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Rapid advancements in high-throughput single-cell RNA-seq (scRNA-seq)
technologies and experimental protocols have led to the generation of vast
amounts of transcriptomic data that populates several online databases and
repositories. Here, we systematically examined large-scale scRNA-seq
databases, categorizing them based on their scope and purpose such as
general, tissue-specific databases, disease-specific databases, cancer-focused
databases, and cell type-focused databases. Next, we discuss the technical and
methodological challenges associated with curating large-scale scRNA-seq
databases, along with current computational solutions. We argue that
understanding scRNA-seq databases, including their limitations and
assumptions, is crucial for effectively utilizing this data to make robust
discoveries and identify novel biological insights. Such platforms can help
bridge the gap between computational and wet lab scientists through user-
friendly web-based interfaces needed for democratizing access to single-cell
data. These platforms would facilitate interdisciplinary research, enabling
researchers from various disciplines to collaborate effectively. This review
underscores the importance of leveraging computational approaches to
unravel the complexities of single-cell data and offers a promising direction
for future research in the field.
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1 Introduction

The first commercially available single-cell platform emerged in 2014 (Wu et al.,
2018). Over the past decade, single-cell sequencing technologies have rapidly advanced,
becoming faster and more cost-effective. Today, there are over 10 different
commercially available platforms for high-throughput single-cell data collection
(Valihrach et al., 2018; Mereu et al., 2020). This advancement has fueled
remarkable growth in the field of single-cell RNA sequencing (scRNA-seq) research,
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with nearly 2000 studies published to date (Svensson et al., 2020),
populating numerous databases and repositories (Regev et al.,
2017; Abugessaisa et al., 2018; Franzén et al., 2019; Wang et al.,
2019; Papatheodorou et al., 2020). These studies have provided
valuable insights into various biological processes, including
development (Han et al., 2020), disease initiation and
progression (Strzelecka et al., 2018), immune response (Chen
et al., 2023), and identification of rare cell types (Lee et al., 2019;

Salcher et al., 2022). Alongside the generation of large-scale
single-cell data, we also observe a sharp rise in scRNA-seq
analysis tools, expected to reach 3,000 by the end of 2025
(Zappia and Theis, 2021; Davis, 2019).

Previous reviews and benchmarking analyses have extensively
covered various aspects of scRNA-seq analysis such as quality
control (Lähnemann et al., 2020), normalization (Hafemeister and
Satija, 2019; Sina Booeshaghi et al., 2022), integration (Tran et al., 2020;

FIGURE 1
Overview of single-cell databases, their technical/methodological issues, current solutions, and common assumptions. (A) Overview of citations
gathered from single-cell data repositories from primary or aggregated studies (data collected on March 31st). (B) The pie chart showing the total cells in
the primary and aggregated data source (C)Highlights the number of datasets or studies published per database in the primary data source category. (D)
Shows the number of donors/samples in the aggregated data source category. (E) A bar chart highlighting the total percentage of databases in
general, tissue-specific, disease-specific, cancer-focused, and cell type-focused databases. (F,G) Exhibits the number of databases/studies for tissue-
specific and disease-focused databases. (H) Shows the number of cancer types per cancer-focused databases. (I) Technical and methodological issues
with databases, current computational and methods-based solutions, and their common assumptions and limitations.
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Luecken et al., 2022), and cell type annotation (Abdelaal et al., 2019).
However, the complexity of large-scale data necessitates a
comprehensive evaluation of available scRNA-seq databases and
repositories. This evaluation is crucial to understand concepts like
integration in the context of large-scale databasing. Understanding the
scope and limitations of these databases is crucial for storing, analyzing,
and interpreting single-cell data directly from these repositories. In this
review, we systematically address the limitations and common
assumptions of existing scRNA-seq databases. We discuss the utility
of these databases to meet the specific needs of researchers studying
different biological systems and processes.

