
Pangenome comparison via ED
strings

Esteban Gabory1, Moses Njagi Mwaniki2, Nadia Pisanti2*,
Solon P. Pissis1,3, Jakub Radoszewski4, Michelle Sweering1 and
Wiktor Zuba1

1Centrum Wiskunde & Informatica, Amsterdam, Netherlands, 2Department of Computer Science,
University of Pisa, Pisa, Italy, 3Department of Computer Science, Vrije Universiteit, Amsterdam,
Netherlands, 4Institute of Informatics, University of Warsaw, Warsaw, Poland

Introduction: An elastic-degenerate (ED) string is a sequence of sets of strings. It
can also be seen as a directed acyclic graph whose edges are labeled by strings.
The notion of ED strings was introduced as a simple alternative to variation and
sequence graphs for representing a pangenome, that is, a collection of genomic
sequences to be analyzed jointly or to be used as a reference.

Methods: In this study, we define notions ofmatching statistics of two ED strings
as similarity measures between pangenomes and, consequently infer a
corresponding distance measure. We then show that both measures can be
computed efficiently, in both theory and practice, by employing the intersection
graph of two ED strings.

Results: We also implemented our methods as a software tool for pangenome
comparison and evaluated their efficiency and effectiveness using both synthetic
and real datasets.

Discussion: As for efficiency, we compare the runtime of the intersection graph
method against the classic product automaton construction showing that the
intersection graph is faster by up to one order of magnitude. For showing
effectiveness, we used real SARS-CoV-2 datasets and our matching statistics
similarity measure to reproduce a well-established clade classification of SARS-
CoV-2, thus demonstrating that the classification obtained by our method is in
accordance with the existing one.

KEYWORDS

elastic-degenerate string, intersection graph, pangenome comparison, matching
statistics, SARS-CoV-2

1 Introduction

Many biomedical applications of bioinformatics face the twofold challenge of analyzing
an ever-increasing number of genome sequences and the need to choose which genome
should be used as the reference. Generalizing other definitions, in The computational
Pangenomics Consortium (2018), a pangenome was defined as “any collection of genomic
sequences to be analyzed jointly or to be used as a reference,” somewhat merging the two
above-mentioned challenges into that of analyzing a pangenome. When projected within a
single species, a pangenome represents a collection of sequences that are (part of whole)
genomes originating from different individuals or strains of a single clade or population.

Currently, pangenomics constitutes an important paradigm shift within genomics to
deal with the widespread availability of human sequencing data and the discovery of

OPEN ACCESS

EDITED BY

Leena Salmela,
University of Helsinki, Finland

REVIEWED BY

Jing Li,
Integrated DNA Technologies, United States
Cinzia Pizzi,
University of Padua, Italy

*CORRESPONDENCE

Nadia Pisanti,
nadia.pisanti@unipi.it

RECEIVED 06 March 2024
ACCEPTED 23 August 2024
PUBLISHED 26 September 2024

CITATION

Gabory E, Mwaniki MN, Pisanti N, Pissis SP,
Radoszewski J, Sweering M and Zuba W (2024)
Pangenome comparison via ED strings.
Front. Bioinform. 4:1397036.
doi: 10.3389/fbinf.2024.1397036

COPYRIGHT

© 2024 Gabory, Mwaniki, Pisanti, Pissis,
Radoszewski, Sweering and Zuba. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Original Research
PUBLISHED 26 September 2024
DOI 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/articles/10.3389/fbinf.2024.1397036/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1397036/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2024.1397036&domain=pdf&date_stamp=2024-09-26
mailto:nadia.pisanti@unipi.it
mailto:nadia.pisanti@unipi.it
https://doi.org/10.3389/fbinf.2024.1397036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2024.1397036

large-scale genomic variation in many eukaryotic species; see
Paten et al. (2017); Liao et al. (2023). In contrast to a linear
reference, a pangenome reference aims to compactly represent the
variation within a population by encoding the commonalities and
differences among the underlying sequences. This gives rise to
different pangenome representations, usually edge- or node-
labeled directed graphs (Baaijens et al., 2022; Carletti et al.,
2019). The most widely-used pangenome representations are
variation graphs (see Garrison et al., 2018a; Eizenga et al., 2021)
and sequence graphs (see Rakocevic et al., 2019).

