
The quantum hypercube as a
k-mer graph

Gustavo Becerra-Gavino* and Liliana Ibeth Barbosa-Santillan

Doctorado en Technologías de Información, Universidad de Guadalajara, Centro Universitario de
Ciencias Económicas Administrativas, Zapopan, Jalisco, Mexico

The application of quantum principles in computing has garnered interest since
the 1980s. Today, this concept is not only theoretical, but we have the means to
design and execute techniques that leverage the quantum principles to perform
calculations. The emergence of the quantum walk search technique
exemplifies the practical application of quantum concepts and their
potential to revolutionize information technologies. It promises to be
versatile and may be applied to various problems. For example, the coined
quantum walk search allows for identifying a marked item in a combinatorial
search space, such as the quantum hypercube. The quantum hypercube
organizes the qubits such that the qubit states represent the vertices and
the edges represent the transitions to the states differing by one qubit state. It
offers a novel framework to represent k-mer graphs in the quantum realm.
Thus, the quantum hypercube facilitates the exploitation of parallelism, which
is made possible through superposition and entanglement to search for a
marked k-mer. However, as found in the analysis of the results, the search is
only sometimes successful in hitting the target. Thus, through a meticulous
examination of the quantum walk search circuit outcomes, evaluating what
input-target combinations are useful, and a visionary exploration of DNA
k-mer search, this paper opens the door to innovative possibilities, laying
down the groundwork for further research to bridge the gap between
theoretical conjecture in quantum computing and a tangible impact in
bioinformatics.

KEYWORDS

k-mer graph, coined quantum walk, quantum search, quantum computing with python,
qiskit, quantum register initialization

1 Introduction

This paper embarks on a journey through quantum computing basics, providing
readers with a foundational understanding of quantum mechanics, qubits, and quantum
algorithms. It then delves into quantum software stacks, elucidating the essential tools,
programming languages, and development environments that drive quantum computing’s
practical applications. Moving forward, it explores the coined quantum walk search,
unraveling the intricate algorithm’s potential applications in fields such as
combinatorial problems. Shifting gears, the paper investigates DNA 2-bit Encoding, a
cutting-edge approach to data storage, and discusses the practical implications and
prospects of this novel technology. Lastly, it presents a technique to input DNA
patterns into a quantum register to execute a coined quantum walk search for DNA
pattern matching. It highlights the unique research objectives, methodologies, and results at
this paper’s heart, promising to contribute to the ongoing dialogue in these exciting fields.

OPEN ACCESS

EDITED BY

Lei Wang,
Guangxi Academy of Sciences, China

REVIEWED BY

Meineng Wang,
Yichun University, China
Hasan Zulfiqar,
University of Electronic Science and
Technology of China, China

*CORRESPONDENCE

Gustavo Becerra-Gavino,
gustavo.becerra5666@alumnos.udg.mx

RECEIVED 14 March 2024
ACCEPTED 19 June 2024
PUBLISHED 12 September 2024

CITATION

Becerra-Gavino G and Barbosa-Santillan LI
(2024), The quantum hypercube as a k-
mer graph.
Front. Bioinform. 4:1401223.
doi: 10.3389/fbinf.2024.1401223

COPYRIGHT

© 2024 Becerra-Gavino and Barbosa-Santillan.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Original Research
PUBLISHED 12 September 2024
DOI 10.3389/fbinf.2024.1401223

https://www.frontiersin.org/articles/10.3389/fbinf.2024.1401223/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1401223/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2024.1401223&domain=pdf&date_stamp=2024-09-12
mailto:gustavo.becerra5666@alumnos.udg.mx
mailto:gustavo.becerra5666@alumnos.udg.mx
https://doi.org/10.3389/fbinf.2024.1401223
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2024.1401223

1.1 DNA 2bit encoding

The DNA genetic code is based on the monomer nucleotides
{T, C, A, G}. From the point of view of information, this set is, in fact,
a 4-symbol alphabet, and it is representable by 2 bits in a binary
number system (Nemzer, 2017). One possible mapping to represent
genetic code in binary format is {T ↔ 00, C ↔ 01, A ↔ 10,
G ↔ 11}. This mapping is used in the .2bit file format, 2bit, to
encode DNA sequences is used in the current work.

1.2 K-mer sequencing

In dealing with comparisons and searching, a technique used in
genomics to analyze DNA data breaks down DNA sequences in
fragments of k-lenght of monomers (Langmead, 2016). These
fragments are named according to the number of monomers in
the fragment. If the number of monomers k is 1, the k-mer is called a
1-mer. If the number of monomers k is 2, the k-mer is called a 2-mer,
and so forth. Examples of 2-mer DNA fragments are CA and GC.

1.3 Quantum computing basics

While the concepts in quantummechanics have been around for
about a century (Born, 1926), it was in the 1980s that those concepts
were theorized as options in the computer science disciplines
(Benioff, 1982). Applying these quantum mechanics principles to
computing is now known as quantum computing (Steane, 1998).
Over the years, quantum computing has evolved from a theoretical
hypothesis into a tangible reality. In the contemporary landscape of
technological advancement, the theoretical underpinnings of
quantum computing have transformed into practical
methodologies that allow us to execute techniques reliant on
quantum principles for complex computations.

