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The identification of cancer subtypes plays a very important role in the field of
medicine. Accurate identification of cancer subtypes is helpful for both cancer
treatment and prognosis Currently, most methods for cancer subtype
identification are based on single-omics data, such as gene expression data.
However, multi-omics data can show various characteristics about cancer, which
also can improve the accuracy of cancer subtype identification. Therefore, how
to extract features from multi-omics data for cancer subtype identification is the
main challenge currently faced by researchers. In this paper, we propose a cancer
subtype identificationmethod namedCAEM-GBDT, which takes gene expression
data, miRNA expression data, and DNA methylation data as input, and adopts
convolutional autoencoder network to identify cancer subtypes. Through a
convolutional encoder layer, the method performs feature extraction on the
input data. Within the convolutional encoder layer, a convolutional self-attention
module is embedded to recognize higher-level representations of the multi-
omics data. The extracted high-level representations from the convolutional
encoder are then concatenated with the input to the decoder. The GBDT
(Gradient Boosting Decision Tree) is utilized for cancer subtype identification.
In the experiments, we compare CAEM-GBDT with existing cancer subtype
identifying methods. Experimental results demonstrate that the proposed
CAEM-GBDT outperforms other methods. The source code is available from
GitHub at https://github.com/gxh-1/CAEM-GBDT.git.
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1 Introduction

As a branch of the disease, cancer is a complex genomic disease that can occur in various
parts of the human body and has a great impact on human life. Therefore, cancer treatment
and prognosis are very important, but accurate identification of cancer subtypes is an
important prerequisite when cancer treatment and prognosis are carried out (Guo et al.,
2023). Patients with the same subtype of cancer may behave differently (Alexander et al.,
2022), but they share common characteristics that can be used to identify them. Accurate
identification of cancer subtypes is conducive to exploring the pathogenesis of cancer, plays
a decisive role in treatment and prognosis (Zhang et al., 2022), greatly increases the cure rate
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of patients, and promotes the further development of research on
cancer subtype identification (Wang et al., 2020).

The mainstream bioinformatics data used by researchers is
multiple types of omics data based on tumors. These data
express cancer from different perspectives. Multi-omics data
include genome, transcriptome, epigenome, proteome, exposome,
and microbiome (Ao et al., 2022). Multi-omics data analysis can
reveal different aspects of the same sample and provide additional
beneficial information for research. Therefore, compared with a
single type of gene expression data, methods based on multi-omics
data can more accurately identify cancer subtypes.

Gene expression data in bioinformatics refers to the data that
describe the expression levels of genes under specific conditions
or in specific cell types. Gene expression is the process by which
genetic information is transcribed into RNA and translated into
proteins. miRNA molecules participate in the regulation of gene
expression mainly by binding to target mRNA, leading to their
degradation or translation inhibition, thereby regulating gene
expression. DNA methylation data provides information about
the methylation status in the genome. These data can reveal
which genes or gene regions are methylated under specific
conditions or in different types of cells. DNA methylation
data plays a crucial role in studying gene regulation. The
relationship between these three types of omics data is
inseparable. They influence each other, and the relationship
between them can be extracted through models to achieve the
identification of cancer subtypes. Therefore, ultimately, these
three types of omics data are adopted as inputs to the model.

The main challenge currently is how to extract the information
related with cancer subtypes frommulti-omics data. Meanwhile, the
dataset about cancer patients usually includes a small number of
samples, and the samples have very high dimensions (Brigham et al.,
2012; Hammerman et al., 2012; Muzny et al., 2012).

Most of the existingmethods are based on unsupervised learning
clustering or supervised learning classification, using multi-omics
data to achieve cancer subtype identification. It can be divided into
early integration, intermediate integration and late integration
(Lipkova et al., 2022) according to the different focus of the
identification method. Pre-integration simply links mult-omics
data into one matrix, and then processes the unified matrix.
These methods commonly exacerbated the problem of
dimensionality explosion, making imbalanced phenomenon of
sample size and dimensionality even more serious. The
representative methods include K-means, Spectral clusting and
LRAcluster (low-rank-approximation-based multi-omics data
clustering) (Wu et al., 2015). The characteristic of this type of
method is that it is easy to ignore the local characteristics of
some omics data (Zhao et al., 2023).

The method of post-integration is different from the method of
pre-integration. Post-integration processes each omics data
separately and integrates the clustering results to obtain the final
clustering solution. Post-integration effectively avoids the mistakes
of pre-integration. Clustering is performed on each omics data to
ensure the influence of weak signals. Such as moBRCA-net (Choi
and Chae, 2023) and Subtype-WESLR (Song et al., 2022), but post-
integration also has its own shortcomings. When multiple omics
data have different contributions to the clustering results, it will have
a great impact on the performance of these method. So both pre-

integration and post-integration have a common characteristic, they
are unable to express interactions between different omics data.
Therefore, mid-integration has gradually become a favored object
among researchers (Kang et al., 2022).

Mid-integration achieves data merging and dimensionality
reduction by establishing an unified model. Not simply linked
data or linked feature matrices. iCluster Bayes (Mo et al., 2018)
and Cascade Deep Forest (El-Nabawy et al., 2021) present statistical
ensemble methods to solve ensemble challenges. These methods
model the distribution of each data type and then maximize the
likelihood of multi-omics data based on joint latent variables.
However, due to the complexity of multi-omics data, traditional
statistical or mathematical models still face huge challenges in
accurately modeling high-dimensional multi-omics data. The
earliest method SNF (Wang et al., 2014), ERDCN (Lei et al.,
2022) process the multi-omics data by constructing a sample
similarity network about the co-expression patterns of cancer
genes. However, these methods are susceptible to data noise and
feature heterogeneity.

