+03. In this
approach, we created the database using the sequences in the
training dataset, hit the query proteins in the independent dataset
against it, and considered the top hit to assign the class to each
query protein. The performance at each value is reported in
Table 1. As shown in Table 1, BLAST achieved a good
performance for predicting the transcription factors but could
not cover the entire dataset. Moreover, as the e-value increases, the
probability of a correct prediction decreases. Hence, BLAST alone
is not sufficient for predicting the transcription factors.

3.3 Performance on alignment-
free methods

We implemented eight traditional machine learning
classifiers, such as DT, RF, LR, XGB, GNB, KNN, ET, and
SVC, using various features like AAC, DPC, and AAC + DPC
as the input feature to classify the protein sequences into TFs and
non-TFs. We trained the model on the 80% training dataset and
evaluated its performance on the remaining 20% independent
dataset. First, we developed various prediction models using
AAC, and the performance of each classifier is reported in
Table 2. As shown by Table 2, the ET-based model

FIGURE 1
Average percent composition of amino acid residues in TFs, Non-TFs, and the general proteome.
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outperforms the other models with an AUC of 0.97 on the
training and independent datasets with balanced sensitivity
and specificity.

Similarly, various machine learning models were developed to
classify TFs using DPC as the input feature. Table 3 represents the
performance of models based on each classifier, and the model based

TABLE 1 Performance on alignment-based approach at different e-values.

E-Value No hits [positive] Probability of correct prediction

1.00E−06 68 95.44

1.00E−05 57 95.40

1.00E−04 44 95.28

1.00E−03 39 95.29

1.00E−02 32 95.30

1.00E−01 29 95.28

1.00E+00 22 95.26

TABLE 2 Performance of various classifiers using AAC as the input feature.

Classifier Training dataset Independent dataset

Sens Spec Acc AUC F1 K MCC Sens Spec Acc AUC F1 K MCC

DT 52.435 98.192 96.557 0.753 0.523 0.505 0.505 52.486 98.273 96.637 0.754 0.529 0.511 0.511

RF 91.028 89.057 89.127 0.964 0.708 0.698 0.701 91.961 89.195 89.294 0.968 0.721 0.711 0.713

LR 73.895 74.756 74.725 0.814 0.214 0.168 0.215 74.130 75.001 74.970 0.813 0.213 0.169 0.215

XGB 85.592 86.791 86.748 0.940 0.582 0.568 0.574 86.988 86.966 86.967 0.946 0.589 0.575 0.583

KNN 84.684 94.997 94.628 0.913 0.671 0.661 0.669 85.803 95.011 94.682 0.919 0.674 0.663 0.672

GNB 67.835 71.707 71.569 0.772 0.235 0.202 0.206 67.070 72.002 71.825 0.767 0.235 0.201 0.206

ET 90.461 90.866 90.852 0.967 0.733 0.724 0.729 91.033 90.949 90.952 0.968 0.745 0.736 0.740

SVC 80.246 80.812 80.791 0.891 0.488 0.469 0.470 81.474 81.186 81.196 0.897 0.489 0.469 0.470

aAAC: Amino acid composition; DT: Decision tree; RF: Random forest; LR: Logistic regression; XGB: eXtreme gradient boosting; KNN: K-nearest neighbor; GNB: Gaussian naïve Bayes; ET:

Extra trees; SVC: Support vector classifier; Sens: Sensitivity; Spec: Specificity; ACC: Accuracy; AUC: Area under the receiver operating characteristics curve; K: kappa; MCC: Matthews

correlation coefficient.

TABLE 3 Performance of various classifiers using DPC as the input feature.

Classifier Training dataset Independent dataset

Sens Spec Acc AUC F1 K MCC Sens Spec Acc AUC F1 K MCC

DT 52.544 98.180 96.549 0.754 0.522 0.505 0.505 52.409 98.193 96.557 0.753 0.522 0.504 0.504

RF 90.648 89.220 89.271 0.964 0.720 0.710 0.715 90.518 89.444 89.482 0.964 0.728 0.719 0.726

LR 80.343 80.711 80.698 0.876 0.301 0.265 0.303 80.752 80.779 80.778 0.878 0.308 0.272 0.309

XGB 90.113 90.305 90.298 0.965 0.720 0.710 0.715 90.054 90.505 90.488 0.966 0.720 0.711 0.716

KNN 84.117 96.321 95.885 0.913 0.714 0.703 0.704 83.767 96.225 95.780 0.912 0.719 0.709 0.709

GNB 75.866 49.497 50.439 0.694 0.166 0.122 0.135 76.269 49.668 50.619 0.696 0.165 0.122 0.133

ET 90.938 88.708 88.788 0.965 0.757 0.749 0.752 90.673 88.889 88.952 0.964 0.756 0.747 0.753

SVC 88.864 92.169 92.051 0.960 0.781 0.774 0.778 89.307 92.171 92.069 0.964 0.787 0.779 0.782

aDPC: Dipeptide composition; DT: Decision tree; RF: Random forest; LR: Logistic regression; XGB: eXtreme gradient boosting; KNN: K-nearest neighbor; GNB: Gaussian naïve Bayes; ET: Extra