The basic unit of information in quantum computing is the
qubit (Schumacher, 1995). While a binary bit can only be in a state
of 0 or 1, the qubit has the property that it can be in a combined
state of |0〉 or |1〉 (read ket 0 or ket 1). This property is called
superposition. The wave function in Equation 1 expresses the
general qubit state, |ψ〉. The qubit state notation is taken from
the Dirac bra-ket notation (Dirac, 1939).

|ψ〉 � α|0〉 + β|1〉, where |0〉 � 1
0

[], and 1| 〉 � 0
1

[] (1)

One fundamental difference between a binary computer and a
quantum computer is thatmeasuring the binary bit state does not alter
its state, whereas in quantum computing, measuring a qubit collapses
it into a pure state |0〉 or |1〉. The probability that a qubit will collapse
into a |0〉 or |1〉 is given by Equation 2 where α and β are complex
numbers capturing the amplitudes of the state in Equation 1.

|α|2 + |β|2 � 1 (2)

Qubits perform calculations using quantum gates or operators
to manipulate the qubit states. One such gate is the Pauli-X gate,

represented by the symbol (Nielsen and Chuang, 2000). This

gate has the property of flipping the qubit state. If the qubit is in a |0〉
state the new state becomes |1〉 and vice versa. The transformation
matrix in Equation 3 defines the Pauli-X gate.

(3)

The gate is a unitary operator; it is reversible. It is also
applied to only one qubit. Other gates may be applied to a set of
qubits. For instance, the CNOT gate defined in Equation 4 is one of
the gates used to entangle two qubits (Hughes et al., 2021). The first
is the control qubit; the other is the target qubit. With this gate, the
qubits are set to interact between them.

(4)

With both superposition and entanglement, qubit interference
may be leveraged to perform computation. Since the qubit status is
based on the quantum wave function, when two different qubits are
entangled and subject to operators, their amplitudes will interact
constructively or destructively. This phenomenon allows for
computations beyond the capability of binary computing.

1.4 Quantum software stacks

Since the conception of the quantum computing concept,
human ingenuity has been at work to explore the potential of
this new computing paradigm. Quantum computing may
increase cybersecurity (Bova et al., 2021), or break widely used
cybersecurity technologies such as public key cryptography
(Mavroeidis et al., 2018). It also may be used to speed up
searching for a marked item in unstructured data through a
quantum search. Since quantum computing has a promising
outlook, companies worldwide are interested in facilitating quantum
computing for research and commercial use through Quantum
Software Stacks (QSS) (Wang et al., 2021). Google provides Cirq,
Rigetti PyQuil, and IBM provides the Qiskit. The current work was
researched, developed, and executed using IBM’s Qiskit QSS.

1.5 IBM quantum platform

The IBM Quantum Platform, formerly known as the IBM
Quantum Experience (Cross, 2018), is an open platform intended
to ease the work of designing, developing, and running quantum
circuits. Anyone interested may create these circuits through the
Quantum Composer (Lehka et al., 2022), a cloud-based visual
development environment. They also may be written in
OpenQASM (Cross et al., 2017), an assembly-like computer
language. Another familiar option is to write the quantum
circuits using Python programming with the Qiskit (Qiskit
contributors, 2023), modules installed. Qiskit allows for different
quantum system backends to be used, both simulators and actual

Frontiers in Bioinformatics frontiersin.org02

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

quantum processors with limited access. In addition, educational
materials, such as the Qiskit Textbook (various authors, 2023),
demonstrate tools available to create quantum algorithms. In this

book, the coined quantum walk search algorithm (Wanzambi and
Andersson, 2021), is implemented to search for a marked node in a
tesseract, a hypercube with four dimensions as shown in Figure 1.
This tesseract is built within the QuantumCircuit instance pointed
by the circuit variable with the following Python code:

Shift operator function for 4d-hypercube

def shift_operator(circuit):

for i in range (0,4):

circuit.x(4)

if i%2��0:
circuit.x(5)

circuit.ccx(4,5,i)

This qubit arrangement allows us to represent the 24 vertices in
the hypercube with only four qubits. This is, in fact, an exponential
information density.

1.6 The coined quantum walk search

The coined quantum walk search is a search algorithm targeted at
unstructured databases. This search algorithm employs a quantum
version of classical random walks executed on Markov chains
(Shenvi et al., 2003; Boettcher et al., 2015). In the quantum version
of the random walk, the walker evaluates several paths on the graph
simultaneously through the superposition of states of the coin operator.
The shift operator then takes the step influenced by the coin state. The
phase estimation serves as the state evaluation tool to determine if a state
is the search target. The coin is a set of qubits used to evaluate the
walker’s next step. The coined quantumwalk search demonstrated in the
Qiskit textbook in chapter 3.10 uses 11 qubits. Four are used as the theta

FIGURE 1
Hypercube with 4-bit nodes.

FIGURE 2
IBM Quantum Platform Register with the initialization string
01001100010 applied.

FIGURE 3
Hypercube with 2-mer DNA pattern nodes.

