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Introduction: This work utilizes predictive modeling in drug discovery to unravel
potential candidate genes from Escherichia coli that are implicated in
antimicrobial resistance; we subsequently target the gidB, MacB, and KatG
genes with some compounds from plants with reported antibacterial potentials.

Method: The resistance genes and plasmids were identified from 10 whole-
genome sequence datasets of E. coli; forty two plant compounds were selected,
and their 3D structures were retrieved and optimized for docking. The 3D crystal
structures of KatG, MacB, and gidB were retrieved and prepared for molecular
docking, molecular dynamics simulations, and ADMET profiling.

Result: Hesperidin showed the least binding energy (kcal/mol) against KatG
(−9.3), MacB (−10.7), and gidB (−6.7); additionally, good pharmacokinetic
profiles and structure–dynamics integrity with their respective protein
complexes were observed.
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Conclusion: Although these findings suggest hesperidin as a potential inhibitor against
MacB, gidB, andKatG inE. coli, further validations through in vitro and in vivoexperiments
are needed. This research is expected to provide an alternative avenue for addressing
existing antimicrobial resistances associated with E. coli’s MacB, gidB, and KatG.
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1 Introduction

The growing problem of antibiotic resistance presents substantial
risks to global public health and requires novel approaches to address the
emergence of resistant bacterial strains (Lázár et al., 2013). Escherichia
coli demonstrates the capacity of a bacterial pathogen and resists classical
antimicrobial treatments by accumulating resistance mechanisms; its
ongoing evolution of resistancemechanisms presents an opportunity for
therapeutic intervention through identifying and targeting candidate
genes related to resistance (Lázár et al., 2013). In this context, the
utilization of the extensive genomic data on E. coli, along with prediction
identification and development of inhibitors targeting resistance-
induced candidate genes, presents a highly promising strategy for
mitigating antibiotic resistance.

E. coli is a Gram-negative bacterium that is widely distributed in the
environment and commonly found in the gastrointestinal tracts of both
humans and warm-blooded animals (Carattoli et al., 2014). Although
this is true for the majority of strains, some pathogenic variations have
the potential to induce various diseases from relatively simple urinary
tract infections to serious bloodstream infections (Carattoli, 2013). The
urgent need for novel therapeutic compounds is highlighted by the
growth of multidrug-resistant (MDR) bacteria, which are resistant to
various classes of antibiotics. A comprehensive study of the genetic basis
of antibiotic resistance in E. coli is therefore crucial for facilitating the
advancement of antimicrobial medicines.

The use of whole-genome sequencing (WGS) has significantly
transformed our capacity to unravel the genetic structures of
bacterial pathogens, facilitating thorough examinations of their
genomes with unparalleled precision (Didelot et al., 2012). By
clarifying the genetic factors that contribute to antibiotic
resistance, WGS enables identification of possible genes that may
be targeted for suppression. Furthermore, comparative genomics
enables investigation of evolutionary connections between the
strains that are resistant and those that are susceptible, providing
insights into the mechanisms driving the acquisition and spread of
resistance (Didelot et al., 2012; Roemer et al., 2017).

The objective of this work is to utilize predictive modeling and
computational methodologies to uncover potential genes that are
involved in the resistance mechanisms within the E. coli genome. Our
objective is to prioritize the candidate genes with the greatest potential for
therapeutic interventions by integrating genomic, structural, and
functional data. Moreover, in silico screening methodologies such as
molecular docking,molecular dynamics (MD) simulations, andADMET
profiling are used in our objective to develop small molecule inhibitors
that specifically target these potential genes. The ultimate aimof this work
is to reinstate the ability to respond to antibiotic therapy.

This goal relies on the collaborative interactions among
bioinformatics, computational biology, and medicinal chemistry,
highlighting the interconnectedness of these fields in the pursuit of

developing drugs to combat antibiotic resistance. By employing
methodical and logical approaches, our objective is to accelerate the
process of converting genetic knowledge into therapeutic interventions
that are applicable in clinical settings. This aims to effectively tackle the
increasing challenges presented by antibiotic-resistant strains of E. coli.

2 Materials and methods

2.1 Resistance gene and plasmid
identifications

A total of 10WGS datasets (FASTQ) of E. coliwith identification
numbers SRX19510069, SRX19510068, SRX19510067, SRX19510066,
SRX19510065, SRX19510064, SRX19510063, SRX19510062,
SRX19510061, and SRX19510060 were retrieved from the
Sequence Read Archive (SRA; www.ncbi.nlm.nih.gov) maintained
by the National Center for Biotechnology Information (NCBI). All
data were filtered and clipped, and quality control procedures were
implemented to remove low-quality reads and adapter sequences to
improve the accuracy and reliability of downstream analyses. Using
ResFinder (Bortolaia et al., 2020), the threshold for the percentage of
identification of a resistance gene was set (≥90% identity over ≥60% of
the length of the target gene). E. coli was selected as the chromosomal
point mutation reference database, and antimicrobial configurations
were used to select the desired antimicrobial resistance (AMR) genes.

The outputs were analyzed to define theAMR genotypes, i.e., patterns
of resistance determinants observed for each antimicrobial substance in
each dataset. The analyses and results visualization were carried out using
R packages. PlasmidFinder 2.1 Database version (18-01-2023) was used to
determine the plasmid replicon types of the assembled genomes of E. coli;
the threshold for minimum percentage identity was 95%, and the
minimum coverage of the contigs was set at 60%. pMLST 2.0 was
used to determine the in silico plasmid MLST typing of the replicons
and assembled genomes of E. coli, and theMLST configuration was set to
IncF RST. Comprehensive genome analysis was carried out on the
assembled data using the method described by Brettin et al. (2015),
which was then annotated using the RAST tool kit (RASTtk) (Figure 1).

2.2 Plant compound sources and selection

A total of 42 compounds from different plants (Felipe et al.,
2014; Thumann and Moissl-eichinger 2019; Dimitrijevi et al., 2021;
Chen et al., 2022; Santhiravel et al., 2022) that have shown antibacterial
properties against E. coli were chosen for the in silico evaluations. The
control drugs for this project include isoniazid (PubChem ID: 3767) for
KatG (PDB ID: 1U2J), chlorpromazine (PubChem ID: 2726) for gidB
(PDB ID: 5LJ8), and sinefungin (PubChem ID: 65482) for MacB.
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2.3 Selection and preparation of
protein targets

The three-dimensional (3D) structures of the proteins for the
KatG, MacB, and gidB of E. coli (Zhang et al., 2019) were modeled
using the Swiss model server (https://swissmodel.expasy.org/). The
proteins were made nascent by freeing them from heteroatoms, such
as water molecules, ions, and ligands, followed by energy
minimization using the protein preparation and minimization

tools in Chimera© software (version 1.13.1; https://www.cgl.ucsf.
edu/chimera/) (Pettersen et al., 2004).