In recent years, deep learning has become more and more
widely used in the field of medical care and has become a popular
method favored by researchers (Dai et al., 2021). Many of these
models have achieved good results in the field of cancer subtype
identification, such as HI-DFN Forest (Xu et al., 2019), Subtype-
GAN (Yang et al., 2021) and SADLN (Sun et al., 2023). The HI-
DFN Forest employs a stacked autoencoder to learn advanced
representations from each omics data, and then integrates all the
learned representations into an autoencoder layer to learn
complex representations. The DFN Forest model classifies
(Zhou and Feng, 2019) patients into different cancer subtypes.
Subtype-GAN utilizes a generative adversarial network to extract
features from omics data through relatively independent layers
and simultaneously input the extracted information into a shared
layer for data integration. Consensus GMM clustering is used to
predict cancer subtype outcomes. SADLN combines the encoder,
self-attention, decoder, and discriminator into a unified
framework, leveraging the integrated representations learned
from the network, and utilizes Gaussian mixture models to
identify cancer subtypes.

In recent years, convolutional autoencoders have shown good
performance in reducing the dimensionality of high-dimensional
data (Naderan and Zaychenko, 2020). applied convolutional
autoencoders to the field of cancer subtype identifying and
conducted comparative experiments with regular autoencoders
on image datasets. The experimental results indicate that
convolutional autoencoders achieve better dimensionality
reduction compared to traditional autoencoders.

In this paper, we propose a method called CAEM-GDBT,
which combines a convolutional autoencoder, a convolutional
self-attention module, and a GBDT classifier to accomplish the
classification of cancer subtypes. CAEM-GBDT is dedicated to
establishing an integrated framework that includes an encoder,
decoder, attention module, and identification module, enabling
joint training and optimization. Compared to existing methods,
it requires fewer computational resources and offers higher
accuracy. The limitation of early integration is that the feature
extraction module and the subsequent clustering module are
relatively independent. In contrast, in CAEM-GBDT, the
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feature extraction module is tightly connected with the
identification module. The drawback of late integration is that
when extracting features, weights are introduced to process

multi-omics data, which can easily overlook the interactions
between different types of omics data. CAEM-GBDT employs
a convolutional attention module mechanism, processing

FIGURE 1
The process of CAEM-GBDT, (A) represents the data Preprocessing module, (B) represents the Feature extraction module, (C) represents the
Identifying module.
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features from both channel and spatial perspectives, fully
leveraging the relationships between different omics data. It
treats multi-omics data as a whole for feature extraction. In
summary, CAEM-GBDT can overcome the limitations of both
early and late integration.

2 Methods

We divided the entire method into three modules: data
preprocessing module, feature extraction module, and
identifying module. As shown in Figure 1, in the data
preprocessing module, we preprocess multi-omics data and
use it as input for the next module. In the feature extraction
module, we use a combination of a convolutional autoencoder
and a convolutional attention module for extracting important
features about cancer subtypes. In the convolutional
autoencoder. We use one-dimensional convolutional layers to
replace some of the fully connected layers in a regular encoder. By
employing one-dimensional convolution, we extract low-
dimensional key features from the data. This feature is then
connected to the output of the decoder to form a matrix, and this
combined input is fed into the classifier section. In the identifying
module, a GBDT classifier is used for cancer subtype identifying.
This entire process is referred to as CAEM-GBDT.

2.1 Preprocessing module

We use three types of omics data as inputs to the model,
including the gene expression data matrix m1(x1, N), miRNA
expression data matrix m2(x2, N) and DNA methylation data
matrix m3(x3, N), Each column represents a sample, with a total
of N samples, and rows x1, x2 and x3 represent the dimensions of
different data types. We transpose and concatenate these data
matrices into a multi-omics data matrix M.

For multi-omics data with different dimensions, we
concatenated the multi-omics feature matrices from the
perspective of sample quantity. Although different omics data
within the same dataset have different sample dimensions, they
have the same number of samples. We concatenate the multi-omics
data from the perspective of sample number and, when inputting to
the model, designate different encoder networks for data with
different dimensions. This approach enables the concatenation of
multi-omics data.

As shown in Figure 1A, before training the model, the data
matrix undergoes feature standardization aiming to map features to
a distribution with a mean of 0 and a standard deviation of 1. The
multi-omics matrix after standardization is denoted as M′.
Specifically, we calculate the mean ui and standard deviation σi
for the i-th sample, the feature standardization Formula is defined as
Formulas 1 and 2:

FIGURE 2
Convolutional attention module structure diagram, (A) represents the Channel Attention module, (B) represents the Spatial Attention module.
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σi �
���������������������������������
Xi1 − ui( )2 + Xi2 − ui( )2 + . . . Xin − ui( )2

ni

√
(1)

Xij
′ � Xij − ui

σ i
(2)

the calculation is applied to each row, where Xij represents the j-th
dimension of the i-th sample, and Xij

′ represents the data after
feature standardization. The final preprocessed matrix M′ is
composed of the elements Xij

′ .