Frontiers in Bioinformatics frontiersin.org03

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

qubits for phase estimation, four for the tesseract nodes, two for the
Grover’s coin, and one as an auxiliary (ancilla) qubit.

The coined quantum walk search stands out as a particularly
promising paradigm. It holds the potential to transcend its
theoretical origins and address an extensive array of problems,
spanning an impressive spectrum of applications. Among these
applications are solutions to combinatorial (Bova et al., 2021),
problems where the search space is all the combinations of a finite
set of symbols. DNA pattern matching belongs to this type of
problem. In bioinformatics, DNA pattern matching and
prediction plays such an important role that brilliant minds
have designed practical algorithms to leverage traditional
computing (Rahate and Chandak, 2018; Neamatollahi et al.,
2020); and even advanced deep learning model techniques such
as the Convolution Autoencoder (Guo et al., 2024). Poising our
attention towards quantum computing, the quantum hypercube,
with its exponential information density, also enables the prospect
to execute the coined quantum walk search for a marked state.

1.7 The quantum hypercube as a
K-mer graph

The current work researches a technique to encode DNA
information to input it to a quantum computer and provide a target
k-mer in the quantum hypercube search space for a coined quantum
walk search algorithm to find. The coined quantum walk search is
executedwith each of the 16 possible combinations as a starting node. In
addition, the 11-qubit quantum register is tested with all the possible
initialization states. Each initialization state is executed with each of the
16 possible target nodes. The results generated are analyzed to provide
insights into the effects of initializing the 11-qubit quantum register on
the execution of the coined quantum walk search. The information is
useful for peeking into the possibilities of leveraging the quantum
hypercube as a k-mer graph to perform DNA pattern matching.

2 Materials and methods

2.1 Development platform

The IBM Quantum Software Platform facilitates the use
of a quantum computer through the use of Python modules.
These modules implement potent methods to build up
and execute quantum circuits. The two packages used for
the experiments in this research are the qiskit �� 0.39.0
and qiskit_ibm_provider �� 0.2.0. Specifying these packages
to be installed through the pip package manager also
installs other packages as dependencies. Another
advantage of using the Qiskit framework is that the
circuits created will run as long as a compatible backend
is available.

2.2 Loading DNA binary data into a
quantum circuit

When using the Qiskit QSS, a QuantumCircuit instance is
initialized to a |0〉 state by default. However, the Qiskit
QuantumCircuit Python class allows for each qubit in instances
of n-qubits to be initialized to a target state of |0〉 or |1〉 by passing a
string of n-length of 0’s and 1’s as a parameter. The right-most
character is applied to the first qubit from top to bottom, following a
right-to-left and top-to-bottom order. This simplified initialization
method is more familiar to classical programmers since this
initialization string is, in fact, a binary string. For an 11-qubit
circuit, an initialization string may take the form “01001100010”.
When the method to initialize a quantum circuit object is
called, the circuit is modified by adding gates to rotate
the qubits from a |0〉 state to a |1〉 state to achieve the desired
circuit state.

FIGURE 4
Complete Coined Quantum Walk Circuit with the CA DNA pattern provided as the initialization node and the node GC as a marked pattern.

Frontiers in Bioinformatics frontiersin.org04

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

The corresponding Python code with the modules installed and
imported into the program is:

...

from qiskit import QuantumCircuit, execute,

Aer, IBMQ, QuantumRegister, ClassicalRegister

...

circuit.initialize(“01001100010”,

circuit.qubits)

...

After calling the circuit. initialize method, the circuit is
modified to set the quantum register into the specified state
before executing the circuit. Thus, applying “01001100010” as
the circuit initialization string to the coined quantum walk
modifies the beginning of the circuit as illustrated in Figure 2.

The and symbols in Figure 2 are not quantum gates.
These two symbols illustrate how the quantum circuit is initialized to
a desired tesseract node and what that node “0110” represents in a
.2bit mapping for DNA sequences. Notice that the encoding is
mapped from left to right to stay consistent with the Qiskit
QuantumCircuit initialization string pattern.

2.3 The DNA hypercube space

After the initialization method is called, the coined quantum walk
implementation presented in the Qiskit Textbook is used to find the
marked node in a hypercube with 4-bit vertices. These 4 bits represent
two-letter DNA patterns, also called 2-mer substrings. This way, the
hypercube in Figure 1 becomes the hypercube in Figure 3.

2.4 The coined quantum walk search circuit

The coined quantum walk implementation has three parts: A set
of Hadamard gates applied to the node and coin qubits to set them
into a superposition state; the phase oracle, where the target state is
marked; and the phase estimation. The phase oracle and the phase
estimation sectionsmay be repeated as many times as desired. The last
step is measuring the states of the tesseract nodes, which collapses the
quantum circuit into a binary state. Figure 4 illustrates the complete
quantum walk search algorithm. The entire circuit was implemented
and executed using the Python programming language.