2 Landscape of single-cell
transcriptomics databases

The rapid expansion of single-cell RNA-seq (scRNA-seq)
studies has led to the development of numerous databases and
repositories for storing, retrieving, and interpreting single-cell data
(Regev et al., 2017; Abugessaisa et al., 2018; Franzén et al., 2019;
Wang et al., 2019; Papatheodorou et al., 2020). These databases
provide a resource for single-cell transcriptomic data that can be
used to build computational models to investigate various biological
processes. The data in scRNA-seq databases or atlases can come
from either a “primary” source, that exclusively hosts data generated
by the study itself and is not shared or aggregated with data from
other studies, or an “aggregated” source, where data was collected
and curated from multiple studies (Figures 1A–D). Single-cell
databases can be further categorized into general (non-specific or
broad category of databases), tissue-specific databases, disease-
specific databases, cancer-focused databases, and cell type-focused
databases (Figure 1E). We have curated a comprehensive list of
scRNA-seq databases, accessible here (https://github.com/mctp/
single-cell-Databases/tree/main, Supplementary Table S1). This
list includes database names, years of establishment, PubMed
IDs, citation counts (as of March 31st), URLs, web interface
availability, number of datasets/studies, cell counts, primary vs.
aggregated distinction, specific groups, tissue types, data types,
file types, normalization methods (if mentioned), data locations,
and types of web interfaces.

2.1 General single-cell databases

The establishment of the Human Cell Atlas (HCA) (Regev et al.,
2017) in 2017 marked a significant effort to collect and integrate large-
scale single-cell data into a comprehensive reference atlas for all human
cells. HCA’s open-access resource forms one of the largest public
databases for integrated single-cell data from large-scale sequencing
projects comprising over 437 projects and 58.5 million cells across
18 tissues. Single-cell atlases offer high-resolution views of cellular
composition in organs, leading to groundbreaking discoveries of rare
cell types, developmental processes, and cell states associated with
various disease processes (Argelaguet et al., 2021; Rood et al., 2022;
Badia-I-Mompel et al., 2023).

Other general databases include Single Cell Portal (SCP) (Tarhan
et al., 2023) and CZ CellxGene Discover (CZI Single-Cell Biology
Program et al., 2023) which aremore flexible and are ideal for retrieving

single-cell data focusing on a particular dataset of interest, focusing on
unique features and variations within the datasets. The SCP and CZ
CellxGene, developed by the Chan Zuckerberg Initiative (CZI) and
Broad Institute, respectively, provide web-based interfaces for data
exploration and analysis. CZ CellxGene hosts more than
1,284 datasets while SCP constitutes 654 datasets. They offer
interactive visualization tools for exploring gene expression patterns,
cell clusters, and cell type annotations in scRNA-seq data. Both
platforms support the sharing of scRNA-seq datasets, allowing
researchers to collaborate and access public datasets. Using the CZ
CellxGene platform, users can also download the raw count data as an
RDS file containing a Seurat object or an h5ad file with an AnnData
object to perform their analysis. Similarly, SCP data can be downloaded
as individual metadata files, raw count expressions, and normalized
expression data from the website directly, however, the availability of
raw or normalized data is subjective to each study in SCP. Another
interesting example of a comprehensive database is Tabula Sapiens
(Sapiens Consortium* et al., 2022) which houses primary data from
15 individuals across 24 tissues. This database enables the evaluation of
gene expression in normal or baseline cell states, providing a valuable
resource for developing gene regulation networks and trajectories
(Gondal et al., 2024a). It offers a unique opportunity to study cell
type-specific expression changes. The data is easily accessible through
web platforms and can also be explored using tools like CZ CellxGene.