2.4 Preparation of compounds for
molecular docking

The 3D conformers in the structure data files (SDFs) of the
control drugs were obtained and downloaded from the PubChem

FIGURE 1
Distributions of (A) genome annotations and (B) subsystems in Escherichia coli.
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chemical repository linked to the NCBI, which is one of the largest
collections of freely accessible chemical information in the world.
Further, the structures of the obtained compounds were converted
to their best energetic and stable conformations through the Merck
molecular force field (MMFF94) (Halgren, 1996) using the Open
Babel tool and Python Prescription (version 0.8) (Umar et al., 2021).

2.5 Binding site predictions of KatG and
MacB of E. coli

The prediction of KatG of E. coli using the protein-plus server
(http://proteinsplus.zbh.uni-hamburg.de) (Volkamer et al., 2012)
showed 11 possible binding pockets. The best binding pocket had
a maximum drug score and a simple score, which were in agreement
with the information supporting the server. After calculating the
prediction, the P_0 pocket showed the best score for druggability
and a simple score of 0.87 and 0.37, respectively. The same protein-
plus server was used to predict the MacB of E. coli, for which
7 possible binding pockets were found. After running the prediction,
the P_0 pocket was found to have the maximum drug score and a
simple score of 0.82 and 0.63, respectively. These prediction
outcomes are depicted in Figure 2 as well as Tables 4 and 5.

2.6 Molecular docking of compounds

Molecular docking was performed using AutoDock Vina and
open-source Python Prescription 0.8 (Trott and Olson, 2010;
Dallakyan and Olson, 2015) to acquire the possible orientations
and binding energies (BEs) of the compounds at the binding sites of
the proteins. A target region for KatG equivalent to the binding
regions of the other monomers of the KatG gene was attuned with
the aid of a grid box with dimensions 26.3979 × 11.2720 × 21.5337 Å,
and the center was adjusted based on the sites of the monomer
bindings in KatG comprising Leu48, Ser56, Arg58, Thr59, Thr62,
Leu63, Ala66, Gly103, Ile104, Ala105, Arg107, Ala124, Val125,
Val126, Ala128, Leu129, His134, Leu136, Gln137, Ala140,
Asn164, Asn165, Val166, Asp220, Val221, Thr223, His259,

FIGURE 2
Homology modeled protein structural assessments of KatG and MacB genes of E. coli. (A) Ramachandran plot of KatG of E. coli, showing that 92.5%
of the amino acid residues occupy the favored regions. (B) Ramachandran plot of MacB of E. coli, showing that 92% of the amino acid residues occupy the
favored regions.

TABLE 1 Details of the genome assembly.

S/No. Genome properties Value

1 Contigs 478

2 GC Content (%) 50.68

3 Plasmids 0
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Cys260, Leu261, Pro262, Val281, Gln284, Ala285, Arg288, Thr291,
Ala292, Val295, Leu296, Leu299, and Leu300, which were obtained
from the protein binding server Zentrum fur bioinformatik (https://
proteins.plus/). A target region for MacB corresponding to the
binding regions of the other monomers of the MacB gene was
adjusted with the aid of a grid box with dimensions 22.1946 × 22.
5720 × 26.3415 Å, and the center was adjusted based on the sites of
the monomer bindings in MacB comprising Asp6, Tyr8, Pro9,

Gly10, Lys11, Asp12, Phe13, Gly14, Asp15, Asp16, Ala44, Val45,
Ser46, Gln47, Ala62, Asn63, Gly64, Val65, Tyr69, Tyr73, Met75,
Glu132, Ser135, Met136, Phe137, Gly138, Ser139, Ser140, Lys141,
Arg144, Trp146, Tyr149, Met152, Ser153, Trp161, Asn163, Ser164,
Phe196, Trp198, and Met200, which were also obtained from the
Zentrum fur bioinformatik server. A target region for gidB
corresponding to the binding regions of the other monomers of
the gidB gene was attuned with the aid of a grid box with dimensions
26.3979 × 11.2720 × 26.3415 Å, and the center was adjusted based on
the sites of the monomer bindings in gidB including Asn35, Asp71,
Gly73, Gly77, Leu78, Asp96, Ser97, Leu98, Arg101, and Arg123
(Zhang et al., 2019). After the docking runs, the three compounds
with the best docking scores (binding energies) below those of the
control drugs were subjected to molecular visualization to analyze
their molecular interaction fingerprints using PyMOL© Molecular
Graphics (version 2.4, 2016, Schrödinger LLC) (Seeliger and Groot,
2010) and Maestro (version 12.5, 2016, Schrödinger LLC). The
molecular interaction fingerprints analyzed for each
protein–ligand complex included hydrogen bonds, hydrophobic
interactions, and electrostatic linkages between the amino acids
of the protein and ligand atoms.

TABLE 2 Features from the genome annotation.

S/No. Genome properties Value

1 Coding sequence (CDS) 3,456

2 tRNA 20

3 Repeat regions 4

4 Partial CDS 0

5 rRNA 0

6 Miscellaneous RNA 0

TABLE 3 Potential drug targets in Escherichia coli that confer antibiotic resistance.

S/No Antimicrobial resistance mechanism Genes/proteins

1 Antibiotic activation enzyme KatG

2 Antibiotic resistance gene cluster, cassette, or operon MarA, MarB, MarR

3 Antibiotic target in susceptible species Alr, Ddl, dxr, EF-G, EF-Tu, folA, Dfr, folP, gyrA, gyrB, inhA, fabI, Iso-tRNA, MurA, rho, rpoB, rpoC,
S10p, S12p

4 Antibiotic target protection protein BcrC

5 Efflux pump conferring antibiotic resistance AcrAB-TolC, AcrZ, EmrAB-TolC, MacA, MacB, MdfA/Cmr, MdtEF-TolC, MdtL, TolC/OpmH

6 Gene conferring resistance via absence gidB

7 Protein altering cell wall charge conferring antibiotic
resistance

PgsA

8 Regulator modulating expression of antibiotic resistance
genes

AcrAB-TolC, EmrAB-TolC, GadE, H-NS, OxyR

TABLE 4 Binding sites predicted from KatG of E. coli using the protein-plus server (http://proteinsplus.zbh.uni-hamburg.de).