The mark section in the QuantumCircuit object, circuit, is
implemented with the Python snippet:

Mark the target pattern within the circuit

def mark(self, circuit, target):

for i in range (len(target) − 1, −1, −1):

if ‘0’ � � target[i] :
circuit.x(len(target) − 1 − i)

circuit.h(3)

circuit.mct([0,1,2], 3)

circuit.h(3)

for i in range(0, (len(target)):

if ‘0’ �� target[i] :
circuit.x (len(target) − 1 − i)T

A
B
LE

1
S
am

p
le

o
u
tp
u
t
d
at
a
lin

e
w
it
h
th
e
in
it
ia
liz

at
io
n
st
ri
n
g
se
t
to

“0
0
0
0
0
0
0
0
0
0
0
”
an

d
th
e
m
ar
k
se
t
to

“0
0
0
0
”.

A
u
x

C
o
in

N
o
d
e

T
h
e
ta

M
ar
k

0
0
0
0

0
0
0
1

0
0
10

0
0
11

0
10

0
0
10

1
0
11
0

0
11
1

10
0
0

10
0
1

10
10

10
11

11
0
0

11
0
1

11
10

11
11

0
00

00
00

00
00

00
00

90
4

5
10

10
8

3
9

13
7

8
5

14
9

5
7

7

Frontiers in Bioinformatics frontiersin.org05

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

TABLE 2 Number of hits for each vertex out of 1024 shots taken for the initialization string “00000000000”.

Aux Coin Node Theta Mark 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 00 0000 0000 0000 904 5 10 10 8 3 9 13 7 8 5 14 9 5 7 7

0 00 0000 0000 0001 3 907 7 6 9 10 5 12 7 7 8 7 7 12 12 5

0 00 0000 0000 0010 5 6 910 6 7 6 6 8 10 9 9 9 7 8 11 7

0 00 0000 0000 0011 7 5 9 911 2 9 8 9 8 5 6 10 7 8 10 10

0 00 0000 0000 0100 14 8 12 9 880 10 6 4 8 13 19 9 8 8 8 8

0 00 0000 0000 0101 7 7 4 7 7 920 8 6 8 6 11 4 3 6 12 8

0 00 0000 0000 0110 5 5 4 11 7 8 919 5 6 17 8 6 6 3 5 9

0 00 0000 0000 0111 10 3 12 13 9 13 9 898 8 7 11 7 2 5 9 8

0 00 0000 0000 1000 5 4 4 5 5 7 8 8 923 10 5 8 13 9 4 6

0 00 0000 0000 1001 5 1 11 4 7 7 13 6 8 922 9 3 8 8 8 4

0 00 0000 0000 1010 5 6 11 14 14 9 5 7 12 5 908 6 7 3 3 9

0 00 0000 0000 1011 12 9 12 7 6 10 13 11 9 8 9 893 12 3 2 8

0 00 0000 0000 1100 6 16 6 14 8 4 5 12 7 12 8 9 900 5 6 6

0 00 0000 0000 1101 4 8 11 6 7 8 10 8 6 7 13 9 11 897 11 8

0 00 0000 0000 1110 8 9 5 9 7 4 4 5 10 4 7 12 12 7 910 11

0 00 0000 0000 1111 12 5 7 10 7 8 4 4 8 6 5 6 15 2 9 916

Fro
n
tie

rs
in

B
io
in
fo
rm

atics
fro

n
tie

rsin
.o
rg

0
6

B
e
ce

rra-G
avin

o
an

d
B
arb

o
sa-San

tillan
10

.3
3
8
9
/fb

in
f.2

0
2
4
.14

0
12

2
3

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

To cover all the 32768 possible input-mark, the circuit
illustrated in Figure 4 was executed through a Python
program. This Python program ran each execution with
1024 shots. The reader can find this Python program in the
Supplementary Materials section.

2.5 Supplementary Materials

The data used in this study and its original program are available
in GitHub at: https://github.com/dti-data/quantum-k-mer-graph.

3 Experiments and results

Each combination of input-mark outputs a line of data. Since the
15 bits (11 for the quantum hypercube, four for the mark) have 215

combinations, the data collected is 32768 lines of data. Each one of
those lines is a distribution of 1024 shots spread across the
16 possible states for the 2-mer qubits when the QuantumCircuit
object is measured. An example of a line of output data is Table 1.

For ease of reading, this initialization string is separated into the
values used for the different quantum registers: Auxiliary (1), Coin
(2), Node (4), and Theta (4). The “mark” column contains the binary
values provided to the oracle as marks. The remaining 16 columns
contain the frequency for each state measured at the Node register
when the quantum circuit collapses.

The expected result is for the quantum walk search to hit the
marked state regardless of the initialization state. Table 2 presents
the number of hits for each node state when the QauntumCircuit
four is initialized to the string “00000000000” and executed
with 1024 shots.

Notably, the number of hits for each marked state is not 1024.
Indeed, the quantum walk search circuit sometimes collapses to a
state other than the marked state. This effect is intrinsic to quantum
computing (Brassard et al., 1998). The gates applied to the qubits
introduce the probability that the system will collapse into the wrong
answer. Although theoretically possible, as the quantum circuits
grow larger and involve more qubits, calculating the probability that
a quantum circuit will collapse to a particular state becomes
prohibitively complex. However, we can still shed light on the
effects of an initialization state on a quantum circuit. Since the
number of shots is known, Shots = 1024, and the Accuracy is directly
proportional to the number of Hits for the mark when the quantum
circuit is executed, the Accuracy comes to be Accuracy � Hits

Shots.
Table 3 shows the Accuracy for each marked state with the
initialization string “00000000000”.