2.2 Tissue-specific single-cell databases

While cross-tissue general databases have their advantages, such
as the ability to compare gene expression across different tissues and
identify commonalities or differences. However, tissue-specific
databases offer a more focused and detailed view of a particular
tissue’s biology, making them valuable resources for researchers
studying specific tissues. These databases can also provide in-depth
insights into specialized functions, cell types, and tissue-specific
immunity (Elmentaite et al., 2022). Towards this goal, one of the
HCA’s sub-projects aims to develop tissue-specific reference atlases
that serve as consensus representations of specific organs across
multiple projects (Figure 1F). These atlases provide a standardized
reference for specific tissues for comparing different datasets,
facilitating cross-study comparisons and meta-analyses. An
example of a tissue-specific single-cell database established by the
HCA is the Human Lung Cell Atlas (HLCA) (Sikkema et al., 2023)
which integrates 49 lung datasets encompassing 2.4 million cells
from 486 individuals. The HLCA database development involved
four main steps: data curation, integration method selection, cell
type annotation, and data usage. Despite the benefits associated with
large-scale tissue-specific single-cell databases, it is important to
note that integrating data from diverse datasets, labs, and
technologies presents challenges due to differences in data
quality, sample handling, and experimental protocols. Moreover,
ensuring consistency and standardization across datasets is crucial
for meaningful comparisons, but achieving this in practice can be
complex, particularly with the wide variety of cell types and states.
For the HLCA project, the team primarily relied on harmonized
manual annotation, integration benchmarking (Luecken et al.,
2022), and insights from experts in the field, which can be
subjective and may lack reproducibility.
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2.3 Disease-focused single-cell databases

These general databases are not designed to systematically gather
data on gene expression specificity in different diseases. Given the
diverse and heterogeneous nature of human diseases, which manifest
unique gene expression profiles, there is a critical need for databases
focused on disease-specific exploration (Figure 1G).

SC2disease (Zhao et al., 2021) is a manually curated scRNA-seq
database that addresses this need, cataloging cell type-specific genes
associated with 25 diverse diseases, including Huntington’s disease,
multiple sclerosis, and Alzheimer’s disease. While SC2disease
represents a pioneering effort in disease-specific gene expression
profiling, there is also a growing need for more specific databases
dedicated to the disease of interest. To address this, databases like
SC2sepsis (Li et al., 2022), ssREAD (Wang C. et al., 2023), and
SCovid (Qi et al., 2022) have emerged, focusing on individual
diseases such as sepsis, Alzheimer’s, and COVID-19, respectively.
These databases aim to provide a more granular and disease-specific
view of gene expression patterns, enhancing our understanding of
disease mechanisms and potential therapeutic targets.

2.4 Cancer-focused single-cell databases

Cancer is a complex disease characterized by its highly
heterogeneous and multifactorial nature (Gondal and Chaudhary,
2021). Traditional approaches to studying cancer, such as bulk RNA
sequencing constitute a mixture of the cellular composition in tumors
and often fail to accurately capture cancer cell-specific gene expression
(Ding et al., 2020; Huang et al., 2023). scRNA-seq technologies offer
unprecedented insights into tumor heterogeneity, evolution, and
responses to therapy (Wang et al., 2020; Zeng et al., 2022; Gondal
et al., 2024b). As a result, numerous databases hosting cancer-focused
scRNA-seq data have emerged (Figure 1H).

One such example is CancerSEA (Yuan et al., 2019) which was
launched in 2019 as a resource utilizing single-cell data from cancer
datasets to decode the functional states of cancer cells, these states
included stemness, invasion, metastasis, proliferation, epithelial-to-
mesenchymal transition (EMT), angiogenesis, apoptosis, cell cycle,
differentiation, DNA damage, DNA repair, hypoxia, inflammation,
and quiescence. In a salient study, Dohmen et al. (Dohmen et al.,
2022) utilized CancerSEA’s functional states to validate gene sets
derived from their machine-learning model, while Zhao et al. (Zhao
et al., 2023) demonstrated the necessity of NF-KB for initiating
oncogenesis using CancerSEA’s functional states. Several other
studies (Lan et al., 2020; Deng et al., 2022; Tang et al., 2022;
Wang L. et al., 2023) have leveraged CancerSEA to correlate their
gene or gene set findings with cancer single-cell data, showcasing the
utility of this resource.