2.2 Feature extraction module

2.2.1 Convolutional autoencoder
The autoencoder, operates by mapping input data through a

multi-layer network. In this process, we first process the matrix by
an encoding step and extract intermediate features. The features are
reconstructed with the same size as the input. The process involves
compressing the data (encoding), followed by using this complex
representation to reconstruct the data (decoding). Throughout the
learning process, optimization of the loss function occurs to
minimize it, aiming to faithfully reconstruct the input. Through
the autoencoder, the system learns meaningful representations of
the input data, which is valuable for tasks such as feature learning
and data reconstruction.

As shown in Figure 1B, Given the input sample Xi from matrix
M′, the high-level representation extracted from the input layer
through several fully connected layer functions. Such as the first fully
connected layer function g1(Xi), the corresponding high-level
representation is denoted as hi, g1(Xi) can be expressed as
Formula 3:

hi � g1 Xi( ) � σ W ·Xi + b( ) (3)
where (W, b ) represents the parameters during the training process
of the autoencoder. Xi represents the input to the encoder. Dense
layer can fully utilize information in the network during feature
extraction, but it requires more time and resources for training.
Therefore, the main feature extraction task is still handled by the
convolutional layers.

Next, the high-level representation h from several fully
connected layer is processed through several Conv1D layers. In
the calculation process of convolution, the output data
(N,W2, H2, D2) is determined by the input data
(N,W1, H1, D1), N represents the number of samples, and
D2 � k, Formulas 4 and 5 are used to calculate W2 and H2 are
as follows:

W2 � W1 − f + 2p
s

+ 1 (4)

H2 � H1 − f + 2p
s

+ 1 (5)

W1 represents the width of the input data, andH1 represents the
height of the input data. The convolution kernel size f, the stride s,
the number of convolution kernels k and the amount of zero-
padding p. In the convolution layer, padding is set to “same”
mode, which represents the output height and width as the input
size divided by the stride, rounded up. The advantage of Conv1D in
its ability to extract local features from input sequences while

preserving the order information of the sequence. Compared to
fully connected layers, Conv1D can reduce the number of
parameters, decrease model complexity, and enhance the model’s
generalization ability.

Finally, the input sample Xi undergoes processing through
several fully connected layers and Conv1D layers, transforming
into Xi′. The dimension of Xi′ is much lower than the
dimension of the input sample. Xi′ is further enhanced through
the CBAM attention mechanism, resulting in Xi″. Xi″ and Xi′ have
the same size. Xi″ is then fed into the decoder section for
reconstruction.

In the decoder section, the low-dimensional feature Xi″
undergoes several transposed convolution layers and fully
connected layers to restore its original size. A transposed
convolutional layer comprises a conv1DTranspose layer and an
upsampling layer. Formula 6 is used to calculate
conv1DTranspose layer:

Outsize � stride × Insize − 1( ) + kernel size − 2*padding (6)
where Insize represents the input height or width, padding
represents the padding size. In transposed convolution, the
purpose of padding is to remove the outermost layer. Stride
represents the step size, kernel_size is the size of the
convolutional kernel, and Outsize is the height or width output
after transposed convolution. The upsampling layer, in contrast to
the max-pooling layer, repeats each time step size times along the
time axis, restoring the dimensions scaled by max-pooling. The data
processed by the transposed convolutional layers is denoted as Xi‴.

Following, the high-level representation Xi‴ is processed
through the last few fully connected layers. Such as the first fully
connected layer function g2(X‴

i ). g2(X‴
i ) can be expressed as

Formula 7:

X
′′′′
i � g2 X‴

i( ) � σ W′ ·X‴
i + b′( ) (7)

where W′, b′ have the same meaning as W,b in the encoding
section, they are trainable parameters in the fully connected layers.
Finally, the low-dimensional featuresXi″ extracted by CBAM and the
fully connected features Xi

′′′′ are concatenated as the output of the
CAEM section. These outputs together form the matrix M″.

We chose the GELU (Gaussian Error Linear Unit) activation
function for both the convolutional layers and transposed
convolutional layers. GELU can be seen as a combination of the
relu and dropout concepts. For high-dimensional biological data, an
abundance of features may impact feature learning. In such cases, if
there is a desire to discard unimportant information, the GELU
activation function is employed for non-linear transformation of
features. When x is relatively large, y is more likely to be retained,
and as x decreases, y is more likely to be set to 0. However, when x is
less than 0, there is a certain probability that y is not set to 0. The
mathematical formula for the approximate computation of GELU is
Formula 8:

GELU x( ) � 0.5x 1 + tanh
���
2/π

√
x + 0.044715x3( )( )( ) (8)

The structure of the layered convolutional encoder involves
constructing a CAE for each type of omics data. The
hyperparameters of each CAE are optimized separately to make
the reconstructed input of each CAE as similar as possible to its
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original input. Ultimately, the goal is to find a model that performs
well on a combination of various omics data types. The cost function
for each CAE is formulated as Formula (9):

JCAE � 1
2N

xi − x′
i( )2 + λ M′

���� ����22 (9)

Where the first term represents mean squared error, and the
second term is L2 regularization, xi represents the original input
data, x′

i represents the data reconstructed by the CAE, N represents
the number of samples, λ is the parameter of the L2 regularization
term, andM′ is the input matrix. The training process for each CAE
involves using the gradient descent algorithm to minimize the two
components of the loss. The proposed model’s layered convolutional
encoder structure minimizes the cost functions of three CAEs
through gradient descent, thereby optimizing the parameters of
the entire model.