In addition, since in quantum computing, the results are based
on the probability that a circuit will collapse into a binary state for
the measured qubits, the result may vary between circuit executions.
One way to measure the expected variation for executions of the

TABLE 3 Accuracy when executing the coined quantumwalk wearch circuit
with initialization string “00000000000” applied.

Mark Accuracy

0000 0.86816

0001 0.87011

0010 0.87695

0011 0.88085

0100 0.89746

0101 0.89843

0110 0.90625

0111 0.85937

1000 0.88476

1001 0.89843

1010 0.86132

1011 0.88183

1100 0.88671

1101 0.89062

1110 0.88085

1111 0.84960

FIGURE 5
Hit differences used to determine the effect of setting the auxiliary bit to |0〉 or |1〉. (A) Run hit differences. (B) Cumulative run hit differences.

Frontiers in Bioinformatics frontiersin.org07

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://github.com/dti-data/quantum-k-mer-graph
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

same circuit using a particular backend platform is to calculate the
difference in hits for each state from different executions for the
exact initialization string. This is the technique used in this research
to determine if setting the auxiliary qubit to a |0〉 or |1〉 state using
the initialization string affects the execution of quantum circuit. The
results obtained are summarized in Figure 5. Figure 5A is a set of six
histograms placed on the same graph to compare the differences
between state hits when setting the auxiliary qubit to a |0〉 or |1〉
state in the initialization string and using that string with each of the
16 possible target states.

The differences and similarities in the hit difference distribution
are readily apparent. The six distributions follow a similar skewed
right distribution with slight variations, which are accounted for by
the random nature of quantum computing. Figure 5B shows the
cumulative distributions. This set of graphs presents the maximum
difference for each distribution. Given that all the graphs display
similar skewed right distributions and the mode is calculated to be
1.5 for every one of them, the conclusion is that the samples are
equivalent, and, therefore, initializing the auxiliary qubit to 0 or one
does not have an effect on the results when executing the quantum
coined search circuit.

Since the tesseract used for the coined quantum walk contains
16 nodes, each of which may be used as a target, each unique
initialization string is used 16 times in this experiment. In addition,
each execution of the quantum circuit using a particular
initialization string is a 1024-size sample since the circuit

execution is set to attempt 1024 shots. Also, each shot is an
independent event. Therefore, calculating the standard
deviation, denoted as σ, for the results obtained using an
initialization string produces information that sheds light on
the usability of each initialization string. Figure 6 presents the
distribution of standard deviation values for the distribution of hits
for the collapsed states.

The standard deviation measures how close the number of hits
for a state is to the expected value of 64 hits (1024 shots/16 possible
states). The smaller the value of σ for the hit distribution, the closer
each state gets to getting 64 hits. Therefore, it also measures how
random the circuit produces the hits for a given initialization string.
As σ increases, the hit distribution is skewed into a few states. This
means that the greater the standard deviation for the results for a
given initialization string is, the better defined a pattern within
the results is.

Classifying the initialization strings based on the standard
deviation values aids in visualizing the patterns for the hit
distributions. To leverage this analysis technique, let us define six
arbitrary categories such that σ takes the values as shown in Table 4.

The set of Figure 7 displays the six resulting hit distributions
with the limits for σ defined in Table 4.

The standard deviation, σ, for the string “00000000001” results
is 28.53, which places it into the Weak category. However, finding a
marked state is an interpretation exercise. An interpreter may use
the fact that the marked state is being avoided since it gets fewer hits
than the rest to find the marked item. In addition, although the
standard deviation for the hit distribution for this string is low, the
accuracy for finding the marked state trough avoidance would be
much higher.

The results for “00000110010” have a standard deviation of
49.26 which belongs to the Complex category.

4 Discussion

Quantum computing is a relatively new but rapidly evolving
field. Currently, the manipulation of quantum circuits is done at the

FIGURE 6
Standard deviation distributions plotted as a histogram along with arbitrary limits to organize the results for initialization string according to how
randomized the results are.

TABLE 4 Hit distribution categories based on the standard deviation
calculated for the hit distribution for each initialization string.

Random: σ < 14.7 Normal distribution, mode near the expected value, 64.

Emerging: 14.7 ≤ σ < 21.0 Single modal distribution, mode diverts from 64.

Weak: 21.0 ≤ σ < 40.0 Multimodal distribution, patterns are discernible.

Complex: 40.0 ≤ σ < 50.0 Multimodal Patterns are readily distinguished.

Clear: 50.0 ≤ σ < 80.0 Multimodal with nearly disconnected modes.

Strong: 80.0 ≤ σ The distribution is bimodal with disconnected modes.