trees; SVC: Support vector classifier; Sens: Sensitivity; Spec: Specificity; ACC: Accuracy; AUC: Area under the receiver operating characteristics curve; K: Kappa; MCC: Matthews correlation

coefficient.
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on the XGB classifier performed best among the other classifiers
with an AUC of 0.96 on the training and validation dataset.

In the next step, we combined the AAC and DPC features, which
resulted in a vector of size 420 for each protein, and developed prediction
models. We used eight different classifiers, and their performance is
reported in Table 4. Similar to the performance on individual features,
the XGB-basedmodel performed best among all the other classifiers with
an AUC of 0.97 on the training and independent datasets.

3.4 Performance of deep learning models

We also developed deep learning technique-based prediction
models to classify the TFs using different features such as AAC,
DPC, AAC + DPC, and one-hot encoding (OHE). Table 5 exhibits
the performance of the different models on the validation datasets
using different features. As shown in Table 5, the CNN-based model
with one-hot encoding as the input feature performed best with an
AUC of 0.95 on the independent dataset.

3.5 Performanceof hybrid (alignment-based+
alignment-free) model

We also developed a hybrid model for classifying
transcription factors by combining alignment-free and

alignment-based approaches. The alignment-free component
employs machine learning classifiers, while the alignment-
based component utilizes similarity search with BLAST,
resulting in a more accurate and comprehensive prediction
method. In the hybrid approach, we combined the outputs
from the ET-based model developed using amino acid
composition and BLAST search to make the final prediction.
Table 6 exhibits the performance of the hybrid model at different
e-values on the independent dataset. As shown in Table 6, at each
e-value, the AUC achieved was 0.99, with balanced sensitivity and
specificity; in terms of accuracy, an e-value of 1.00E + 02 attained
the maximum value of 97.013%. This model has been
incorporated into the backend of the server TransFacPred to
predict if the submitted protein is a TF or a non-TF.

3.6 Comparison with existing methods

To understand the advantages or disadvantages of the newly
proposed method, it is crucial to compare it with the existing
methods. Hence, we compared the performance of our model
with the published methods such as DeepTFactor, TFpredict, and
P2TF (Ortet, et al., 2012; Eichner et al., 2013; Kim et al., 2021). We
evaluated our and existing models on the independent dataset, and
as signified in Table 7, our model performed better in terms of each
evaluation parameter.

TABLE 4 Performance of various classifiers using a combination of AAC and DPC as the input feature.

Classifier Training dataset Independent dataset

Sens Spec Acc AUC F1 K MCC Sens Spec Acc AUC F1 K MCC

DT 54.412 98.270 96.703 0.763 0.543 0.526 0.526 53.491 98.287 96.686 0.759 0.537 0.519 0.519

RF 91.885 89.655 89.735 0.969 0.729 0.720 0.723 91.832 89.731 89.806 0.969 0.738 0.729 0.732

LR 80.845 80.190 80.214 0.875 0.295 0.259 0.298 80.881 80.282 80.304 0.878 0.303 0.268 0.303

XGB 90.815 90.592 90.600 0.969 0.735 0.726 0.731 91.007 90.675 90.687 0.970 0.736 0.727 0.731

KNN 85.611 96.317 95.934 0.921 0.719 0.708 0.712 85.442 96.389 95.998 0.920 0.722 0.711 0.711

GNB 76.188 50.433 51.353 0.704 0.180 0.135 0.155 76.424 50.612 51.534 0.706 0.182 0.137 0.156

ET 91.814 88.980 89.082 0.968 0.758 0.750 0.754 91.497 89.178 89.261 0.966 0.759 0.751 0.754

SVC 86.507 84.927 84.984 0.935 0.645 0.633 0.637 86.756 85.212 85.267 0.939 0.650 0.638 0.639

aAAC: Amino acid composition; DPC: Dipeptide composition; DT: Decision tree; RF: Random forest; LR: Logistic regression; XGB: eXtreme gradient boosting; KNN: K-nearest neighbor; GNB:

Gaussian naïve Bayes; ET: Extra trees; SVC: Support vector classifier; Sens: Sensitivity; Spec: Specificity; ACC: Accuracy; AUC: Area under the receiver operating characteristics curve; K: Kappa;

MCC: Matthews correlation coefficient.