2.2.2 Convolutional attention
The convolutional block attention module consists of two

sequential parts, as shown in Figure 2: the Channel Attention
Module (Figure 2A) and the Spatial Attention Module (Figure
2B). The input data typically includes multiple channels. The
Channel Attention Module’s main function is to assign
individual weights to each channel, enhancing the influence of
important channels and reducing the proportion of irrelevant
channel information. Two types of pooling layers are used to
pool the input feature F in terms of width and height. The
pooling results are then processed using a shared fully connected
layer (MLP). Afterward, the results are integrated through addition,
and the channel attention map C is obtained through a mapping
function ∫. Finally, the weights are multiplied to channel-wise
weight C and applied to F.

The Channel Attention Module constructs two shared fully
connected layers (MLP) in the attention module, namely,
‘shared_layer_one’ and ‘shared_layer_two’. The specific structure
is as follows: ‘shared_layer_one’ is the first fully connected layer,
with an output dimension equal to the number of channels divided
by the ratio, and uses the relu activation function. ‘Shared_layer_
two’ is the second fully connected layer, with an output dimension
equal to the number of input feature channels, and has no activation
function. These shared layers are used to process the results of
average pooling and max pooling, respectively calculating the
weights of each channel.

In order to obtain an effective channel attention map, the dual
pooling computation process enhances the feature representation
compressed by this module. The specific computation process is
illustrated in Figure 2A, and the calculation formula can be
expressed as Formula 10:

C F( ) � ∫ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( )
� ∫ W1 W0 Favg( )( ) +W1 W0 Fmax( )( )( ) (10)

Where ∫ represents the Sigmoid activation function, W1、W0

are the weight matrices shared by the MLP, and C(F) represents the
channel attention map (weights).

Moreover, the use of shared layers ensures that the same set of
weights is applied to different pooling results, thereby introducing

consistency in the computation. The two shared fully connected
layers are applied sequentially to the results of average pooling and
max pooling, meaning that these fully connected layers are shared in
both pooling paths. In this way, the average pooling and max
pooling results are processed into the same dimensions and
transformed by the same network weights. This shared
mechanism ensures consistency when the model calculates the
attention weights of each channel, avoiding the introduction of
different parameters in different pooling paths, thereby enhancing
the model’s generalization ability.

The Spatial Attention Module focuses on which information in
the input data is more crucial and can further complement features
that were not previously noticed. Specifically, this module
sequentially performs two types of pooling computations along
the channel direction, then stacks them to form a numerical
matrix. Subsequently, it undergoes a standard convolutional layer
(with one channel) to concatenate, adjusting the previously
disordered channels in the matrix. Following that, an attention
map S is calculated using an activation function, and finally, S is
multiplied with the input of this module. The Spatial Attention
Module is illustrated in Figure 2B, and the detailed calculation
Formula 11 is as follows:

S F′( ) � ∫ f7*7 AvgPool F′( );MaxPool F′( )[ ]( )( ) (11)

In the equation, ∫ represents the Sigmoid function, f7*7

represents a convolutional kernel with a size of 7 × 7, F′
represents the result of multiplying the input data F by the
channel attention map C, and S(F′) is the spatial attention map.

Finally, the overall process of the Convolutional Attention
Module is illustrated in Figure 2B and can be summarized as
follows: The input F passes through the first channel module to
obtain the channel attention map C, and the matrix F′ is obtained
through multiplication. Subsequently, it goes through the second
module to generate the spatial attention map S, and the final feature
matrix F″ is obtained through the same multiplication. The
calculation process is shown in formulas (12) and (13):

F′ � C F( ) ⊗ F (12)
F″ � S F′( ) ⊗ F′ (13)

CBAM combines the spatial attention map S(F′) obtained from
the above two sub-modules with F′ and multiplies them to get the
scaled new features. In the proposed CAEM in this chapter, the high-
level representation of a single CAE or the integrated high-level
representation of three CAEs will be processed by CBAM to obtain a
new feature matrix.

2.3 Identifying module

This study employed the GBDT classifier for cancer subtype
identifying. GBDT is one of the excellent algorithms in the Boosting
series of ensemble learning. Boosting imparts a strong dependency
relationship among individual learners of the same kind, integrating
them sequentially. The Gradient Boosting Tree algorithm organizes
weak classifier decision trees through the addition principle,
connecting each weak classifier. It optimizes residuals using
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gradient descent. In GBDT, the next weak classifier is trained using
the gradient of the loss from the previous weak classifier. In this way,
each iteration develops in the direction of reducing the loss, seeking
an optimal solution. GBDT is an additive model of decision trees (as
shown in Figure 1C), and the general calculation process can be
represented as Formula 14:

fM x( ) � ∑M
m�1

T x; θm( ) (14)

T(x; θm) represents a decision tree, where θm denotes the detailed
parameters of the tree, and M represents the total number
of trees.

GBDT adopts the forward distribution algorithm. The first step
is to initialize the boosting tree. f 0(x) � 0. Then, the model at the
m-th step is calculated using Formula 15:

fm x( ) � fm−1 x( ) + T x; θm( ) (15)

In Formula 16, the parameters of the next tree are chosen to
minimize the bias as much as possible:

θm � argmin
θm

∑N
i�1
L yi, fm−1 xi( ) + T xi; θm( )( ) (16)

“L ()" refers to the loss function. The loss function for GBDT
classification algorithm is different from regression algorithms. It
calculates the training loss using the formula of log-likelihood loss
function, as shown in Eq. 17:

TABLE 1 Information of the datasets.