Frontiers in Bioinformatics frontiersin.org08

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

gate level. This activity requires detailed knowledge of quantum
computing. While efforts are underway to ease the expertise
requirements through software stacks, executing quantum circuits
may not produce the expected results. Take, for instance, the
experiments performed in this research. Although the inputs and
marks were applied to the circuit using the same techniques, the
results are inconsistent. This finding prompts us to dissect the
quantum circuit and analyze what happens deeper into the different
execution levels to leverage those phenomena and the information
density from the quantum hypercube to implement faster k-mer
searching techniques. The effort to organize and summarize the data
in the categories presented in Table 4, is to reference the outcomes and
focus further research, beyond the scope of the current work, on the
different behaviors prompted by the inputs.

One of the surprising outcomes of the experiments was that only
four initialization strings produced a “Strong” output pattern using
the coined quantum walk as is. This outcome is the expected
behavior. The marked k-mer in the hypercube is hit the most
times. Those four initialization strings are: “00000000000”,
“00011110001”, “10000000000”, “10011110001”. The bit in
position 10 is loaded into the auxiliary qubit which has no effect.
Therefore, the set is reduced to “0000000000”, and “0011110001”.

Another finding is that While the quantum circuits, when
implemented with superposition, may leverage the parallel
processing of a quantum device, changing even the initial state of
a qubit may change the quantum circuit behavior so dramatically
that whenmeasured, it collapses to a random state. This is the output
of 1434 initialization strings with a hit distribution with a standard

FIGURE 7
Hit distributions for the categories in Table 4 based on the standard deviation of each execution with 1024 shots. (A) Random: σ < 14.7; (B) Emerging
14.7 ≤ σ < 21.0; (C) Weak: 21 ≤ σ < 40.0; (D) Complex: 40.0 ≤ σ < 50.0; (E) Clear: 50.0 ≤ σ < 80.0; (F) Strong: 80.0 ≤ σ.

Frontiers in Bioinformatics frontiersin.org09

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

TABLE 5 Results for executing the coined quantum walk search on a 2-mer hypercube with initialization string “00000000001”.

aux Coin Node Theta Mark 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 00 0000 0001 0000 6 97 85 38 91 40 42 75 92 40 42 89 57 93 94 43

0 00 0000 0001 0001 86 11 42 81 41 95 89 52 50 89 91 42 74 54 43 84

0 00 0000 0001 0010 97 28 6 99 30 80 86 33 39 89 104 55 79 50 51 98

0 00 0000 0001 0011 48 80 68 6 64 50 42 98 96 49 59 100 41 82 98 43

0 00 0000 0001 0100 82 29 43 93 7 91 89 42 45 99 89 42 83 40 50 100

0 00 0000 0001 0101 45 82 96 50 95 6 32 87 91 40 45 87 53 84 99 32

0 00 0000 0001 0110 43 118 90 42 93 35 7 100 74 49 46 88 33 83 77 46

0 00 0000 0001 0111 86 35 40 83 46 86 92 6 41 88 91 54 86 48 48 94

0 00 0000 0001 1000 97 50 42 83 44 83 81 48 6 78 100 38 87 40 50 97

0 00 0000 0001 1001 49 85 83 44 89 39 35 86 87 9 42 90 41 95 95 55

0 00 0000 0001 1010 43 81 89 36 103 54 48 78 81 38 6 97 42 93 91 44

0 00 0000 0001 1011 89 50 51 86 42 104 92 49 32 91 80 3 89 35 31 100

0 00 0000 0001 1100 49 77 87 50 106 29 54 74 107 40 44 90 2 83 93 39

0 00 0000 0001 1101 94 50 45 81 40 87 79 47 31 95 83 35 99 5 50 103

0 00 0000 0001 1110 82 51 44 85 39 88 80 36 46 91 92 42 79 54 8 107

0 00 0000 0001 1111 55 80 97 36 83 46 51 96 78 44 36 91 34 92 98 7

Fro
n
tie

rs
in

B
io
in
fo
rm

atics
fro

n
tie

rsin
.o
rg

10

B
e
ce

rra-G
avin

o
an

d
B
arb

o
sa-San

tillan
10

.3
3
8
9
/fb

in
f.2

0
2
4
.14

0
12

2
3

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

TABLE 6 Results for executing the coined quantum walk search on a 2-mer hypercube with initialization string “00000110010”.

aux Coin Node Theta Mark 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 00 0011 0010 0000 232 55 43 105 60 33 38 66 53 29 37 42 108 54 64 5