The computational challenges posed by pangenomes often result
in a trade-off between the efficiency and accuracy of the methods
and the information content of the chosen representation. A simpler
acyclic alternative to the aforementioned representations is the
notion of elastic-degenerate string (ED string); see Iliopoulos
et al. (2021). When compared to more powerful representations,
ED strings have the algorithmic advantage of supporting both
theoretically (Aoyama et al., 2018; Bernardini et al., 2019; 2022))
and practically (Grossi et al., 2017; Pissis and Retha, 2018; Cisłak
et al., 2018) fast on-line pattern matching, also for the approximate
case (Bernardini et al., 2017; 2020). Moreover, they support fast
dynamic-programming-based alignment, as shown inMwaniki et al.
(2023); Mwaniki and Pisanti (2022), and short-read mapping; see
Büchler et al. (2023).

An ED string is a concatenation of n sets of strings (inspect
Figure 1). Every set of strings encodes a collection of consecutive
columns of an underlying multiple sequence alignment (MSA),
from left to right. Every set encodes the commonalities or
differences of the underlying sequences which are represented
by the MSA. Formally, an ED string T is a sequence of n sets
T[1], . . . , T[n] containing m strings in total whose cumulative
length isN. We call n, m, andN the length, the cardinality and the
size of T, respectively. An ED string T compactly represents all
strings that can be spelled concatenating, for 1≤ i≤ n, a string
chosen from set T[i]. For example, the string GTTCAGATTACAA is
one of the strings represented by the ED string of Figure 1. Every
ED string can also be viewed as an edge-labeled directed acyclic
graph (DAG). As an example, Figure 1 shows the DAG of a simple
ED string: the DAG has n + 1 nodes as the ED string has length
n � 7. The ED string may also be viewed as a nondeterministic
finite automaton (NFA) Hopcroft et al. (2003) with extended

transitions. By extended, we mean multi-letter transitions,
instead of single-letter ones.

Any pangenome representation aims to improve the downstream
analyses of genomic data by removing biases inherent in the use of a
linear single-genome representation (Baaijens et al., 2022). For
example, pangenomes allow for representing haplotype-resolved
data with genome phasing, as shown in Bonizzoni et al. (2016).
Using linear genomes as a reference, determining at which
chromosomal copy (i.e., paternal or maternal) the different alleles
are located, may be erroneous or incomplete due to reference bias.
Genotyping (the task of reconstructing the allele variants that
characterize an individual) can be improved by using a
pangenome representation as a reference, which removes the bias
of using a single linear genome as a reference tomap the reads coming
from an individual’s sample. Pangenomes also allow for accurate read
alignment as certain genome regions are important yet challenging to
assemble using classic read alignment tools, because of the bias of
using a single linear reference genome (Garrison et al., 2018b; Liao
et al., 2023). This explains the high level of attention paid in recent
years to the task of sequence-to-graph comparison; see, e.g., Büchler
et al. (2023); Equi et al. (2023); Mwaniki et al. (2023); Li et al. (2020);
Gibney et al. (2022); Jain et al. (2020); Rautiainen et al. (2019);
Rautiainen and Marschal (2020). In phylogenetic analyses, the aim
is to study the evolutionary relationships among different groups of
organisms (e.g., species or population variants). This was traditionally
performed using a sample sequence per organism that is somewhat
representative of the group or population, and then inferring a tree or
a graph based on pairwise distances or similarities among these
samples. This task can be biased if the sample linear genome turns
out not to be the most representative, whereas a pangenome can
compactly represent the entire population.

Our Contributions. Here, we make an important step from the
above-mentioned sequence-to-graph (i.e., sequence-to-pangenome)
comparison towards graph-to-graph (pangenome-to-pangenome)
comparison1. In particular, we assume that the two pangenomes to
be compared are represented by means of two ED strings: T1 and T2.

FIGURE 1
An example of an MSA (top left) and its corresponding (non-unique) ED string T of length n � 7, cardinality m � 11 and size N � 20 (top right), and
edge-labeled DAG for T . Note that ε denotes the empty string. The DAG can also be viewed as an NFA with extended (multi-letter) transitions.

1 A preliminary step on degenerate strings (D strings), that is, a restricted

version of ED strings, was made by Alzamel et al. (2018), (2020).