Name Volume Å³ Surface Å2 Drug score Simple score

P_0 640.77 617.29 0.87 0.37

P_1 628.67 967.66 0.72 0.47

P_10 106.88 62.72 0.38 0

P_2 352.13 718.09 0.8 0.25

P_3 229.38 423.13 0.62 0

P_4 176.26 248.18 0.39 0.02

P_5 145.86 318.6 0.36 0

P_6 141.31 297.76 0.27 0.01

P_7 134.53 376.65 0.37 0

P_8 128.64 300.67 0.27 0

P_9 114.88 255.86 0.19 0
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2.7 ADMET prediction in silico

The absorption, distribution, metabolism, excretion, and
toxicity (ADMET) are important at the early stages of drug
discovery and design pipeline to analyze the pharmacokinetics of
the proposed compounds that could serve as drugs. The ADMETSar
server was used to forecast the ADMET properties of the
compounds with the best hits after molecular docking analysis
(Cheng et al., 2012; Yang et al., 2018). The server was fed with
the SMILE strings of the compounds from PubChem (https://
pubchem.ncbi.nlm.nih.gov/compound/) through the search bar to
predict the ADMET properties.

2.8 MD simulations

The three targets complexed with hesperidin served as the initial
structures for the MD simulations in the Desmond package
(Schrödinger Release 2019-3) based on the method described by
Tutumlu et al. (2020). The simulations were performed for 200 ns
durations, and various parameters were carefully examined to assess
the structural stabilities of the tested compounds. To ascertain

seamless amalgamation with the Schrodinger interface, the
starting structures underwent meticulous preparation exploiting
the Protein Preparation Wizard. Multiple crucial tasks were
carried out to achieve the research objectives, including adding
hydrogen atoms, assigning bond orders, and addressing any absent
amino acid side chains and loops by optimizing the hydrogen bond
assignments. Additionally, water orientation sampling at pH 7.0 was
conducted. Through the System Builder option, the simulation
periodic box was created, and solvation was accomplished by
engaging the all-atom force field optimized potentials for liquid
simulations (OPLSs) in combination with the single point charge
(SPC) water model. An exhaustive system minimization was
conducted, involving 1,000 iterations of the steepest descent
technique and equilibration under the constant number of atoms,
pressure, and temperature (NPT) ensemble conditions. The
equilibration was implemented for 200 ns at a temperature of
300 K and pressure of 1.01325 bar. To regulate the temperature
during the simulations, the Nosé–Hoover thermostat with a
relaxation time of 1 ps was used, while the isotropic
Martyna–Tobias–Klein barostat with a relaxation time of 2 ps
was used to maintain constant pressure. Short-range interactions
were considered with a cutoff of 9 Å, while the smooth particle mesh

TABLE 5 Binding sites predicted from MacB of E. coli using the protein-plus server (http://proteinsplus.zbh.uni-hamburg.de).

Name Volume Å³ Surface Å2 Drug score Simple score

P_0 941.5 910.51 0.82 0.63

P_1 378.24 697.83 0.79 0.23

P_2 141.25 357.84 0.4 0.06

P_3 129.34 257.75 0.24 0

P_4 125.57 309.59 0.24 0

P_5 107.01 287.29 0.13 0

P_6 106.82 301.5 0.28 0

FIGURE 3
Density map presentation of the predicted binding sites of KatG and MacB of E. coli using the DoGsiteScorer module of protein-plus server (http://
proteinsplus.zbh.uni-hamburg.de). (A) Density map representation of the predicted binding sites of KatG of E. coli, with the best binding site shown in
purple. (B) Density map representation of the predicted binding sites of MacB of E. coli, with the best binding site shown in yellow.
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TABLE 6 Binding energies (kcal/mol) of compounds docked against gidB, KatG, and MacB of E. coli using AutoDock Vina.

S/N Compound name PubChem ID Binding energy (kcal/mol)

gidB KatG MacB

1 Hesperidin 10621 −6.7 −9.3 −10.7

2 Syringic acid 10742 −4.4 −5.5 −6.5

3 (−)-Epicatechin gallate 107905 −5.6 −8.5 −10.7

4 Daidzin 107971 −5.5 −8.1 −10

5 Astilbin 119258 −5.2 −8.4 −7.5

6 2-Chloro-3-(4-hydroxyphenyl)-1-propene 128853 −5.7 −7.6 −9.1

7 Cyanidin 128861 −5.5 −7.4 −8.9

8 4-Hydroxybenzoic acid 135 −4.7 −5 −6.3

9 Malvidin 159287 −5.3 −6.7 −7.9

10 Chlorogenic acid 1794427 −5.7 −7.5 −9.6

11 Gallic acid 370 −4.5 −5.6 −6.5

12 Control drug (isoniazid) 3767 — −5.1 —

13 Naringenin 439246 −6.2 −7 −9.1

14 Taxifolin 439533 −5.8 −7.1 −9.3

15 Pelargonidin 440832 −5.4 −6.9 −9.1

16 Peonidin 441773 −5.3 −6.7 −9.1

17 Petunidin 441774 −5.2 −7.2 −9.1

18 Naringin 442428 −6.1 −8.8 −9.8

19 Resveratrol 445154 −5.3 −6.6 −8.6

20 Ferulic acid 445858 −5 −5.6 −7.1

21 Quercetin 5280343 −5.5 −7.1 −9.2

22 Apigenin 5280443 −6.4 −6.9 −9.1

23 Luteolin 5280445 −5.6 −7.2 −9.2

24 Rutin 5280805 −5.3 −9.1 −7.9

25 Kaempferol 5280863 −5.6 −6.7 −9.3

26 Genistein 5280961 −5.4 −7.0 −9.0

27 Baicalein 5281605 −6.7 −7.0 −9.8

28 Chrysin 5281607 −6.5 −6.9 −9.8

29 Isorhamnetin 5281654 −5.4 −6.9 −8.7

30 Myricetin 5281672 −5.8 −7.4 −9.4

31 Daidzein 5281708 −5.4 −6.8 −8.9

32 Glycitein 5317750 −5.4 −6.7 −8.4

33 p-Coumaric acid 637542 −4.9 −5.5 −6.9

34 Sinapic acid 637775 −4.6 −5.9 −7.3

35 Engeletin 6453452 −5 −8 −8.2

36 (−)-Epigallocatechin gallate 65064 −5.7 −8.3 −10.7

37 Piceatannol 667639 −5.1 −6.9 −8.6

(Continued on following page)
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Ewald (PME) method was used in combination with the reversible
reference system propagator algorithm (RESPA) integrator to
calculate the long-range Coulombic interactions. To capture the
dynamics of the system successfully, conformational snapshots were
exported at regular intervals of 5 ps during the course of the
simulations. At the end of the simulations, systemic stability was
appraised using root mean-squared deviations (RMSDs), root
mean-squared fluctuations (RMSFs), and assessments of the
protein–ligand contacts. These analyses provided valuable
insights into the behaviors and interactions of the protein–ligand
complexes studied.