Cancer type Gene expression miRNA Expression DNA methylation Multi-omics Patient

BRCA 17,814 354 23,094 41,262 104

GBM 12,042 534 1,305 13,881 213

TABLE 2 The structure and parameters of CAE (BRCA).

Architecture CAE (BRCA)

Encoder Input (Gene ExpressionDNA Methylation) Input (miRNA Expression)

512 (Dense) 128 (Dense)

16 + 2(Conv1D + Maxpool) 4 + 4(Conv1D + Maxpool)

4 + 4(Conv1D + Maxpool)

Decoder 4 + 4 (TransConV + UpSampl) 4 + 4 (TransConV
+UpSampl)

16 + 2 (TransConV + UpSampl)

512 (Dense)

Output Output

TABLE 3 The structure and parameters of CAE (GBM).

Architectures CAE (GBM)

Encoder Input (Gene Expression/DNA Methylation/miRNA Expression)

128 (Dense)

4 + 4(Conv1D + Maxpool)

Decoder 4 + 4 (TransConV + UpSampl)

1 (TransConV)

Output

TABLE 4 The parameters of GBDT.

Parameter Setting values

Learning_rate 0.1

n_estimators 300

max_depth 3

min_samples_leaf 5

min_samples_split 5

subsample 0.8

loss deviance
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logloss � − 1
N
∑N
i�1

yi log pi( ) + 1 − yi( )log 1 − pi( )( ) (17)

Where N is the number of samples, yi is the probability of the
first i samples being true positive samples, and pi is the probability of
predicting positive samples for the first i samples.

GBDT adopts a one-vs-all strategy to predict multi-class targets.
M decision trees are trained as weak classifiers for each different
category. Assuming there are K categories, after training, there will
be a total of M*K trees. The training objective of GBDT is to
optimize gradients to reduce bias, thereby improving the final
classifier’s results. Each decision regression tree has a limited
depth. Finally, GBDT weights and sums the weak classifiers
obtained in each round of training to obtain the predicted labels
for cancer subtypes.

To address the potential overfitting issue in GBDT, we adopted
the following two methods to reduce the risk: Limiting the number
of weak classifiers: Generally, increasing the number of weak
classifiers enhances the model’s fit to the training data but also
increases the risk of overfitting. In our study, we limited the number
of weak classifiers to 300, which helps reduce the overfitting risk.
Early stopping strategy: By monitoring the model’s performance on
the validation set, we save the parameters and stop training when the
model reaches its optimal performance. This effectively prevents the
model from overfitting the training data.

To ensure the model’s generalization ability, we integrated
parameters from two datasets, enabling GBDT to adapt to both
the BRCA and GBM datasets, thereby improving the model’s
generalization capability. Additionally, the weak classifiers in

GBDT consider only a subset of features each time, which, while
reducing the correlation between features, enhances the model’s
generalization ability.

In CAEM, the feature matrix obtained through the
Convolutional Autoencoder and Convolutional Attention
modules is input into the GBDT module to obtain the final
prediction results for cancer subtypes.

3 Experiment and analysis

3.1 Datasets

To demonstrate the effectiveness of the proposed method
CAEM-GBDT, this study considered two different datasets. One
dataset is from TCGA, including 104 samples of Invasive Breast
Carcinoma (BRCA), the another dataset includes 213 samples of
Glioblastoma Multiforme (GBM). We randomly divide each
dataset into five equally sized parts, with four parts used as
the training set and the remaining one part as the test set.
However, in the BRCA dataset, due to the small number of
samples in the test set, we changed the ratio of the training
set to the test set to 3:1 when the input data was multi-omics data.
We set 100 epochs for training the model. For each cancer type,
we utilized gene expression data, miRNA expression data, DNA
methylation data. Table 1 shows detailed information about the
two datasets.

3.2 The encoder network structure and
parameter settings

In order to choose a CAE structure with better performance, this
study trained CAEs with different numbers of hidden layers and
hidden units for different data types. Tables 2, 3 shows the
corresponding network structures and parameters for CAE.

Where the convolutional layers have a kernel size of 3, padding
mode is set to ‘same’, and the stride is 2. The activation function for
the convolutional layers is chosen as the Gelu function.

In the GBM dataset, we have adopted the same encoder
structure for three different types of omics data. The main reason
for this is that the dimensionalities of multiple omics data in the
GBM dataset are not significantly different from those in the BRCA
dataset. Therefore, in the BRCA dataset, we set the same encoder

TABLE 5 The results of the CAEM ablation experiments.

SAE SAE + CBAM VAE

BRCA Accuracy 82.2 Accuracy 85.7 Accuracy 80.3

Precision 48.1 Precision 54.2 Precision 46.4

Recall 50.0 Recall 58.3 Recall 50.0

F1 score 49.0 F1 score 56.2 F1 score 48.1

GBM Accuracy 86.0 Accuracy 88.4 Accuracy 85.1

Precision 58.7 Precision 71.4 Precision 52.1

Recall 60.4 Recall 62.5 Recall 60.4

F1 score 59.5 F1 score 66.7 F1 score 55.9

VAE + CBAM CAE CAE + CBAM

BRCA Accuracy 83.5 Accuracy 83.4 Accuracy 95.0

Precision 58.9 Precision 52.6 Precision 97.6

Recall 50.0 Recall 45.8 Recall 88.9

F1 score 54.1 F1 score 49.0 F1 score 93.0

GBM Accuracy 87.6 Accuracy 86.8 Accuracy 91.2

Precision 71.2 Precision 62.8 Precision 91.0

Recall 60.4 Recall 60.4 Recall 90.6

F1 score 65.4 F1 score 61.6 F1 score 90.8

Bold values represent the best values.