Frontiers in Bioinformatics frontiersin.org02

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

We first recall a very fast and low memory consumption method from
Gabory et al. (2023) to determine whether T1 and T2 have a nonempty
intersection, that is, whether the two pangenomes share a genome. This
method relies on a powerful representation of all string fragments that
are in bothT1 andT2, that is, of the complete set of sequences shared by
the two pangenomes; this representation was named by Gabory et al.
(2023) an intersection graph of T1 and T2. From thereon, we develop a
novel method for pangenome comparison via ED strings, based on an
extension to ED strings of the well-known notion ofMatching Statistics
on standard strings (cf. the book Gusfield (1997)). We define two
versions of Matching Statistics for ED strings.

• ED Matching Statistics as the theoretically most
straightforward notion that extends the standard one: for
every i ∈ [1, n1] of T1, where n1 is the length of T1, we
report in MST1 ,T2[i] the length of the longest string starting
at the ith set of T1 that is also a substring of T2.

• Breakpoint Matching Statistics as a notion specifically
designed for genomic variants: for every i ∈ [1, n1] of T1,
we report in BMST1 ,T2[i] the length of the longest string
starting at the ith set of T1 that is also a substring of T2

and that is within pairs of breakpoints that have been detected
by the multiple alignment underlying the pangenome.

The output is the Matching Statistics array MST1 ,T2

(resp. BMST1 ,T2) of size n1 that specifies maximal local matches
of T1 with respect to T2. The Matching Statistics array MST2 ,T1

(resp. BMST2 ,T1) of T2 with respect to T1 is defined dually: for every
j ∈ [1, n2] of T2, where n2 is the length of T2, we report the longest
string starting at the jth set of T2 that fulfills the corresponding
requirements with a substring of T1. We then suggest to use the
Matching Statistics to define the following measures.

• Similarity measure MS(T1, T2) (resp. BMS(T1, T2)
between T1 and T2 as the sum of the average values of
arrays MST1 ,T2 and MST2 ,T1 (resp. of arrays BMST1 ,T2

and BMST2 ,T1);
• Distance measure d (resp. bd) between T1 and T2 based on
MS(T1, T2) (resp. on BMS(T1, T2)).

Both distance measures can be trivially computed in O(1) time
fromMS(T1, T2) and BMS(T1, T2), and both similarity measures
can be trivially computed in O(n1 + n2) time from MST1 ,T2 and
MST2 ,T1 (resp. BMST1 ,T2 and BMST2 ,T1). The algorithmic challenge
is thus: how can we efficiently compute theMatching Statistics arrays?
While an algorithm based on classic product automaton techniques
(Lawson, 2004) would require Ω(N1N2) time in the worst case, our
method achieves this in O(N1m2 +N2m1) worst-case time, where
N1 and N2 are the sizes of T1 and T2, respectively, and m1 and m2

are the cardinalities of T1 and T2, respectively. We achieve this via
the above-mentioned intersection graph of T1 and T2. The running
time of our algorithm is good in the following sense: if each of the ED
strings, T1 and T2, represents a pangenome of closely-related
genomes, then the cardinalities m1 and m2 are expected to be
asymptotically much smaller than the sizesN1 andN2, respectively.

We also implemented the entire pipeline in C++ as a software
tool for pangenome comparison, which is publicly available at
https://github.com/urbanslug/junctions under GNU GPL v3.0.

We evaluated the efficiency and effectiveness of the developed
methods using both synthetic and real datasets. For efficiency, we
compared the runtime of the intersection graph against the classic
product automaton construction. As expected, the intersection
graph is faster by up to one order of magnitude. For
effectiveness, we used real SARS-CoV-2 datasets and our
Breakpoint Matching Statistics method to reproduce a well-
established clades classification of SARS-CoV-2, thus
demonstrating that the classification obtained by our method is
in accordance with the existing classification.

In Section 2, we describe and analyze our methods. In Section 3,
we present our results. We conclude this paper in Section 4.

2 Methods

In this section we recall from Gabory et al. (2023) the ED STRING

INTERSECTION problem for two ED strings (Section 2.1) and the notion
of intersection graph (Section 2.2). We then extend the MATCHING

STATISTICS problem on two standard strings (Gusfield, 1997) to two ED
strings defining the ED MATCHING STATISTICS and BREAKPOINT MATCHING

STATISTICS problems, and show how to solve them using an
intersection graph (Section 2.3). We also formally define our
similarity and distance measures for ED strings (Section 2.4).