2.9 Principal component analysis (PCA)

PCA was conducted through the ProDy library (version 1.5.1)
within Python (www.python.org). This mainly involves aligning
the structures based on the Cα atoms, which was accomplished
using ProDy’s iterative superposition approach. The covariance
matrix was calculated from the ensemble, and its diagonalization
yielded the principal components, which were saved in ProDy’s
NMD file format (Bakan et al., 2011). Notably, the analysis solely
considered the Cα atoms, while the gaps were assigned weights
of 0.0.

2.10 Dynamic cross-correlation
(DCC) analysis

The DCC maps were constructed for the Cα atoms from the
concatenated trajectories with respect to the reference structures
using the “Bio3D” option in the R- and ProDy-based analysis tool
(Grant et al., 2021).

2.11 Free energy landscape (FEL) analysis

For each of the selected models, we produced free energy
landscapes (FELs) with respect to the radius of gyration (Rg) and
RMSD trajectories using the Geo-Measures plugin in the PyMOL
package (Kagami et al., 2020).

3 Results and discussion

3.1 Genome assembly details

The assembly details outlined in Table 1 offer a comprehensive
view of the genomic characteristics under study. With a total of
478 contigs, the genome appears to be somewhat fragmented,
necessitating further investigations into potential scaffoldings or
misassemblies. The GC content of 50.68% falls within the expected
range for many organisms and serves as a baseline indicator of the
nucleotide composition. Notably, the absence of plasmids in the
assembly suggests a lack of extrachromosomal genetic elements in
the sampled organism.

3.2 Annotated genome features

Table 2 presents the annotated genome features of the whole-
genome analysis of E. coli, which contains 3,456 coding sequences
(CDSs) demonstrating the vast genetic information stored within its
DNA as well as 20 transfer RNA (tRNA) that are required for
protein syntheses and cellular processes. The abundance of CDSs
within E. coli’s genomic makeup is particularly important in drug
discovery because it represents a rich source of potential drug
targets. However, the current work is primarily in the interest of
those implicated in antibiotic resistance.

3.3 AMR genes

Table 3 presents the various AMR genes discovered from the
whole-genome analysis of E. coli; these genes highlight the diverse
strategies employed by E. coli to resist the effects of antibiotics. Notably,
the presence of genes encoding the antibiotic activation enzyme KatG
suggests a sophisticated ability to modify or neutralize antibiotics. The
presence of antibiotic resistance gene clusters, such asMarA,MarB, and
MarR, further underscores the complexity of the genetic basis for AMR
in this pathogen; these genes that are associatedwith antibiotic targets in
susceptible species and those conferring protection to these targets (e.g.,
BcrC) suggest a nuanced approach to evading the effects of antibiotics at
the molecular level. Moreover, the presence of genes related to efflux

TABLE 6 (Continued) Binding energies (kcal/mol) of compounds docked against gidB, KatG, and MacB of E. coli using AutoDock Vina.

S/N Compound name PubChem ID Binding energy (kcal/mol)

gidB KatG MacB

38 Caffeic acid 689043 −5.2 −5.9 −7

39 (−)-Epicatechin 72276 −5.6 −7.7 −8.8

40 Epigallocatechin 72277 −5.8 −7.7 −8.5

41 Hesperetin 72281 −5.8 −7.2 −8.6

42 3,4-Dihydroxybenzoic acid 72 −5.1 −5.2 −6.5

43 4-Chloro-3-nitrobenzotrifluoride 8468 −4.9 −5.1 −6.6

44 Control drug (sinefungin) 65482 −5.2 — —

45 Control drug (chlorpromazine) 2726 — — −6.5
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pump systems (e.g., AcrAB-TolC, AcrZ, EmrAB-TolC, MacA, MacB,
MdfA/Cmr, MdtEF-TolC, MdtL, and TolC/OpmH) indicates an active
role in expelling antibiotics from the bacterial cell, contributing to a
broader spectrum of resistance mechanisms. The presence of gidB,
which contributes to resistance via absence, adds another layer of
intricacy to the genetic landscape of antibiotic resistance in E. coli.
Additionally, the involvement of the protein altering cell wall charge
(PgsA) and regulators modulating the expressions of antibiotic
resistance genes (e.g., AcrAB-TolC, EmrAB-TolC, GadE, H-NS, and
OxyR) suggests a coordinated and adaptive response to antibiotic
exposure. The diverse array of AMR genes identified in E. coli
shows the urgent need for a drug with a multifaceted approach or
mechanism of action in addressing antibiotic resistance in
this pathogen.

3.4 Homology modeling of E. coli’s KatG and
MacB genes

The 3D protein structures of E. coli’s KatG and MacB have
been crystallized and deposited in the popular RCSB protein
database but have numerous missing residues and loops.
Therefore, the homology modeling approach was employed to
build suitable protein structures for this study. After building the
structures, the models were assessed and showed that the KatG
and MacB modeling for E. coli had 92.5% identity and 92.0% of
the amino acid residues occupying the favored region,
respectively (Figure 2). These indicate that the modeled
structures are suitable for molecular docking and MD
simulations.

FIGURE 4
Molecular docking of the bioactive compounds in KatG of E. coli. (A) 3D binding positions of KatG (green), hesperidin (blue), naringin (purple), and
rutin (yellow) in the binding pockets of KatG of E. coli. 2D molecular interaction analyses of (B) hesperidin, (C) naringin, and (D) rutin with the amino acid
residues in the binding pockets of KatG of E. coli.
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3.5 Binding site predictions of KatG
and MacB

The protein-plus server was used to identify 11 and 7 possible
binding pockets for KatG and MacB, respectively (Tables 4, 5). The
best binding pocket is the one with the maximum score for
druggability and simple score; this is in accordance with the
information supporting the server (Volkamer et al., 2012). After
implementing the predictions, the P_0 pockets for both proteins
were found to be the best choices as they had the maximum drug
scores and simple scores each. The density map representations of
the predicted pockets of both proteins are presented in Figure 3.

3.6 Binding abilities

Three out of the 42 compounds docked against the protein
targets displayed better binding potentials based on their BEs
(between −6.5 and −6.7 kcal/mol for gidB than −5.2 kcal/mol for
sinefungin; between −8.5 and −9.4 kcal/mol for KatG than −5.4 kcal/
mol for isoniazid, and −10.7 kcal/mol for MacB than −7.9 kcal/mol

for chlorpromazine). The details for the 42 compounds and three
targets are provided in Table 6. Hesperidin (−9.3 kcal/mol), rutin
(−9.1 kcal/mol), and naringin (−8.8 kcal/mol) returned the least BEs
against KatG. Similarly, biacalein (−6.7 kcal/mol), chrysin
(−6.5 kcal/mol), and hesperidin (−6.7 kcal/mol) had the least BEs
against gidB. Finally, epicatechin gallate (−10.7 kcal/mol),
hesperidin (−10.7 kcal/mol), and epigallocatechin gallate
(−10.7 kcal/mol) had the least BEs against MacB. Interestingly,
hesperidin was able to bind all three targets in E. coli that are
implicated in antibiotic resistance through different
pathways (Table 6).