However, CancerSEA has limitations, including hosting only
93,475 malignant cells and an inability to study interactions between
stromal or immune cells and cancer cells. It also lacks a user-friendly
web interface to support data exploration and visualization. In an
attempt to overcome these challenges, TISCH was originally developed
in 2021 (Sun et al., 2021), with version two released in 2023 (Han et al.,
2023). TISCH2 curates cancer datasets with both malignant and non-
malignant cell types, currently hosting 190 datasets, encompassing
50 cancer types, and spanning 6 million cells. To illustrate the utility

of TISCH in computational models, Xu et al. (2023) employed TISCH’s
data to analyze the correlation between FOXM1 and immune cells.
Similarly, Zhang et al. (2023) employed TISCH to evaluate m7G
regulators expression in osteosarcoma scRNA-seq data. As such,
numerous studies have utilized TISCH to evaluate the expression of
genes of interest across cancer datasets (Zhao et al., 2022; Liu et al.,
2023a; Benedetti et al., 2023; Liu et al., 2023b; Liu Y. et al., 2023; Zhang
et al., 2023). Although TISCHprovides a valuable resource to the cancer
research community, it is important to be aware of the assumptions and
limitations of TISCH data. While many studies aim to understand gene
expression in malignant cells, TISCH also contains treatment data from
immune checkpoint blockade (ICB), chemotherapy, and targeted
therapy. Therefore, it is important to ensure that the results are not
confounded, as gene expression varies after treatments and can yield
diverse results (Liu et al., 2024). Additionally, TISCH includes data from
multiple stages of cancer, such as primary tumors or metastatic sites.
Therefore, users need to carefully extract only relevant information
when employing TISCH data. TISCH employs an automatic cell-type
annotation method, which may lead to a lack of consensus with the
original dataset’s manual annotation. Importantly, all downloaded
datasets in TISCH are in fixed expression matrices (Zeng et al.,
2022), and users cannot download the raw count data. Therefore,
any attempts to further integrate or normalize the data might result in
technical variation rather than biological results. These limitations could
potentially introduce bias into analyses or hinder comparability across
different databases.

2.5 Cell-type-focused single-cell databases

To better understand the intricacies of cell biology, dedicated
resources focused on cell-type profiling of single cells have emerged.
JingleBells (Ner-Gaon et al., 2017), introduced in 2017, represented
an advancement in this direction by providing a comprehensive
immune cell resource. JingleBells facilitates the study of immune cell
involvement in various diseases, including cancer, and infectious
diseases, providing valuable insights into disease mechanisms and
potential therapeutic targets. However, JingleBells lacks an
interactive web interface and only allows for BAM file download
which means analyzing and interpreting single-cell data from
JingleBells requires specialized computational tools and expertise,
limiting accessibility to researchers with specific skills. In
comparison, the human Antigen Receptor database (huARdb)
(Wu et al., 2022), published originally in 2022, is a
comprehensive human single-cell immune profiling database,
housing 444,794 high-confidence T or B cells (hcT/B cells) with
complete TCR/BCR sequences and transcriptomes sourced from
215 datasets. To enhance user experience, the authors have created a
user-friendly web interface that offers interactive visualization
modules, enabling biologists to analyze transcriptome and TCR/
BCR features at the single-cell level with ease. Fan et al. (2023a)
utilized huARdb by analyzing ulcerative colitis (UC) patients’
immune cells derived from huARdb. Similarly, they also
employed huARdb to investigate the healthy and UC
composition of peripheral blood immune cells and colonic cells
(Fan et al., 2023b). Additional cell-type-focused single-cell databases
include EndoDB (Khan et al., 2019) which hosts endothelial cells
transcriptomics data from 360 datasets and ABC portal (Gao et al.,
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2023), a database for blood cells across 198 datasets, allowing for a
blood cell-type-specific exploration.

3 Challenges associated with the
utilization of large-scale single-cell
databases and their examples from
current literature

While the scRNA-seq field is progressing towards the
improvement and development of large-scale single-cell
databases, their application in research comes with certain
caveats and despite their vastness, they must be used judiciously
(Figure 1I). Some of the key considerations and limitations include:

3.1 Data quality

Ensuring data quality in scRNA-seq is critical for accurate
interpretation and analysis. A fundamental assumption of
droplet-based scRNA-seq is that each droplet, where molecular
tagging and reverse transcription occur, contains messenger RNA
(mRNA) from a single cell. However, in practice, this assumption is
often violated, leading to potential distortions in the interpretation
of scRNA-seq data. Common examples include doublets which are
real cells however they contain multiple cells and dropouts where the
expression of one gene was not detected in one cell. This becomes a
major issue because large-scale databases such as the Human Cell
Atlas (HCA) rely heavily on the accuracy and cellular specificity of
transcriptional readouts generated by scRNA-seq.