Let us begin with some basic definitions and notations fromGabory
et al. (2023). An alphabet Σ is a finite nonempty set of elements called
letters. By Σ* we denote the set of all strings over Σ including the empty
string ε of length 0. An elastic-degenerate string (ED string, in short)T is
a sequenceT � T[1]/T[n] of n finite sets, whereT[i] is a subset ofΣ*.
The total size of T is defined asN � Nε +∑n

i�1∑S∈T[i]|S|, whereNε is
the total number of empty strings in T. By m we denote the total
number of strings in all T[i], i.e., m � ∑n

i�1|T[i]|. We say that T has
length n � |T|, cardinalitym and sizeN. The language ofT is defined as
L(T) � {S1 · . . . · Sn : Si ∈ T[i] for all i ∈ [1, n]}, where · denotes the
string concatenation.

2.1 ED strings intersection

Let us start by formally defining the ED STRING

INTERSECTION problem.
ED STRING INTERSECTION (EDSI)

Input: Two ED strings, T1 of length n1, cardinality m1 and size
N1, and T2 of length n2, cardinality m2 and size N2.

Output: YES if L(T1) and L(T2) have a nonempty intersection,
NO otherwise.

This EDSI problem can be efficiently solved using the notion of
compacted nondeterministic finite automaton (compacted NFA). A
compacted NFA is a 5-tuple (Q,Σ, δext, q0, F), where Q is a finite set
of states; Σ is an alphabet; δext: Q × Σ* → P(Q), is an extended
transition function,P(Q) is the power set ofQ; q0 ∈ Q is the starting
state; and F ⊆ Q is the set of accepting states. Such an NFA can also
be represented by a standard (uncompacted) NFA, where each
extended transition is subdivided into standard one-letter
transitions (and ε-transitions), δ: Q × (Σ ∪ {ε}) → P(Q). The
states of a compacted NFA are called explicit, whereas the states
obtained from these subdivisions are called implicit. In both cases,
given an (compacted or not) NFAA, we define the language accepted

Frontiers in Bioinformatics frontiersin.org03

Gabory et al. 10.3389/fbinf.2024.1397036

https://github.com/urbanslug/junctions
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

byA, denoted byL(A), as the set of strings that can be read from the
starting state to an accepting state.

We next define the path-automaton of an ED string.

Definition 1. (Path-automaton of an ED string). Let T be an ED
string of length n, cardinality m, and size N. The path-automaton of
T is the compacted NFA consisting of V states and E transitions
defined as follows:

• V � n + 1 is the number of explicit states, numbered from one
through n + 1. State one is the starting state and state n + 1 is
the accepting state. State i ∈ [2, n] is the state in-between
T[i − 1] and T[i].

• E � m � ∑imi, where mi � |T[i]| is the number of extended
transitions from state i to state i + 1 labeled with the strings
in T[i].

The path-automaton of T accepts exactly L(T). The
uncompacted version of this path-automaton has Vu � O(N)
states and Eu � N transitions.

In the following, we are interested only in the graph underlying
the path-automaton, that is, the directed acyclic graph (DAG),
where every node represents an explicit state and every labeled
directed edge represents an extended transition of the path-
automaton (inspect also Figure 1). Indeed, it should be noticed
that the path-automata of the ED strings are DAGs (direct acyclic
graphs) as they are always acyclic, but may contain ε-transitions. For
example, the DAG shown in Figure 1 is the path-automaton for T.

Checking whether two NFA have a nonempty intersection can be
done in O(N1N2) time2,3, where N1 and N2 are the sizes of the two
NFA, and therefore a naïve method can check whether
L(T1) ∩ L(T2) ≠ ∅ in time O(N1N2), that is, quadratic in the
sizes of T1 and T2. The compacted NFA representation allows for a
more efficient algorithm for computing and representing the intersection.
The idea is to use compacted transitions that directly compare whole
string-segments instead of single letters, which can be performed
efficiently using classic tools such as suffix trees or LCP queries.

Lemma 1. Gabory et al. (2023). Given two compacted NFA A1 and
A2, with V1 and V2 explicit states and E1 and E2 extended
transitions, respectively, a compacted NFA representing the
intersection of A1 and A2 with O(Vu

1V2 + V1Vu
2) explicit states

and O(Eu
1E2 + E1Eu

2) extended transitions can be computed
in O(Eu

1E2 + E1Eu
2) time.

Lemma 1 thus implies the following result.

Corollary 1. The compacted NFA representing the intersection of
two path-automata with O(N1n2 +N2n1) explicit states and
O(N1m2 +N2m1) extended transitions can be constructed
in O(N1m2 +N2m1) time.