TABLE 6 Attention mechanism experiment.

Accuracy Precision Recall F1 score

Channel Attention
First

95.0 97.6 88.9 93.0

Spatial Attention
First

85.0 78.6 75.2 76.9

Using both
simultaneously

89.0 95.6 77.8 85.7

The experimental results indicate that the order of applying channel attention first followed

by spatial attention performs better on various evaluation metrics. This validates the

effectiveness of our design choice.

Bold values represent the best values.
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network for gene expression data and DNAmethylation data, which
have larger dimensions, while a different encoder network is set for
miRNA data. This approach ensures that the convolutional
autoencoder is better suited to each omics data type, leading to
more efficient feature extraction.

In addition to CAE, for the GBDT module, this study employs
five-fold cross-validation to calculate the minimum mean squared
error for evaluating the performance of different parameter settings
in GBDT. Table 4 presents the specific parameter settings for the
GBDT module.

3.3 Ablation experiment

3.3.1 Ablation experiment of the CAEM
This study conducts ablation experiments to determine the

contribution of the CAEM module. In the field of dimensionality
reduction, deep learning offers many outstanding methods, including
representative ones such as Stacked Autoencoders (SAE), Variational
Autoencoders (VAE), and the Convolutional Autoencoder (CAE). These
dimensionality reduction methods are combined with Convolutional
Block Attention Module (CBAM) in various configurations for ablation
experiments. The performance is ultimately evaluated based on accuracy.
The experimental results are shown in Table 5.

From Table 5, it can be observed that both in terms of individual
accuracy and overall F1 score, CBAM demonstrates significantly
superior performance across both datasets. Particularly noteworthy is
its improvement in CAE, where it achieves nearly a 10% increase in
performance on the BRCA dataset. On the BRCA dataset, the accuracy
of the other five models is below 90%, while CAEM achieves an
accuracy of up to 95%. In contrast, the proposed CAEM model
exhibits superior performance. On the GBM dataset, except for the
high accuracy achieved by the combination of SAE and CBAM, the
accuracy of the other models is significantly lower than that of the
CBAMmodel. Although the combination of SAE and CBAM achieves
an accuracy of 88.4%, our proposed CAEM model demonstrates

significantly better performance, achieving an accuracy of 91.2%.
Furthermore, the CAEM module exhibits good robustness on both
datasets. Therefore, the CBAM module can enhance the classification
performance of the model to some extent. These experiments above
serve as evidence for the effectiveness of the CBAM mechanism.

3.3.2 Ablation study of the attention mechanism
The channel attention module aims to enhance specific channel

features by assigning weights to each channel. By applying channel
attention first, we can effectively enhance the channel features that
are more important for the task. On this basis, the spatial attention
module can further focus on important regions in the spatial
dimension, thereby further improving the quality of feature
representation. We have experimentally demonstrated the
effectiveness of this order. Using multi-omics data from the
BRCA dataset as an example and taking accuracy, precision,
recall, and F1 score as evaluation criteria, the experimental
results are shown in Table 6.

3.4 Comparison experiment of
dimensionality reduction methods

In CAEM-GBDT, the hierarchical structure CAEM serves as the
input for the GBDT classification model. This paper compares it
with three dimensionality reduction methods: SAE, NMF, and PCA.
The evaluation is performed using these two datasets as input to
assess the performance of CAEM in learning features. Classification
accuracy is used as the criterion for judging the effectiveness of the
dimensionality reduction methods.

From Table 7, it can be seen that in terms of runtime, the
training time for one epoch is similar among the three methods
except for NMF. Although CAEM-GBDT requires a larger amount
of memory, it does not consume more runtime. Moreover, it
achieves significantly better results compared to other
dimensionality reduction methods. The accuracy of the proposed

TABLE 7 Details of ablation experiment results.

SAE NMF PCA CAEM

BRCA Accuracy 82.2 Accuracy 83.5 Accuracy 83.4 Accuracy 95.0

Precision 48.1 Precision 62.1 Precision 60.9 Precision 97.6

Recall 50.0 Recall 60.0 Recall 55.0 Recall 88.9

F1 score 49.0 F1 score 61.0 F1 score 57.8 F1 score 93.0

Time 1.63s Time 620.95s Time 2.29s Time 1.96s

Memory 866.5M Memory 479.8M Memory 180.3M Memory 0.98G

GBM Accuracy 86.0 Accuracy 87.6 Accuracy 86.8 Accuracy 91.2

Precision 58.7 Precision 70.1 Precision 69.2 Precision 91.0

Recall 60.4 Recall 68.8 Recall 65.3 Recall 90.6

F1 score 59.5 F1 score 69.4 F1 score 67.2 F1 score 90.8

Time 1.55s Time 193.7s Time 2.22s Time 2.32s

Memory 568.3M Memory 439.4M Memory 396.2M Memory 439.5M

Bold values represent the best values.
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CAEM dimensionality reduction method is significantly higher than
the other three methods. In BRCA dataset, CAEM’s accuracy is
notably higher than other dimensionality reduction methods,
reaching 95.0%. Similarly, CAEM performs exceptionally well on
the GBM dataset. Therefore, this demonstrates the superiority of
CAEM for dimensionality reduction. In terms of learning features
and achieving dimensionality reduction, CAEM demonstrates the
best performance, followed by SAE, NMF, and PCA. The deep
learning CAEM dimensionality reduction method can effectively
integrate multiple omics data, which will be beneficial for the
classification of cancer subtypes.