3.7 Binding positions and molecular
interaction imprints

Given the BEs observed in Table 6, there is a need to further
probe the mechanisms involved in the binding of these compounds
with the target proteins. These indicate the relevant relationships
between the protein–compound complexes of these compounds.
From a recent work, hydrogen bonds and hydrophobic interactions

FIGURE 5
Molecular docking of the bioactive compounds in gidB of E. coli. (A) 3D binding positions of gidB (green), hesperidin (blue), chrysin (purple), and
baicalein (yellow) in the binding pockets of gidB of E. coli. 2Dmolecular interaction analyses of (B) hesperidin, (C) baicalein, and (D) chrysin with the amino
acid residues in the binding pockets of gidB of E. coli.
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were majorly observed to occur between the atoms of the
compounds and side chains of the amino acid residues occupying
the binding sites in KatG, MacB, and gidB of E. coli. These details are
provided in Figures 4–6.

In Figure 4, the binding positions show that the three
compounds occupy the same areas at the binding sites of
KatG. It was observed that hydrogen bonds were established
between the three compounds as well as Lys54 and Arg107. Aside
from these two amino acid residues, Val108, Asn165, and
Asn164 were found to link with hesperidin via hydrogen
bonding, while Leu261 and Asn165 were involved with rutin
via hydrogen bonding. Finally, Pro55 was the only extra amino
acid to interact with naringin via hydrogen bonds. It was also
observed that all three compounds interacted with Cys260,
Thr59, Arg58, Ser56, Arg288, His134, Leu129, Asp220,
Val221, and Val166 via hydrophobic interactions.
Interestingly, four out of the six amino acids (Arg107, Asn164,
Leu261, and Ans165) that interacted with the chosen compounds
via hydrogen bonds were earlier predicted to be members of the
binding site residues. Moreover, nine out of ten amino acids that

interacted with the compounds were among the predicted amino
acids of the binding sites.

In Figure 5, the binding positions show that the three
compounds occupy the same areas at the binding sites of gidB. It
was observed that hydrogen bonds were established between the
atoms of biacalein as well as Gly73 and Arg101, between chrysin and
Arg101, and between hesperidin and gly99. In addition, all three
compounds interacted with Ala140, Leu98, Ser97, Asp96, Trp150,
Val124, Arg123, Val72, Gly73, Phe141, Gln121, and Arg103 via
hydrophobic interactions. Interestingly, Gly73 and Arg101 that
interacted with the chosen compounds via hydrogen bonds were
earlier predicted to be members of the binding site residues, while
Asp96, Gly73, Arg123, Leu98, and Ser97 that interacted with the
compounds via hydrophobic interaction were among the predicted
amino acids of the binding sites.

In Figure 6, the binding positions show that the three
compounds occupy the same areas at the binding sites of MacB.
It was observed that hydrogen bonds were established between the
atoms of epicatechin gallate as well as Ser135, Gly14, and Asp15;
between epigallocatechin gallate as well as Gly14 and Asp15; and

FIGURE 6
Molecular docking of the bioactive compounds in MacB of E. coli. (A) 3D binding positions of MacB (green), hesperidin (blue), epigallocatechin
gallate (purple), and epicatechin gallate (yellow) in the binding pockets of MacB of E. coli. 2D molecular interaction analyses of (B) hesperidin, (C)
epicatechin gallate, and (D) epigallocatechin gallate with the amino acid residues in the binding pockets of MacB of E. coli.
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TABLE 7 ADMET properties of the three best compounds selected from compounds docked against the three proteins implicated in antibiotic resistance in
E. coli using ADMETSar server.

ADMET profiles Naringin Isoniazide* Epicatechin
gallate

Epigallocatechin
gallate

Chlorpromazine**

Ames mutagenesis − + − + −

Acute oral toxicity (class) III III IV IV II

Blood–brain barrier − + − − +

Caco-2 − + − −- +

Carcinogenicity − − − − −

CYP1A2 inhibition − + − − +

CYP2C19 inhibition − − − − +

CYP2C8 inhibition + − + + −

CYP2C9 inhibition − − − − −

CYP2C9 substrate − − − − −

CYP2D6 inhibition − − − − +

CYP2D6 substrate − − − − +

CYP3A4 inhibition − − − − −

CYP3A4 substrate + − + + +

CYP inhibitory promiscuity − − − − +

Hepatotoxicity − + + + +

Human ether-a-go-go-related gene
inhibition

+ − + + +

Human intestinal absorption − + + + +

Human oral bioavailability − + − − −

Acute oral toxicity 1.980874 1.764945 2.094668 2.432732 2.261878

P-glycoprotein inhibitor − − − − +

P-glycoprotein substrate − − − − +

Plasma protein binding 0.672338 0.176502 0.96188 1.039135 0.930981

Subcellular localization Mitochondria Mitochondria Mitochondria Mitochondria Lysosomes

UGT catalyzed + − − − −

Water solubility −2.53371 −0.05213 −3.3141 −3.3141 −4.94739

ADMET profiles Baicalein Chrysin Rutin Sinefungin*** Hesperidin

Ames mutagenesis − − + − −

Acute oral toxicity (class) II III III III III

Blood–brain barrier − − − − −

Caco-2 − + − − −

Carcinogenicity − − − − −

CYP1A2 inhibition + + − − −

CYP2C19 inhibition − + − − −

CYP2C8 inhibition + + − − +

CYP2C9 inhibition − + − − −

CYP2C9 substrate − − − − −

(Continued on following page)
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finally between hesperidin and Val45. In addition, all three
compounds interacted with Asp12, Arg144, Asn163, Ser164,
Tyr8, Pro9, Phe137, Tyr73, Tyr69, Asn63, and Ala44 via
hydrophobic interactions. Interestingly, Asp15, Gly14, Ser135,
and Val45 that interacted with the chosen compounds via
hydrogen bonds were earlier predicted to be among the binding
site residues, while Asp12, Ser164, Tyr8, Pro9, Phe137, Ala44, Tyr69,
Asn63, and Ala44 that interacted with the compounds via
hydrophobic interactions were among the predicted amino acids
of the binding sites.