0 00 0011 0010 0001 42 226 123 49 31 50 52 37 42 50 59 37 57 107 4 58

0 00 0011 0010 0010 50 106 240 51 38 57 56 22 30 57 43 37 52 7 118 60

0 00 0011 0010 0011 115 56 57 233 65 30 31 39 57 44 28 49 7 48 56 109

0 00 0011 0010 0100 51 31 33 44 216 51 71 98 118 59 48 7 67 34 42 54

0 00 0011 0010 0101 28 55 62 33 55 234 110 53 63 103 3 54 30 43 54 44

0 00 0011 0010 0110 38 52 46 37 58 100 220 55 37 6 121 55 45 58 57 39

0 00 0011 0010 0111 48 41 30 56 97 64 52 246 1 72 44 102 52 38 33 48

0 00 0011 0010 1000 62 33 35 48 110 57 61 3 233 56 53 110 51 22 25 65

0 00 0011 0010 1001 37 47 63 41 73 107 4 56 50 214 102 53 45 59 43 30

0 00 0011 0010 1010 30 59 41 36 56 7 128 67 67 96 214 54 34 53 47 35

0 00 0011 0010 1011 46 32 31 51 5 64 35 125 122 53 52 218 52 40 42 56

0 00 0011 0010 1100 126 51 56 7 52 30 26 55 55 28 42 64 214 65 42 10011

0 00 0011 0010 1101 46 119 6 60 45 52 51 38 48 65 46 30 49 221 104 44

0 00 0011 0010 1110 45 6 116 47 29 71 45 37 36 58 58 28 62 109 213 64

0 00 0011 0010 1111 5 43 50 117 49 46 32 51 48 45 30 55 119 58 53 223

Fro
n
tie

rs
in

B
io
in
fo
rm

atics
fro

n
tie

rsin
.o
rg

11

B
e
ce

rra-G
avin

o
an

d
B
arb

o
sa-San

tillan
10

.3
3
8
9
/fb

in
f.2

0
2
4
.14

0
12

2
3

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

deviation less than 14.2; therefore, the results are “Random”,
Figure 7A. This count is already more than half of the possible
initialization strings.

The “Emerging” category is close to having a normal
distribution but with some distortions. Some states get hits that
diverge significantly from the expected value but more is needed to
establish a pattern.

The “Weak” patterns already show an accumulation of hits
around values other than 64. One feature in this category is that the
quantum search establishes a pattern on the marked state by hitting
it with the least frequency, as is the case with the initialization string
“00000000001” as shown in Table 5. This effect may be useful in
finding the marked state through avoidance since “finding” is an
interpretation exercise.

The “Clear” category displays hits consolidating on the marked
state, just as in the Strong category, but the hit count is far
from being 100%.

The category “Complex” is named as such based on the patterns
displayed on the hit distribution. The hits are accumulated around
the marked state, but the node with the binary inverse of the marked
state is also avoided. Even more, the circuit hits other states, forming
a complex pattern. As shown in Table 6.‘’ The input-mark
combinations in this category output are intriguing and may be
the subject of deeper studies.

The presented categories show that there is much to be
researched and developed for the coined quantum walk search
on a 2-mer quantum hypercube to be practical. In theory, the
quantum hypercube has an exponential information density. The
fact that a quantum N-dimensional hypercube can represent 2N

vertices with N qubits is awe-inspiring. This information density
is even more impressive when compared to the classical bits
necessary to define the vertices for an N-dimensional hypercube,
which are 2N*N. As technology allows for larger quantum
computers and quantum algorithm design becomes reusable,
developing techniques to exploit the features of a quantum
hypercube as a k-mer graph will become essential in our quest
to make sense of the vast information nature has in store for us.
While the outcomes produced in the experiments have little use
in practical applications, the discoveries made bring us closer to
applying quantum computing to bioinformatics.

5 Conclusion

Encoding binary data into a quantum computer is possible
through the initialization string and marking the desired
quantum states. Thus, it is possible to encode DNA sequences
into such a device. Once the hypercube is built with marked
DNA k-mer fragments, the coined quantum walk search is able
to return useful results on some instances. However, only some
initialization strings output useful repeatable patterns from which
information may be extracted.

One limitation of the coined quantum walk search on a 2-mer
hypercube is that it is not a universal search technique. The search
design has to be adapted to the specific input string. The wide
difference in results supports this assertion. Therefore, while a
quantum computer can represent an N-dimensional hypercube
with N qubits and exploit parallelism in searching, a substantial
limitation is that the circuit does not behave consistently for all
input-mark combinations.

Another limitation is that the k-mers in the hypercube are of fixed
length, in this research, 2-mer, as the hypercube was created. If a different
size of k-mer is required, a new hypercube needs to be constructed.

Since quantum computing is still a young field, much research is
being done to explore and demonstrate its usefulness. One possible
improvement beneficial for adopting this powerful paradigm is
developing high-level methods or functions that behave
consistently in the face of different inputs.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

GB-G: Conceptualization, Data curation, Formal Analysis,
Investigation, Software, Validation, Visualization, Writing–original
draft, Writing–review and editing. LB-S: Methodology, Supervision,
Writing–review and editing, Conceptualization.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Benioff, P. (1982). Quantum mechanical Hamiltonian models of turing machines.
J. Stat. Phys. 29, 515–546. doi:10.1007/bf01342185

Boettcher, S., Falkner, S., and Portugal, R. (2015). Relation between randomwalks and
quantum walks. Phys. Rev. A 91, 052330. doi:10.1103/physreva.91.052330

Frontiers in Bioinformatics frontiersin.org12

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://doi.org/10.1007/bf01342185
https://doi.org/10.1103/physreva.91.052330
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

Born, M. (1926). Quantum mechanics of collision processes. Uspekhi Fizich.

Bova, F., Goldfarb, A., and Melko, R. G. (2021). Commercial applications of
quantum computing. EPJ quantum Technol. 8, 2. doi:10.1140/epjqt/s40507-021-
00091-1

Brassard, G., Chuang, I., Lloyd, S., andMonroe, C. (1998). Quantum computing. Proc.
Natl. Acad. Sci. 95, 11032–11033. doi:10.1073/pnas.95.19.11032

Cross, A. (2018). The IBM Q experience and QISKit open-source quantum
computing software. Bull. Am. Phys. Soc.