Consequently, we can compute the compacted NFA of the
intersection of two ED strings T1 and T2 (with cardinalities m1

and m2 and sizes N1 and N2) in O(N1m2 +N2m1) time. We
remark that this compacted NFA is also an acyclic graph which
we name the intersection graph of the two ED strings. As shown by
Gabory et al. (2023), one can solve EDSI in practice without
effectively constructing the entire graph, but rather part of it.
However, since the intersection graph is crucial for the other
methods that we describe in Section 2.3 and apply in this paper,
we dedicate the following section to its description.

2.2 The intersection graph

In this section we describe the notion of the intersection graph G
from the DAGs (of the two path-automata) G1 and G2 of T1 and T2

and how it can be used to solve the EDSI problem.We will do this by
means of a running example of two ED strings T1 and T2. We refer
the reader to Gabory et al. (2023) for the formal definition of G and
the full details of an efficient O(N1m2 +N2m1)-time
construction algorithm.

Let us consider the two ED strings T1 �
AC
A

TGCT

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ · ε

CA
{ } and

T2 � T
ε

{ } · AC
GCA

{ }that have a nonempty intersection as the string

AC belongs to L(T1) ∩ L(T2). Their path-automata are represented
by graphs G1 and G2 shown in Figure 2.

The nodes of the intersection graph correspond to pairs (i, j)
from G1 and G2, respectively, where at least one of them must be
an explicit state. As a consequence, we draw the intersection
graph using, as a layout, a grid (in dotted lines) of n2 + 1 copies of
G1 and n1 + 1 copies of G2. Therein, the possible nodes for the
intersection graph G are pairs, as described above. Let (i, j) and
(i′, j′) be nodes in G, with i, i′ from G1 and j, j′ from G2. We
observe an extended transition from (i, j) to (i′, j′) with label S if
one can read a string S both from i to i′ in G1 and from j to j′ in
G2. Figure 3 shows the intersection graph G for T1 and T2: the
intersection is nonempty and contains a single string AC that can
be read on the red path.

2.3 Matching statistics for ED strings

When the ED strings T1 and T2 come from real pangenomes,
being able to quickly tell whether L(T1) ∩ L(T2) is nonempty might
not be informative enough for practical applications. Indeed, two
pangenomes may still share a lot of fragments even if the two ED
strings that represent them are such that L(T1) ∩ L(T2) � ∅. Thus,
to bemore sensitive to local similarities and detect shared fragments of
pangenomes, we considerMatching Statistics (Gusfield, 1997), a more
elaborate ED string comparison task that is heavily employed for
standard strings (under the Hamming distance model, i.e., with
mismatches) in practical applications, especially in bioinformatics
(Ulitsky et al., 2006; Apostolico et al., 2014; Leimeister and
Morgenstern, 2014; Apostolico et al., 2016; Pizzi, 2016;
Thankachan et al., 2017).

Let us first recall the classic MATCHING STATISTICS problem on
standard strings.

2 A breakpoint in a genome is a location on a chromosome where DNA

might get deleted, inverted, or swapped around Sankoff and

Blanchette (1998).

3 This can be done using the folklore product automaton construction

(Lawson, 2004).

Frontiers in Bioinformatics frontiersin.org04

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

MATCHING STATISTICS

Input: Two strings, S1 of length n1, and S2 of length n2.
Output: For each i ∈ [1, n1], the length MSS1 ,S2[i] of the longest

prefix of S1[i. .n1], which is a substring of S2.
For example, the Matching Statistics of S1 � AGTGCATTG of

length nine and S2 � TTG are the following array of size |S1| � 9:
MSS1 ,S2 � [0, 1, 2, 1, 0, 0, 3, 2, 1]. The MATCHING STATISTICS problem
can be solved in linear O(n1 + n2) time using the suffix tree of S1
(Gusfield, 1997). In this section we extend the Matching
Statistics notion, as well as the problem of computing them,

to ED strings, in the direction of representing local similarities
for pangenomes. We suggest two possible definitions of
Matching Statistics for ED strings: the first one (Section 2.3.1)
is the most inclusive notion, that is, it takes into account local
matches that are prefixes of a string in L(T1[i. .n1]) and occur in
some string from L(T2); the second notion (Section 2.3.2) has a
biologically motivated further condition: it assumes that
relevant fragments are those that begin at positions of the
genomes that the multiple alignment has detected as a
breakpoint, meaning a locus of the resulting pangenome in
which a variant (or a conserved fragment) either begins or

FIGURE 2
The two DAGs G1 and G2 for ED strings T1 and T2. The filled black nodes are explicit states, while the orange empty nodes are implicit states.