3.1.1 Examples from current literature and
benchmarking studies
3.1.1.1 Dropouts

To overcome the issue of dropouts, numerous single-cell
imputation methods have been developed. However, imputation
affects downstream results and some of these methods may
introduce false correlations. For example, Breda et al. (2021)’s
comparison of MAGIC (van Dijk et al., 2018) results with Sanity
(SAmpling-Noise-corrected Inference of Transcription activitY),
elicited that MAGIC introduced strong positive correlations where
no or low correlation was expected. A comparative study by Zhang and
Zhang (2020) highlighted that the number of cells and method
parameters also affected imputation results and some methods
preferred similar cells while imputing. Therefore, imputation results
can be variable, and downstream analysis will be affected by imputation.

3.1.1.2 Doublets
Doublets are major confounders in scRNA-seq data analysis.

However, there are computational methods that exist to detect
doublets in single-cell data. A benchmarking study (Xi and Li,
2021) compared nine doublet detection methods, revealing that
there is still room for improvement in detection accuracy. Generally,
these methods performed better on datasets with higher doublet
rates, larger sequencing depths, more cell types, or greater
heterogeneity between cell types. However, the removal of
doublets by these methods led to improvements in various
downstream analyses. It enhanced the identification of

Differentially Expressed (DE) genes, reduced the presence of
spurious cell clusters, and improved the inference of cell
trajectories. However, the extent of improvement varied across
different methods, highlighting the need for further refinement
and development in this area.

3.2 Normalization

Normalization is another critical aspect of scRNA-seq data
analysis and can be a complex problem when dealing with
multiple datasets. Specifically, variability in experimental
protocols and data processing methods can pose challenges in
data normalization, affecting the comparability of results across
datasets in a database. Differences in normalization approaches can
lead to discrepancies in gene expression profiles, making it difficult
to draw meaningful conclusions from the downstream analyses.

3.2.1 Examples from current literature and
benchmarking studies

There are several methods to perform single-cell data
normalization such as SCT transformation, and log1p normalization
(Hafemeister and Satija, 2019). The choice of the method, however, is
dependent on various features of the data including sequencing depth as
both lowly and highly abundance genes are confounded by sequencing
depth (Hafemeister and Satija, 2019). Sina Booeshaghi et al. (2022)
demonstrated that the assumptions implied in the choice of
normalization methods will affect downstream analysis in
determining whether the variation is technical or biological. In a
salient example, TISCH2 (Han et al., 2023) database hosts single-cell
gene expression matrices for each dataset. In our analysis of
TISCH2 data, this matrix is already normalized and integrated, users
incorporating this data in their research need to be aware of this
normalization to make accurate assessments of data and not re-
normalize or merge it directly with other datasets which might
result in substandard results. Therefore, in our opinion, when using
datasets directly from single-cell databases it is necessary to be aware of
the pre-processing steps and how they affect downstream results to
ensure accurate analysis and interpretation.

3.3 Integration and batch effects removal

The integration and batch effect removal of scRNA-seq data
from diverse datasets, labs, and technologies can be complex (Stuart
et al., 2019). Variations in data formats, processing pipelines, and
batch effects can affect the robustness and reliability of integrated
analyses, potentially masking true biological signals. Methods for
integrating heterogeneous datasets are continually evolving, with
efforts focused on minimizing batch effects and preserving
biological variability. There are more than 50 integration
methods published to date (Zappia et al., 2018; Luecken et al., 2022).