Cross, A. W., Bishop, L. S., Smolin, J. A., and Gambetta, J. M. (2017). Open quantum
assembly language. arXiv preprint arXiv:1707.03429.

Dirac, P. A. M. (1939). A new notation for quantum mechanics. Math. Proc. Camb.
Phil. Soc. 35, 416–418. doi:10.1017/s0305004100021162

Guo, L.-X., Wang, L., You, Z.-H., Yu, C.-Q., Hu, M.-L., Zhao, B.-W., et al. (2024).
Likelihood-based feature representation learning combined with neighborhood
information for predicting circrna–mirna associations. Briefings Bioinforma. 25,
bbae020. doi:10.1093/bib/bbae020

Hughes, C., Isaacson, J., Perry, A., Sun, R. F., and Turner, J. (2021). Quantum
computing for the quantum curious. Springer Nature.

Langmead, B. (2016). Algorithms for DNA sequencing.

Lehka, L. V., Shokaliuk, S. V., and Osadchyi, V. V. (2022). Hardware and software
tools for teaching the basics of quantum informatics to students of specialized (high)
schools. CTE Workshop Proc. 9, 228–244. doi:10.55056/cte.117

Mavroeidis, V., Vishi, K., Zych, M. D., and Jøsang, A. (2018). The impact of quantum
computing on present cryptography. arXiv preprint arXiv:1804.00200.

Neamatollahi, P., Hadi, M., and Naghibzadeh, M. (2020). Simple and efficient pattern
matching algorithms for biological sequences. IEEE Access 8, 23838–23846. doi:10.1109/
access.2020.2969038

Nemzer, L. R. (2017). A binary representation of the genetic code. Biosystems 155,
10–19. doi:10.1016/j.biosystems.2017.03.001

Nielsen, M. A., and Chuang, I. L. (2000). Quantum computation and quantum
information. 10th Anniversary Edition. USA: Cambridge University Press.

Qiskit contributors (2023). Qiskit: an open-source framework for quantum computing.
doi:10.5281/zenodo.2573505

Rahate, P. M., and Chandak, M. (2018). Comparative study of string matching
algorithms for dna dataset. Int. J. Comput. Sci. Eng. 6, 1067–1074. doi:10.26438/ijcse/
v6i5.10671074

Schumacher, B. (1995). Quantum coding. Phys. Rev. A 51, 2738–2747. doi:10.1103/
physreva.51.2738

Shenvi, N., Kempe, J., and Whaley, K. B. (2003). Quantum random-walk search
algorithm. Phys. Rev. A 67, 052307. doi:10.1103/physreva.67.052307

Steane, A. (1998). Quantum computing. Rep. Prog. Phys. 61, 117–173. doi:10.1088/
0034-4885/61/2/002

various authors (2023). Qiskit textbook. Github.

Wang, J., Zhang, Q., Xu, G. H., and Kim, M. (2021). “Qdiff: differential testing of
quantum software stacks,” in 2021 36th IEEE/ACM international conference on
automated software engineering (ASE) (IEEE), 692–704.

Wanzambi, E., and Andersson, S. (2021). Quantum computing: implementing hitting
time for coined quantum walks on regular graphs. arXiv preprint arXiv:2108.02723.

Frontiers in Bioinformatics frontiersin.org13

Becerra-Gavino and Barbosa-Santillan 10.3389/fbinf.2024.1401223

https://doi.org/10.1140/epjqt/s40507-021-00091-1
https://doi.org/10.1140/epjqt/s40507-021-00091-1
https://doi.org/10.1073/pnas.95.19.11032
https://doi.org/10.1017/s0305004100021162
https://doi.org/10.1093/bib/bbae020
https://doi.org/10.55056/cte.117
https://doi.org/10.1109/access.2020.2969038
https://doi.org/10.1109/access.2020.2969038
https://doi.org/10.1016/j.biosystems.2017.03.001
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.26438/ijcse/v6i5.10671074
https://doi.org/10.26438/ijcse/v6i5.10671074
https://doi.org/10.1103/physreva.51.2738
https://doi.org/10.1103/physreva.51.2738
https://doi.org/10.1103/physreva.67.052307
https://doi.org/10.1088/0034-4885/61/2/002
https://doi.org/10.1088/0034-4885/61/2/002
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1401223

	The quantum hypercube as a k-mer graph
	1 Introduction
	1.1 DNA 2bit encoding
	1.2 K-mer sequencing
	1.3 Quantum computing basics
	1.4 Quantum software stacks
	1.5 IBM quantum platform
	1.6 The coined quantum walk search
	1.7 The quantum hypercube as a K-mer graph

	2 Materials and methods
	2.1 Development platform
	2.2 Loading DNA binary data into a quantum circuit
	2.3 The DNA hypercube space
	2.4 The coined quantum walk search circuit
	2.5 Supplementary Materials

	3 Experiments and results
	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