3.8 ADMET predictions in silico

The ADMET predictions were carried out to ascertain how the
three chosen compounds for each of the proteins were absorbed,
distributed, metabolized, and eliminated as well as how toxic they
can be. The outcomes of the evaluations are presented in Table 7.
Hesperidin, epicatechin gallate, chrysin, and naringin showed good
ADMET profiles and do not tend to cause mutations against
Salmonella typhenurium (AMES). Epigallocatechin gallate and
rutin tend to cause mutations against S. typhenurium (AMES).
Rutin was observed to be a non-inhibitor of the human ether-a-
go-go (herG) gene, while the other compounds were inhibitors to the
human herG gene. Correspondingly, all these compounds did not
display the ability to cross the blood–brain barrier (BBB) and may
not be absorbed through caco-2. They tend to have good intestinal

absorptions except for hesperidin and naringin. None of the
compounds were predicted to serve as substrates to
P-glycoprotein, and all the compounds were found to be
substrates to cytochrome P450 isoform 3A4 except biacalein
and chrysin.

The toxicities of the chosen compounds ranged between classes
II to IV. In addition, they were predicted to be localized in the
mitochondria. Biacalein, chrysin, hesperidin, and naringin were
predicted to undergo phase-two drug metabolisms through
glucorunidation. However, studying their structures keenly for
the purpose of generating chemosimilars with improved safety
profiles may be of great relevance and should be considered as a
subject of future investigation.

3.9 Dynamics stabilities of the
protein–ligand complexes

Hesperidin (hesperetin-7-O-rutinoside), which shows great
affinity across the three protein targets, is a flavone made up of
the rhamnose, glucose, and hesperetin aglycone moieties. It is
abundantly available in citrus plants and is majorly produced in
the citrus industry (Rudrapal et al., 2023). According to recent
preclinical and clinical studies on its biological usage as an active
element, it possesses antioxidant, anti-inflammatory, lipid-
lowering, and insulin sensitivity properties as well as
potency in neurological disorders, psychiatric disorders, and

TABLE 7 (Continued) ADMET properties of the three best compounds selected from compounds docked against the three proteins implicated in antibiotic
resistance in E. coli using ADMETSar server.

ADMET profiles Naringin Isoniazide* Epicatechin
gallate

Epigallocatechin
gallate

Chlorpromazine**

CYP2D6 inhibition − − − − −

CYP2D6 substrate − − − − −

CYP3A4 inhibition + + + − −

CYP3A4 substrate − − − − +

CYP inhibitory promiscuity + + − − −

Hepatotoxicity − − + − −

Human ether-a-go-go-related gene
inhibition

− − − − +

Human intestinal absorption + + + + −

Human oral bioavailability + − − − −

Acute oral toxicity 2.210606 1.92548 2.285344 2.039988 1.953582

P-glycoprotein inhibitor − − − − −

P-glycoprotein substrate − − − − −

Plasma protein binding 1.024719 0.947877 0.901161 0.064035 0.852145

Subcellular localization Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria

UGT catalyzed + + + − +

Water solubility −2.99937 −2.77654 −2.7724 −2.22868 −2.64853

*, **, and *** control drugs.
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cardiovascular diseases because of its effects on the
blood pressure (Atoki et al., 2023; Hosawi, 2023; Ileriturk
et al., 2023).

Hesperidin was found to have good binding abilities against the
three selected protein targets in this work. Therefore, a unique study
engaging MD simulation was undertaken for the three complex

FIGURE 7
Dynamic stability metrics of hesperidin-bound protein complexes over 200 ns of molecular dynamics (MD) simulations. Time-dependent RMSD
profiles of the backbone atoms of (A) hesperidin–gidB, (B) hesperidin–KatG, and (C) hesperidin–MacB complexes.
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systems to delve into the structural and dynamic behaviors of gidB,
KatG, andMacB in the presence of hesperidin. The study focused on
investigating the intrinsic dynamic stability of each complex by
analyzing their backbone RMSD (Figure 7) and RMSF (Figure 8) in
200 ns simulations.

The RMSD serves as a measure of variance between a protein
backbone from its starting to final conformations and offers

beneficial insights into the stability of the protein–ligand complex
(Cavasotto et al., 2019; Solo-Aben et al., 2021; Danazumi and Umar,
2023). A plot of divergences observed during the simulations was
used to measure the relative stabilities, whereby more negligible
deviations indicate more stable protein structures (Hollingsworth
and Dror, 2018; Tran et al., 2022). The RMSD values for the
backbones were calculated via 200 ns simulations to establish the

FIGURE 8
Dynamic stability metrics of hesperidin-bound protein complexes over 200 ns of MD simulations. Cα-RMSF profiles of the (A) hesperidin–gidB, (B)
hesperidin–KatG, and (C) hesperidin–MacB complexes. The green lines indicate the points of contact of hesperidin with the amino acids during the
MD runs.
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stabilities of the three systems. At the early stage of the simulation,
the hesperidin–gidB complex (Figure 7A) exhibited an average
RMSD (indicated in red) of 3.5 Å from 0 ns to 60 ns. From
100 ns to 175 ns, equilibrium was reached, as shown in the
trajectory plot, followed by a gradual decline, reaching an average
RMSD peak of 2.0 Å at 180 ns. Subsequently, the curve rises to 3.5 Å
at 190 ns and is stabilized for the next 10 ns before declining to 2.4 Å
and remaining stable until the end of the simulation period. A keen
inspection of the gidB complex system revealed a moderately stable
trend in RMSD, showcasing an average deviation of
approximately <3.5 Å (Singharoy et al., 2016; Zuo et al., 2017).
Such profiles demonstrate the inherent stability of the system
investigated herein.

However, exploring the RMSD of the hesperidin–KatG complex
(Figure 7B) yielded intriguing findings, where the ligand had notable
changes in RMSD throughout the simulation, thereby highlighting a
significant orientation within the binding pocket of KatG. The

hesperidin-bound complex (indicated in red) exhibited an initial
increment in RMSD up to ~0.6 Å during the early stage of the
simulation and lasting until around 75 ns, with an unusual rise at
around 60 ns. Thereafter, it gradually increased to 2.65 Å at 110 ns,
which dipped to 2.1 Å at 120 ns before rising above 2.4 Å at 125 ns. A
dip was then observed at around 130 ns to 1.8 Å, after which the
curve remained stable till the end of the simulation. However, a
notable observation in the hesperidin–MacB complex was the
occurrence of fluctuations in the RMSD between 0 ns and 80 ns,
characterized by few crests and troughs, indicating substantial
conformational changes within the hesperidin-bound complex
during this timeframe.

These fluctuations suggest the transient destabilization and
restabilization of the complex, possibly due to dynamic
interactions between hesperidin and the surrounding amino acid
residues. Following this period of fluctuations, the RMSD stabilized
at around 3.0 Å and remained relatively stable until the end of the

FIGURE 9
Normalized stacked bar charts representing the contactmappings of hesperidin with (A) gidB, (B) KatG, and (C)MacB. The green, gray, blue, and pink
colors represent hydrogen bonds, hydrophobic interactions, water bridges, and ionic interactions, respectively.
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200 ns simulation. This remarkable stability highlights the robust
and consistent natures of the complexes.