3.3.1 Examples from current literature and
benchmarking studies

Large databases host numerous datasets from multiple
studies, however, it is also important to be aware of the
properties associated with each study during integration. For
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example, Salcher et al. (2022) established a large non-small cell
lung cancer (NSCLC) atlas comprising 29 datasets spanning
1,283,972 single cells from 556 samples. Although this effort
resulted in the in-depth characterization of a neutrophil
subpopulation, however, according to our re-analysis of this
data, among the 29 datasets, Maynard et al. (2020)’s NSCLC
samples were also incorporated which were not treatment-naive.
This can be a potential confounder in downstream analysis.
Therefore, it is the user’s responsibility to be aware of this
data-specific property and to use atlases and databases with
care to derive robust biological insights. Similarly, several
attempts have been made to benchmark integration methods
for single-cell data (Tran et al., 2020; Luecken et al., 2022). While
Tran et al. (2020) showed that LIGER (Liu et al., 2020), Seurat 3
(Satija et al., 2015), and Harmony (Korsunsky et al., 2019)
performed the best among 11 other methods, Luecken et al.
(2022) revealed that LIGER and Seurat v3 favor the removal of
batch effect over the conservation of biological variation. This
highlights the importance of considering the dataset and the
specific research question when selecting an integration method.
Selecting the right method is crucial as it directly impacts the
biological insights that can be generated from the integrated data.

3.4 Cell-type annotation

Accurate annotation of cell types in scRNA-seq databases is crucial
for interpreting results accurately. Harmonizing cell type annotations
across different datasets is essential for facilitating cross-study
comparisons and meta-analysis. While automatic cell-type annotation
methods are convenient, they may lack consensus with manual
annotations from original datasets. This can introduce ambiguity in
cell-type assignments and lead to misinterpretation of results.

3.4.1 Examples from current literature and
benchmarking studies

In our recent re-analysis of Tabula Sapiens data (Sapiens et al., 2022),
we observed that 10%of the heart cells weremislabelled as hepatocytes in
the study’s original metadata. This is biologically incorrect since
hepatocytes cannot be in the heart, these are liver epithelial cells
(Gong et al., 2022). One potential reason for this mislabelling can be
that Tabula Sapiens data was annotated using an automatic cell-type
annotation tool, another reason could be samplemishandling. Therefore,
diligent manual intervention for cell type annotation needs to be
practiced to ensure accurate and robust results. Additionally,
Abdelaal et al. (2019) carried out a performance comparison analysis
between 22 automatic cell-type identificationmethods in single-cell data.
Although the authors did not state a preference they noted that the
results can vary depending on input features and the number of cells
which means that they cannot be solely relied on, there will be some
manual intervention for accurate cell type annotation.

3.5 “Zero-code” single-cell
analysis platforms

Single-cell data plays a crucial role in validating and enhancing
the accuracy of wet lab results and hypothesis-driven publications

(Bao et al., 2023). To facilitate easy access and analysis of this data,
many databases provide built-in tools that allow researchers without
computational expertise to explore existing datasets and assess their
hypotheses using basic operations like exploring gene expressions,
isolating cell subsets for individual analysis, and identifying clusters
within the data. However, for more complex analyses that require
significant computational resources, these tools are often not
available directly on the database platforms.

To address this challenge, several web-based platforms have
been created to enable online analysis of scRNA-seq data. Among
them, the Automated Single-cell Analysis Pipeline (ASAP) (Gardeux
et al., 2017) was published in 2017 and provided basic processing
analysis of scRNA-seq data post-alignment from filtering to cell type
annotation and functional gene set enrichment. Later, this web-
based pipeline improved in 2020 (David et al., 2020) with more
scalable options. However, ASAP did not include advanced scRNA-
seq analysis tools such as regulon activity assessment. To address
this issue, ICARUS_v2 (Jiang et al., 2023a) was launched which also
incorporates the Drug-Gene Interaction database to facilitate drug
discovery. This platformwas improved and ICARUS_v3 (Jiang et al.,
2023b) was published for zero-code single-cell analysis. ICARUS_
v3 employs a geometric cell sketching method to subsample
representative cells from the dataset to store in memory. This
enables advanced scRNA-seq analysis through a user-friendly
web interface. ICARUS_v3 can seamlessly integrate with output
files from databases like Single Cell Portal (SCP) (Tarhan et al.,
2023) and CZ CellxGene Discover (CZI Single-Cell Biology Program
et al., 2023), eliminating the need for coding expertise. Users can
leverage this platform to conduct a wide range of analyses, including
differential expression analysis, gene regulatory network
construction, trajectory analysis, and cell-cell communication
inference. While such tools facilitate online analysis of scRNA-
seq data, offering user-friendly interfaces and automated workflows.
However, these platforms come with limitations and assumptions.
They often assume users have high-quality, pre-processed data and a
stable internet connection, which may not always be the case. The
platforms also impose constraints on data size and complexity due to
server limitations, potentially limiting the depth of analysis for large
or intricate datasets. Additionally, the algorithms and default
parameters embedded in these platforms may not be optimal for
all types of scRNA-seq data, leading to less tailored analyses
compared to custom pipelines. Despite these limitations, such
platforms provide valuable accessibility and convenience for
many researchers.