TABLE 5 Performance of convolutional neural network-based model using various features on the independent dataset.

Feature Sensitivity Specificity Accuracy AUC F1 K MCC

AAC 8.00 99.00 96.30 0.54 0.14 0.14 0.24

DPC 53.22 99.73 97.92 0.76 0.67 0.66 0.68

AAC + DPC 59.34 99.49 97.93 0.79 0.69 0.68 0.69

OHE 91.27 98.61 98.32 0.95 0.81 0.81 0.81

aAAC: Amino acid composition; DPC: Dipeptide composition; OHE: One-hot encodings; AUC: Area under the receiver operating characteristics curve; K: Kappa; MCC: Matthews correlation

coefficient.
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TABLE 6 Performance of hybrid method (AAC + BLAST) on the independent dataset.

E-value Sensitivity Specificity Accuracy AUC F1 K MCC

1.00E−06 95.88 95.41 95.42 0.99 0.94 0.93 0.93

1.00E−05 95.83 95.56 95.57 0.99 0.94 0.93 0.93

1.00E−04 95.70 95.76 95.76 0.99 0.94 0.94 0.94

1.00E−03 95.70 95.93 95.92 0.99 0.94 0.94 0.94

1.00E−02 96.03 96.03 96.03 0.99 0.94 0.94 0.94

1.00E−01 96.16 96.18 96.18 0.99 0.94 0.94 0.94

1.00E+00 96.34 96.41 96.41 0.99 0.94 0.94 0.94

1.00E+01 96.96 96.76 96.77 0.99 0.93 0.93 0.93

1.00E+02 97.06 97.01 97.01 0.99 0.93 0.92 0.92

2.00E+02 97.06 97.15 97.15 0.99 0.93 0.92 0.92

1.00E+03 97.06 97.24 97.24 0.99 0.93 0.92 0.92

aAAC: Amino acid composition; AUC: Area under the receiver operating characteristics curve; MCC: Matthews correlation coefficient.

TABLE 7 Comparison of the performance of our best-performing model with existing tools on the independent dataset.

Parameters TransFacPred DeepTFactor TFpredict P2TF

Sensitivity 97.06 95.93 93.41 92.84

Specificity 97.01 95.78 92.85 86.16

Accuracy 97.01 95.79 92.87 86.40

AUC 0.99 0.97 0.94 0.88

F1 0.93 0.85 0.48 0.33

K 0.92 0.84 0.48 0.32

MCC 0.92 0.85 0.53 0.40

aAUC: Area under the receiver operating characteristics curve; K: Kappa; MCC: Matthews correlation coefficient.

TABLE 8 Comparison between the processing time of DeepTFactor and TransFacPred.

Number of sequences Method Time (in seconds)

Real User System

50 DeepTFactor 13.285 3.882 1.188

TransFacPred [ML] 7.666 1.551 0.998

TransFacPred [Hybrid] 24.111 22.079 1.254

1,000 DeepTFactor 55.201 51.37 3.954

TransFacPred [ML] 37.208 2.649 1.157

TransFacPred [Hybrid] 436.071 429.062 3.157

108,594 DeepTFactor 6014.113 5629.047 375.138

TransFacPred [ML] 134.387 130.191 1.945

TransFacPred [Hybrid] 47,932.78 47,583.942 304.83

aML: Machine learning.
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Additionally, we compared the processing times of the recently
published DeepTFactor with our proposed method, TransFacPred,
using both standalone machine learning and a hybrid model. By
testing various numbers of sequences simultaneously, we found that
DeepTFactor takes longer as the number of sequences increases, as
shown in Table 8. We implemented the AAC-based machine
learning model and a hybrid model and compared the
performance. The ML-based model took less time than
DeepTFactor with an equivalent AUC, whereas the hybrid model
performed best but took more time to provide the output.

3.7 Web server implementation

We developed an easy-to-use web server, TransFacPred, and a
standalone package. Our web server has two major modules: Predict
and BLAST Search. The predictive module allows the users to
predict TFs using an alignment-free method or a hybrid method

(see Figure 2). The BLAST search module allows users to perform a
BLAST search against the database of TFs and non-TFs used in this
study. The comprehensive utility of the BLAST Search module and
predict module using the AAC- and hybrid-based model is shown in
Figure 3. In addition to the web server, we developed a standalone
package in Python. This package is suitable for scanning TFs at the
genome scale, where it can be run on a local machine.