To investigate the flexibility and local changes in the
secondary structural elements involved in hesperidin binding,
the residual fluctuations of the three complexes were examined
carefully by mainly focusing on the Cα motions (Figure 8). The
Cα RMSFs of the three complexes displayed noteworthy
fluctuations in the residues situated at the N-terminal and

C-terminal regions, corroborating the findings obtained from
the RMSD analysis (Figure 7). Interestingly, the ligand-bound
structures exhibited lower fluctuations (Figure 8) at the points of
contact (green lines) with the amino acid residues of the
proteins, with an average RMSF of 2.4 Å for hesperidin–gidB
and 2.0 Å for hesperidin–KatG even when the fluctuations
around the residues between 210 ns and 220 ns had an RMSF
value of above 4.0 Å.

FIGURE 10
(Continued).
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In the hesperidin–MacB complex (Figure 8C), the fluctuations
averaged between 2.5 Å and 3.0 Å around the points of contact of
hesperidin and the amino acid residues of MacB. The observed
changes in the Cα-RMSF values are probably a consequence of the
stabilizing effects prompted by hesperidin binding to the protein’s
flexible regions, emphasizing the inherent adaptability of the
proteins (Dokainish et al., 2022; Ali et al., 2023). All three
systems displayed steady RMSF trends with marginal distinctions,
confirming cohesive behaviors under dissimilar conditions.

3.10 Protein–ligand contacts

The model trajectories were used to measure hesperidin’s
binding affinity for identifying the stabilities of the three protein
targets against it. The resulting structural chemistries witnessed
during these modeling runs are depicted graphically in Figures 9,
10. These figures exemplify several interactions, such as hydrogen
bonds in green, hydrophobic interactions in gray, ionic interactions
in magenta, and water bridges in blue. The stacked bars (Figure 5)
artfully represent the proportion of simulation time dedicated to
maintaining each definite interaction.

For example, a value of 0.6 would indicate that 60% of the
simulation time involved maintaining a particular interaction. In
some cases, values exceeding 1.0 were acceptable, signifying the

manifestation of multiple contacts between a ligand and the same
protein subclass due to conformational changes in the protein
structure. Furthermore, 2D interaction charts for the hesperidin
and three target protein complexes are shown in Figure 10,
furnishing insights into the preservation of contacts over the
entire simulation trajectory.

It is noted that both the Vina-based docking (Figures 4–6) and
MD simulations (Figures 9, 10) were able to uncover significant
H-bond interactions between hesperidin and the active site residues
of the three protein targets, which may likely indicate the correctness
of compound docking within the binding pockets of the target
proteins. This is an interesting outcome that hesperidin may likely
be a good inhibitor of these proteins and consequently prevent the
spread of AMR in E. coli. Post-simulation in hesperidin–gidB, most
of the OH groups of hesperidin were found to form five water-
mediated hydrogen bond contacts with six residues: Asp96, Asp146,
Glu125, Val124, Val72, and Arg139. Interestingly, these interactions
occurred in 7%–31% of the frames throughout the simulation
trajectory. Furthermore, three residues were observed to contact
hesperidin via hydrogen bonds without mediation by water: His152,
Phe127, and Ser149. Finally, His153 and Trp150 showed pi-pi
interactions with rings A and C of hesperidin (Figure 10).

As in gidB, the hesperidin-bound KatG had many H-bond
formations during the docking event despite being ranked second
in terms of affinity among the chosen natural compounds (Figure 4).

FIGURE 10
(Continued). 2D summary diagrams showcasing the preserved contacts from 200 ns of MD simulations between hesperidin and the E. coli proteins
(A) gidB, (B) KatG, and (C) MacB.
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However, the H-bond interactions were mostly maintained between
13% and 40% during the MD simulations (Figure 10B), which may
be due to conformational changes in the protein and ligand [47–48].
Such molecular changes were attributed to the moderate fitness of
hesperidin in the binding pockets. However, the complex exhibited
six water-mediated interactions, all involving the beta-oriented OH:
four with the positively charged Asp192, Asp131, Asp162, and
Asp220 residues as well as two with Phe109 and Arg107. Some
additional residues had interactions with the OH groups of
hesperidin without water mediation, namely Gln137, Asn165,
and Val108. These contacts were maintained between 13% and
40% of the MD timescale (Figure 10B), signifying their modest
stabilities.

Finally, the hesperidin-bound MacB had few H-bond
formations during the docking event despite being ranked best in
terms of affinity among the chosen natural compounds (Figure 6).
However, the H-bond interactions were mostly maintained between
12% and 36% during the MD simulations (Figure 10C), which may
be attributed to positional variations in MacB and the ligand
(Girdhar et al., 2019; Redij et al., 2019). Such molecular changes
were ascribed to the reasonable fitness of hesperidin in the binding
pockets. However, the complex exhibited ten water-mediated
interactions, all involving the beta-oriented OH: three with the
positively charged Asp16, Glu132, and Asp68 residues, with the
remaining residues being Ser66, Gly67, Asn63, Asn163, Tyr73, Pro9,
and Phe137. Some additional residues had interactions with the OH
groups of hesperidin without water mediation, namely Asp15,
Gly14, and Trp146. In addition, Trp146 and Tyr69 were
observed to interact with rings A and C of hesperidin during the
MD simulations (Figure 10C), signifying their modest stabilities as a
result of the H bonds and pi-pi interactions.

3.11 PCA

PCAwas implemented to meticulously measure the routes of the
protein–ligand complexes during MD simulations. The goals of this
inquiry were to attempt to make sense of the seemingly random,
global atomic displacements observed within the amino acid

residues (Hayward, 2023; Vuillemot et al., 2023). The protein’s
layout includes stochasticity and globally uncorrelated motions,
contributing to the diversity and adaptability of the trajectories
(Alghamdi et al., 2023; Debnath et al., 2023). The covariance matrix
records the movements of the internal coordinates over 200 ns, as
projected onto a 3D space. With this information, orthogonal
systems or eigenvectors can be used to better comprehend the
predictable motions inside each trajectory. The Cα atoms of the
hesperidin-bound gidB (Figure 11A) demonstrated a disordered
configuration in the MD simulation trajectories associated with the
PC1 and PC2 modes in the early and last frames.