3.5 Comparison experiment with
other models

To demonstrate the performance of GBDT, this study employs
four different classification models as the final classifiers. The low-
dimensional data representation processed by the CAEM module is
used as input for each of the four classifiers, with accuracy serving as
the evaluation metric.

Furthermore, CAEM-GBDT compared its classification accuracy
with other methods, namely, the HI-DFN forest method, which is
compatible with multi-omics data as model input, and the DCGN

TABLE 8 Comparison of classifier and other model experimental Results (BRCA).

Datasets BRCA

Gene Expression DNA methylation miRNA
Expression

multi-omics

CAEM + KNN Accuracy 70.6 Accuracy 70.6 Accuracy 76.5 Accuracy 82.4

Precision 43.3 Precision 37.5 Precision 46.2 Precision 48.0

Recall 35.4 Recall 45.8 Recall 47.9 Recall 50.0

F1 score 39.0 F1 score 41.2 F1 score 47.0 F1 score 49.0

CAEM + SVM Accuracy 76.5 Accuracy 70.6 Accuracy 76.5 Accuracy 81.6

Precision 45.8 Precision 45.0 Precision 37.1 Precision 46.0

Recall 45.8 Recall 37.5 Recall 43.8 Recall 50.0

F1 score 45.8 F1 score 40.9 F1 score 40.2 F1 score 47.9

CAEM + RF Accuracy 76.5 Accuracy 64.7 Accuracy 82.4 Accuracy 82.4

Precision 37.8 Precision 43.8 Precision 47.7 Precision 47.9

Recall 47.9 Recall 37.5 Recall 45.8 Recall 47.9

F1 score 42.3 F1 score 40.4 F1 score 46.7 F1 score 47.9

CAEM
+GC forest

Accuracy 82.4 Accuracy 76.5 Accuracy 82.4 Accuracy 84.2

Precision 46.4 Precision 48.1 Precision 44.6 Precision 47.7

Recall 50.0 Recall 37.5 Recall 47.9 Recall 58.3

F1 score 48.1 F1 score 42.1 F1 score 46.2 F1 score 52.5

HI-DFN forest Accuracy 80.8 Accuracy 73.1 Accuracy 76.9 Accuracy 84.6

\ \ \ \

\ \ \ \

\ \ \ \

DCGN Accuracy 86.8 \ \ \

Precision 83.3 \ \ \

Recall 66.7 \ \ \

F1 score 74.1 \ \ \

GBDT Accuracy 94.1 Accuracy 82.4 Accuracy 88.2 Accuracy 95.0

Precision 98.1 Precision 46.4 Precision 71.4 Precision 97.6

Recall 87.5 Recall 50.0 Recall 62.5 Recall 88.9

F1 score 92.5 F1 score 48.1 F1 score 66.7 F1 score 93.0

Bold values represent the best values.
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(Shen et al., 2022) method, which is not compatible with multi-omics
data as input. In this paper, We evaluated the performance of these two
methods as well as four classifiers using the same dataset, and the
experimental results are shown in Tables 8, 9.

As shown in Tables 8, 9, it is evident that GBDT outperforms
other classifiers. In the BRCA dataset shown in Table 6, the
accuracy of GBDT using multi-omics data is 95.0%, whereas
KNN is 82.4%, SVM is 81.6%, RF is 82.4%, and GC forest is
84.2%. Similarly, in Table 7, the best-performing model in the
GBM dataset is also GBDT, particularly achieving an accuracy of
91.2% on multi-omics data, significantly surpassing other

classifiers. Therefore, GBDT is selected as the final classifier
module in the model.

First, regarding single-omics data, CAEM-GBDT achieves high
accuracy across all three omics data types in both datasets.
Particularly in the BRCA dataset, whether using single-omics or
multi-omics data, CAEM-GBDT improves accuracy by nearly 10%
compared to other methods. Meanwhile, the F1 score is also far
higher than other methods, demonstrating CAEM-GBDT’s robust
performance. In the GBM dataset, CAEM-GBDT also shows
improvements over existing methods, especially in DNA
methylation data, where the accuracy improvement reaches 8.1%.

TABLE 9 Comparison of classifier and other model experimental Results (GBM).