4 Discussion

TFs initiate the transcription process and hence play amajor role
in deciding the fate of a cell or cellular process (Rhee et al., 2017;
Islam et al., 2021). Identification of novel or unknown TFs using
experimental-based techniques such as RNA sequencing (RNA-seq)
and Chromatin immunoprecipitation sequencing (ChIP-seq)
experiment is a tiring and expensive task (Muhammad et al.,
2019). Previously, a number of methods have been developed for

FIGURE 2
Graphical representation of the the TransFacPred web server using a hybrid model.

FIGURE 3
Usage of the Predict and BLAST Search modules of TransFacPred.
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the prediction of TFs (Zheng et al., 2008; Eichner et al., 2013; Kim
et al., 2021). To assist the researchers working in this field, wemade a
systematic attempt to develop a highly accurate method capable of
classifying TFs using the primary sequence information. Based on
GO terms, sequences were assigned as either TFs or non-TFs. At
first, there was a total of 561,176 sequences, of which 21,802 were
assigned as TFs and 539,374 were designated as non-TFs; after
preprocessing the datasets, the final dataset was comprised of
19,406 TFs and 523,560 non-TFs. These sequences are from
diverse organisms, which signifies the diversity in the proposed
model. Of the TF sequences, approximately 9% are from H. sapiens,
8% from A. thaliana, 6% fromM. musculus, 2% from R. norvegicus,
and the rest belong to other organisms.

In this study, we employed an imbalanced dataset to train and
evaluate the models, where the number of TFs was significantly
higher than the number of TF sequences. It is crucial to understand
that the use of either balanced datasets or imbalanced/realistic
datasets is pertinent not only to this study but to all similar
studies. Previous research has thoroughly discussed the
importance of both balanced and realistic datasets (Agarwal
et al., 2011; Agrawal et al., 2020; Patiyal et al., 2020). Notably, a
balanced dataset is essential for training, testing, and evaluating any
supervised machine learning technique as it ensures equal
preference to all classes. Many data scientists favor using
balanced datasets because they facilitate the training and
evaluation process through straightforward metrics such as
accuracy. However, in real-world scenarios, classes are often
imbalanced. For instance, there are typically far more non-
transcription factors than transcription factors. A model trained
on a balanced dataset might try to predict an equal number of
transcription factors and non-transcription factors in a given
protein set, which does not represent the real situation
accurately. Biologists and other domain experts often prefer to
train machine learning models on realistic datasets that reflect
the inherent imbalance found in real-world data. However,
training such models presents challenges because machine
learning techniques tend to favor classes with more samples.
Furthermore, simple metrics like accuracy may not be sufficient
to evaluate such models adequately. To address this issue, we
evaluated the models in this study using metrics that penalize
over-prediction and account for class imbalances, such as the
MCC. This approach ensures a more accurate and fair evaluation
of the models’ performance, highlighting the importance of
considering dataset composition in machine learning studies.
Although the proposed model was developed using the sequences
from an array of organisms, which led to the development of the
general model, it is important to recognize that organism-specific
methods may provide more precision than general methods.
Initially, most methods were developed for a wide range of
organisms, but they were later replaced by organism-specific
methods due to their better accuracy. For example, in the field of
subcellular localization, methods were initially developed for the
subcellular localization of eukaryotic proteins, such as ESLpred
(Garg and Raghava, 2008). Later, organism-specific methods were
developed, such as for human proteins (Zhang et al., 2022) and
RSLpred for rice proteins (Kaundal and Raghava, 2009).

The preliminary composition analysis on this dataset showed
that the TFs are rich in E, P, Q, R, and S amino acids. Further,

sequence-based features were computed using Pfeature software,
and various machine learning techniques were implemented to
exploit their capabilities to classify the sequences as either TFs or
non-TFs. Our models were trained on 80% of the dataset using
different sets of features and validated on the remaining previously
unseen 20% of the dataset. JWe obtained an AUC of 0.96 on the
training and on an independent dataset using amino acid
composition-based features. Of all the models, the hybrid model,
which is the combination of the ET-based model developed on
amino acid composition and BLAST search, performed best with an
AUC of 0.99 on the independent dataset with balanced sensitivity
and specificity. We also compared our method with the existing
methods such as DeepTFactor, TFpredict, and P2TF to predict the
transcription factors using sequence information. We trained our
models on the training dataset and evaluated the performance of the
TransFacPred and existing approaches on the independent dataset.
We demonstrated that the proposed model of TransFacPred
outperformed the existing approaches to classify the TFs in terms
of AUC and other parameters. We anticipate that this research will
aid researchers working in genomics and proteomics. Figure 4
represents the complete flow of this study.