4 Platforms for hosting and visualizing
large-scale single-cell data

As the volume of single-cell data continues to grow, scalability
becomes a significant concern. Developing methods and
infrastructure that can handle the increasing complexity and size
of single-cell datasets is crucial for future research. Towards this aim,
for easy, fast, and customizable exploration of single-cell data for
public use, numerous user-driven platforms have emerged (Rue-
Albrecht et al., 2018; Feng et al., 2019).

One such platform, the Interactive SummarizedExperiment
Explorer (iSEE) (Rue-Albrecht et al., 2018), launched in 2018,
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enables users to host their SummarizedExperiment data.
Researchers such as Graf et al. (2019) and Newton et al. (2022)
have employed iSEE to visualize their single-cell data, demonstrating
its utility in data exploration. Similarly, the Single Cell Explorer
(Feng et al., 2019) allows users to input loom and Seurat objects,
making the data more accessible.

ShinyCell (Ouyang et al., 2021) is another example of a platform
offering web-based interfaces for exploring and analyzing data. These
interfaces can be customized for maximum usability and can be
uploaded to online platforms to broaden access to published data.
ShinyCell supports various common single-cell data formats, including
SingleCellExperiment, h5ad, loom, and Seurat objects, as inputs. In a
salient example,Ma et al. (2023) used ShinyCell to host their pan-cancer
single-cell data, showcasing its versatility and effectiveness in data
dissemination. Likewise, Curras-Alonso et al. (2023) developed their
web application using ShinyCell, highlighting its widespread adoption
in the research community. By providing easy-to-use tools for data
analysis, these platforms help democratize access to single-cell data and
facilitate collaboration between researchers from different disciplines.

5 Discussion

The rapid expansion of single-cell RNA-seq (scRNA-seq) studies
has ushered in a plethora of databases and repositories dedicated to
storing, retrieving, and interpreting single-cell data. These databases
provide a wealth of single-cell transcriptomic data that can be used to
build computational models to understand various biological processes.
However, challenges such as data quality, normalization, integration,
and annotation can affect the reliability and comparability of results
across different datasets and studies.

While the existing databases are valuable for basic scRNA-seq
analysis, they cannot often perform advanced analyses such as regulon
activity assessment, pseudobulking, and differential gene expression
analysis. Users still need to possess programming skills and be familiar
with using a command-line interface to conduct customized analysis.
Furthermore, many wet labs may not have the necessary resources to
manage high-performance computing clusters. To address this gap and
enable wet-lab researchers to conduct advanced scRNA-seq analysis,
platforms like ICARUS_v3 (Jiang et al., 2023b) offer web-based analysis
tools. These platforms provide an accessible way for researchers to
explore and analyze single-cell data, bridging the gap between wet lab
experimentation and bioinformatics analysis.

Taken together, in this mini-review, we address the utility and
applicability of large-scale scRNA-seq databases. We address some of
the challenges and common assumptions that need to be considered
when using these databases for hypothesis-driven studies, highlighting
platforms for hosting customized scRNA-seq data for community
usage. While challenges remain, the development of user-friendly
platforms is narrowing the gap between wet-lab experimentation
and bioinformatics analysis, ultimately advancing our understanding
of cellular processes at a single-cell level.
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