Datasets GBM

Gene Expression DNA methylation miRNA
Expression

multi-omics

CAEM + KNN Accuracy 67.7 Accuracy 47.0 Accuracy 54.3 Accuracy 70.4

Precision 72.8 Precision 42.0 Precision 53.6 Precision 75.0

Recall 66.7 Recall 42.7 Recall 53.1 Recall 67.7

F1 score 69.6 F1 score 42.3 F1 score 53.3 F1 score 71.2

CAEM + SVM Accuracy 83.5 Accuracy 50.0 Accuracy 52.9 Accuracy 84.8

Precision 82.3 Precision 51.9 Precision 51.3 Precision 82.9

Recall 80.2 Recall 50.0 Recall 52.1 Recall 83.3

F1 score 81.2 F1 score 50.9 F1 score 51.7 F1 score 83.1

CAEM + RF Accuracy 83.0 Accuracy 57.2 Accuracy 48.9 Accuracy 84.5

Precision 79.6 Precision 52.7 Precision 46.3 Precision 83.1

Recall 77.1 Recall 57.3 Recall 46.9 Recall 82.3

F1 score 78.3 F1 score 54.9 F1 score 46.6 F1 score 82.7

CAEM
+GC forest

Accuracy 86.0 Accuracy 59.2 Accuracy 56.7 Accuracy 87.6

Precision 85.8 Precision 55.0 Precision 54.7 Precision 85.0

Recall 86.5 Recall 56.3 Recall 58.3 Recall 85.4

F1 score 86.1 F1 score 55.6 F1 score 56.4 F1 score 85.2

HI-DFN forest Accuracy 86.5 Accuracy 59.6 Accuracy 53.9 Accuracy 88.5

\ \ \ \

\ \ \ \

\ \ \ \

DCGN Accuracy 85.9 \ \ \

Precision 82.5 \ \ \

Recall 90.0 \ \ \

F1 score 86.1 \ \ \

GBDT Accuracy 88.2 Accuracy 67.7 Accuracy 61.8 Accuracy 91.2

Precision 87.6 Precision 66.6 Precision 54.1 Precision 91.0

Recall 88.5 Recall 66.7 Recall 57.3 Recall 90.6

F1 score 88.0 F1 score 66.6 F1 score 55.7 F1 score 90.8

Bold values represent the best values.
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In comparison with the HI-DFN forest model, the results of the
model were provided by their paper, so evaluation indicators such as
F1 scores were not obtained. CAEM-GBDT exhibited high accuracy
in all aspects, especially on the multi-omics data of the BRCA
dataset, where the accuracy reaches 95%, nearly 10% higher than
the HI-DFN forest. In comparison with the DCGN method, DCGN
is a cancer subtype identification method exclusively designed for
gene expression data. This method exhibits good accuracy and
stability in gene expression datasets but cannot handle multi-
omics data or other omics data as input. Whether using single-
omics data or multi-omics fused data, CAEM-GBDT demonstrates
superior performance and better robustness.

From the overall trend in the tables, it can be observed that when the
model uses single-omics data as input, the accuracy and F1 score are not
as high as those with multi-omics data. Although the accuracy on gene
expression data in the BRCA dataset reaches 94.1%, it still improves to
95% when combined with the other two omics data types. This
phenomenon is particularly evident in the GBM dataset, where the
accuracies of gene expression data, DNAmethylation data, and miRNA
expression data are 88.2%, 67.7%, and 61.8% respectively. Each omics
data type alone has low accuracy, but when combined, the accuracy
reaches 91.2%. This demonstrates the impact of multi-omics data on
cancer subtype identification results. This trend is not only observed in
CAEM-GBDT but also in other models. Therefore, it can be concluded
that multi-omics data, compared to single-omics data, enables themodel
to learn complementary information between omics data, achieving
higher accuracy and F1 scores for cancer subtype identification.
Moreover, the results are more convincing as they integrate various
omics data, benefiting cancer subtype identification.

4 Discussion

With the advancement of sequencing technologies, integrating
multi-omics data for cancer subtype identification is a major
challenge faced by researchers. This paper proposes a cancer
subtype classification method, named-GBDT, based on
Convolutional Autoencoder and Convolutional Attention. It aims
to accurately extract crucial information contained in complex
multi-omics data. The Convolutional Attention Mechanism is
employed to further enhance features in the high-level
representation, enabling the classifier to more effectively identify
important hidden information in the data and perform cancer
subtype classification. Compared to other deep learning methods
published at the current stage, CAEM-GBDT has the following
characteristics:1. CAEM-GBDT designs different encoder networks
for different data settings. It can handle individual omics data as well
as fuse multiple omics data as input to the model, achieving high
accuracy in both scenarios.2. CAEM-GBDT attempts to learn
relationships between multiple omics data, fully leveraging multi-
omics information among samples. This enhances the model’s
robustness, making the identification results more convincing.

This paper conducted encoder network ablation experiments,
dimensionality reduction method comparison experiments,
classifier comparison experiments, and comparative experiments
with the HI-DFN forest model, demonstrating the powerful
capabilities of CAEM-GBDT. Experimental results indicate that
the fusion of multi-omics data is effective and necessary. Multi-

omics data describe the data from different perspectives, providing
the model with more stable performance and enhanced robustness.

Although CAEM-GBDT has demonstrated promising results on
the BRCA and GBM datasets, there are still some limitations. CAEM-
GBDT is tailored specifically for supervised learning in classification. In
the research on unsupervised learning and clustering methods, CAEM-
GBDT’s performance is not as satisfactory. Therefore, addressing this
limitation will be a key focus of our next research steps.

5 Conclusion

This paper proposes a cancer subtype classification method,
CAEM-GBDT, based on Convolutional Autoencoder and
Convolutional Attention Mechanism. The integration of multiple
omics data improves the accuracy of cancer subtype classification.
Addressing the challenges posed by high-dimensional and sparse
biological datasets, this approach combines Convolutional
Autoencoder (CAE) and Convolutional Block Attention Module
(CBAM) to obtain effective data representations from cancer data.
The results on two TCGA datasets demonstrate that CAEM-GBDT
outperforms other methods, showing its superior performance.
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