5 Potential applications of
TransFacPred

TransFacPred has applications in many different areas of biological
study. Accurate identification of transcription factors enables
researchers to focus on functional analysis and regulatory
mechanisms, thereby deepening the understanding of cellular
processes and gene expression regulation (Davidson and Erwin,
2006). For instance, transcription factors play crucial roles in
controlling developmental processes, responding to environmental
stimuli, and regulating cellular differentiation (Lee and Young,
2013). By integrating TransFacPred into genomic studies, researchers
can expedite the identification of transcription factors, facilitating a
more efficient analysis of large datasets and complex biological systems
(Vaquerizas et al., 2009). In practical genomic data analysis,
TransFacPred can annotate newly sequenced genomes, assisting in
the rapid identification of transcription factors (Wasserman and
Sandelin, 2004). This tool is particularly beneficial in comparative
genomics, where researchers aim to elucidate evolutionary
relationships and functional conservation of transcription factors
across different species (Levine and Tjian, 2003). For instance,
predicting transcription factors in novel genomes can reveal insights
into regulatory networks and gene expression patterns across diverse
organisms, contributing to our understanding of evolutionary biology
and functional genomics (Wray et al., 2003). Furthermore,
TransFacPred can be used in metagenomic studies to identify
transcription factors in microbial communities, shedding light on
the regulatory mechanisms underlying microbial diversity and
ecosystem functions (Moran et al., 2013). In oncology, TransFacPred
could be utilized to identify transcription factors involved in cancer
development and progression. For example, studies have shown that
transcription factors such as MYC and TP53 play critical roles in
tumorigenesis (Vousden and Lane, 2007; Dang, 2012). By analyzing
protein sequences from tumor samples, TransFacPred can help to select
the key regulatory proteins that may serve as potential biomarkers or
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therapeutic targets, thereby aiding in the development of targeted
cancer therapies.

TransFacPred can aid in agricultural studies by identifying
transcription factors that regulate stress response and developmental
pathways in plants. Transcription factors like DREB and WRKY have
been associated with stress responses in crops, playing crucial roles in
plant adaptation to abiotic stresses such as drought, salinity, and cold
(Yamaguchi-Shinozaki and Shinozaki, 2006; Rushton et al., 2010). This
information is valuable for engineering crops with enhanced resistance
to environmental stresses, leading to improved yield and sustainability
(Hirayama and Shinozaki, 2010). For example, overexpression of
DREB1A in transgenic rice has been shown to enhance drought and
cold tolerance, demonstrating the practical application of transcription
factor research in crop improvement (Datta et al., 2012). Understanding
the role of transcription factors in developmental processes is crucial for
developmental biology studies. For instance, transcription factors such
as SOX2 and OCT4 are key regulators of stem cell pluripotency and
differentiation (Masui et al., 2007; Nichols and Smith, 2012). SOX2 and
OCT4 form a core regulatory network that maintains the pluripotent
state of embryonic stem cells and regulates their differentiation into
various cell types (Masui et al., 2007). Disruptions in these transcription
factors can lead to developmental disorders and diseases, highlighting

their importance in developmental biology (Nichols and Smith, 2012).
TransFacPred can assist in identifying key transcription factors involved
in differentiation and morphogenesis, providing insights into
developmental disorders and regenerative medicine (Slack, 1995).

6 Limitations of the study

While TransFacPred offers substantial benefits, it is essential to
acknowledge its limitations. The accuracy of predictions may vary
depending on the quality and diversity of input protein sequences.
TransFacPred’s performance might be constrained by the availability of
comprehensive training data, which could impact its ability to
generalize across different organisms and conditions. Moreover, the
predictive models used by TransFacPred might not fully capture the
complex regulatory interactions and context-dependent activities of
transcription factors, necessitating experimental validation to confirm
the biological relevance of the predictions. It is also important to
consider the potential biases introduced by the training data, which
might affect TransFacPred’s applicability to novel or underrepresented
species. Although TransFacPred can identify whether an input protein
sequence is a transcription factor, it does not provide information about

FIGURE 4
Complete workflow for TransFacPred.

Frontiers in Bioinformatics frontiersin.org10

Patiyal et al. 10.3389/fbinf.2024.1425419

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1425419


the binding site or affinity scores. Furthermore, while we have provided
a generalized model to predict transcription factors by including
sequences from various organisms, it is important to recognize that
transcription factors in different organismsmay have distinct properties
and functions. Therefore, it may be possible to develop organism-
specific methods to predict transcription factors more accurately.
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