In contrast, a more systematic arrangement emerged between the
frames (highlighted in light to white), suggesting stable global correlated
motions. In the case of KatG–hesperidin (Figure 11B), initial
anisotropic motion was observed, which is attributed to the high
mobility of the protein’s terminal regions in various directions;
however, these motions became more ordered with time.
Meanwhile, the Cα atoms of MacB linked to hesperidin
(Figure 11C) exhibited more disordered configurations with
moderate orientations in the PC1 and PC2 modes. This clustering
of frames indicates cyclical motion, as shown in the MD trajectories,
which results from the robust global conformational movements.

3.12 DCC analysis

To clarify the complex, symbiotic conformational dynamics
within the three ligand-bound protein complexes expressed
across spatially divergent protein domains in different systems, a
meticulous and sophisticated DCC analysis was employed (Zhang
et al., 2022; Zhu et al., 2022). It involved averaging over three
replicates of precisely curated MD trajectories for each system. The
cross-correlation (Cij) coefficients, which are a display of
mathematical sophistication, gracefully traversed the entire range
from −1 (purple) to 1 (blue), reflecting the exquisitely collinear
correlation between the two Cα atoms (i and j). Here, positive
coefficients (Cij > 0) indicate harmonious and synchronized
movements of the two residues, whereas negative coefficients
(Cij < 0) suggest that the two residues move in opposite

FIGURE 11
Principal component analysis (PCA) plots of the Cα atoms disclosing the first two eigenvectors in the conformational spaces of three different
systems: (A) hesperidin–gidB, (B) hesperidin–KatG, and (C) hesperidin–MacB complexes.
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directions. As the coefficients approach zero (Cij = 0), the correlated
motions between the two residues reach a standstill, indicating no
noticeable correlation. Throughout the analysis, the absolute values
of Cij highlight the intensity of the correlated motions within the
complexes, providing insights into the magnitudes of the molecular
movements (Zhang et al., 2022; Zhu et al., 2022).

The Cij matrices, represented as two-by-two plots of the Cα Cij
coefficients, revealed near-similar diagonal patterns of correlated
and anti-correlated motions within the ligand-bound protein
systems as well as interdomain motions between these systems
(Figure 12A–C). Across all three systems, the intradomain
movements of the three proteins showed enhanced correlated
motions (visually depicted as diagonal blue lines), indicating
concerted motions within these regions.

3.13 FEL investigation

After a meticulous appraisal of the configurational space
explored via simulations, the FEL representation was constructed

in contours. The FEL is a valuable model that involves mapping the
free energy values to the configurational space, enabling
identification of energetically favorable regions and conversion
blockades to the system during its conformational changes or
evolutions between different states (Fang et al., 2022). In this
investigation, the FEL was calculated via RMSD and Rg values as
the reaction coordinates for evaluating relevant clusters of the three
systems of hesperidin (Figure 13). A noteworthy finding was the
significant divergence in the free-energy profiles of the ligand-bound
complexes (Figures 13A–C). The hesperidin-bound gidB showed
one main energy basin with similar free-energy values of 0 kJ/mol
and an extended spread along the Rg value from 1.64 nm to 1.74 nm
(Figure 13A), whereas the hesperidin-bound KatG displayed only a
single and sharp global energy minimum (Figure 13B).

The hesperidin-bound MacB showed two main energy basins
(Figure 13C). Such deviations suggest that the binding of hesperidin
induces noteworthy changes in the energetic landscapes of the three
protein molecules, stabilizing them in preferred conformations
during the interactions. The sizes and shapes of the minimal
energy areas, represented by dark blue regions on the free-energy

FIGURE 12
Dynamic cross-correlation maps (DCCMs) of the (A) hesperidin–gidB, (B) hesperidin–KatG, and (C) hesperidin–MacB complexes.
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contour plots, provide crucial insights into the enhanced stabilities
of the complexes. The presence of smaller, more centralized blue
area(s) resembling funnel-like bottoms indicate more excellent
stabilities of the corresponding complexes. This funnel-like shape
suggests that the ligand-bound complex adopts a preferred
conformation with minimal energy, making it highly stable and
less susceptible to significant conformational changes (Sang et al.,
2020; Baidya et al., 2022).

In principle, the binding with hesperidin stretches the protein
and results in a change of the overall motions of the protein.
Convincingly, applying PCA in the current work sheds light on
the dynamic properties of the gidB, KatG, andMacB proteins as well
as how they are influenced by ligand binding. The results suggest
that hesperidin interactions are vital in shaping the conformational
landscapes and firmness of the proteins, possibly impacting their
functional behaviors in cellular processes.

Hesperidin behaviors noted in this work are not accidental as
they have been reported to have significant bioactivities that can
combat bacterial and other microorganisms to enhance immune
functions (Alam et al., 2023; Rudrapal et al., 2023). Furthermore,
hesperidin can disrupt the cell walls of bacteria and cause leakage of
biological macromolecules, such as proteins and DNA, by

generating reactive oxygen species (Bahador and Vaezi, 2023).
Regarding antimicrobial activity, hesperidin has been known to
exhibit robust effects against countless microorganisms, including
bacteria, viruses, and fungi; its mechanisms of action involve the
disruption of microbial cell membranes and inhibition of microbial
enzymes (Akbari et al., 2023; Bahador and Vaezi, 2023; Hosawi,
2023). These findings suggest that hesperidin could be a potential
natural antimicrobial agent for the prevention and treatment of
microbial infections.

4 Conclusion

This study aimed to contribute to the ongoing quest for better
therapeutics that can circumvent the AMR of E. coli by focusing on
its MacB, gidB, and KatG proteins by identifying potential inhibitors
from compounds attributed to plants with established antibacterial
activities and utilizing a comprehensive approach involving
resistance gene identification, molecular docking, MD
simulations, and ADMET analysis. Remarkably, our findings
reveal that hesperidin exhibits good binding affinities with MacB,
KatG, and gidB, with BEs of −10.7 kcal/mol, −9.3 kcal/mol,

FIGURE 13
3D free-energy landscape (FEL) contour plots of the (A) hesperidin–gidB, (B) hesperidin–KatG, and (C) hesperidin–MacB clusters with respect to the
RSMD and Rg.
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and −6.7 kcal/mol, respectively, compared to their respective control
drugs. Notably, hesperidin demonstrates plausible binding
positions, good structural stability, and favorable pharmacokinetic
profile. These findings suggest that hesperidin holds promise as a
potential therapeutic agent for AMR associated with theMacB, gidB,
and KatG genes of E. coli.

However, it is vital to consider the preliminary nature of these in
silico findings, so further experimental studies are imperative for
validating the efficacy of hesperidin as a viable treatment option for
AMR associated with the MacB, gidB, and KatG genes of E. coli.
These future investigations are necessary for valuable insights into
bridging the gap between computational predictions and practical
therapeutic applications, thereby paving the path for more effective
and targeted treatments.
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