FIGURE 3
Intersection graphG for T1 and T2, whereG1 andG2 are shown at the left and on the top, respectively, to simplify the understanding ofG. A node (i, j)
in the intersection is represented by a square if both i and j are explicit nodes, and by a circle if only one of them is. The dashed edges of the intersection
graph G correspond to ε-transitions (namely, transitions such that no letter is read when traversed), while the solid edges correspond to the other
extended transitions. A string in L(T1) ∩ L(T2) corresponds to a path from the starting node of G to the accepting node. Here the intersection is
nonempty and contains a single string AC, which can be read on the red path.

Frontiers in Bioinformatics frontiersin.org05

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

ends. We will name the former notion ED Matching Statistics
and the latter Breakpoint Matching Statistics.

2.3.1 ED matching statistics
The ED Matching Statistics between two ED strings T1 of length

n1 and T2 of length n2, is an array MST1 ,T2 of length n1 storing, for
each i ∈ [1, n1], the length of the longest local match between T1 and
T2 which is a prefix of a string in L(T1[i. .n1]).

ED MATCHING STATISTICS

Input: Two ED strings, T1 of length n1, cardinality m1 and size
N1, and T2 of length n2, cardinality m2 and size N2.

Output: For each i ∈ [1, n1], the lengthMST1 ,T2[i] of the longest
prefix of a string in L(T1[i. .n1]), which is a substring of a string in
L(T2).

Example 1. Let us consider again T1 �
AC
A

TGCT

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ · ε

CA
{ } and

T2 � T
ε

{ } · AC
GCA

{ } of our running example. We have that

MST1 ,T2[1] � 3 and MST1 ,T2[2] � 2. Indeed, the longest prefix of
a string in L(T1) that occurs in L(T2) is TGC, having length 3, and
the longest prefix of a string in L(T1[2]) that occurs in L(T2) is CA,
having length 2.

We observe that, in the intersection graph G of T1 and T2, the
sought match starts at a node (i, j) where i is an explicit state of T1.
As a consequence, the intersection graph G can be used to efficiently
compute the Matching Statistics of two ED strings, using the
following algorithm:

We consider a slightly augmented version of the intersection
graph obtained from an uncompacted intersection automaton. We
first construct the automaton as in Corollary 1, and then we
additionally compute some extra nodes and transitions as
follows: when we process a state corresponding to a pair (i, j)
(where i is from G1 and j from G2), and we have two transitions s
and t having a nonempty common prefix and going out from i and j,
respectively, then we construct the corresponding transition to the
state (i′, j′), where i′ (resp. j′) from G1 (resp. from G2) is the state
that can be reached through the longest common prefix of s and t,
even if both i′ and j′ are implicit.

We observe that, even in this case, the overall number of the
transition pair checks remains the same; therefore the total size of
the constructed underlying graph G remains O(N1m2 +N2m1).
Indeed, in the final intersection graph, all the additional nodes are at
most one edge away from a previously existing node; therefore the
number of additional edges outgoing from an existing node is
bounded by the number of strings that can be read from that
node, that is, min(m1, m2).

We then assign to each edge the weightw storing the length of its
string label and process the nodes in reversed topological order to
compute, for each node k, the valueM(k) as follows: we setM(k) �
0 for the nodes that do not have successors (for example, the
accepting node or nodes corresponding to a pair of implicit
states), and then M(k) � maxk′(M(k′) + w(k, k′)) where k′
iterates over all successors of k. By construction, for an explicit
state i ofG1 and any state j ofG2, we haveM((i, j)) � ℓ if and only if
ℓ is equal to the maximal LCP between two strings S1 and S2, where
S1 ∈ L(T1[i. .n]) and S2 is spelled starting at (explicit or implicit)
state j in G2. Finally, for every explicit state i of G1 we compute

MST1 ,T2[i] � maxvM((i, v)) over all (explicit or implicit) states v of
G2 to obtain the output.

This ends the description of the proposed algorithm for the
computation of ED Matching Statistics, which proves the
following result.

Theorem 1. The ED MATCHING STATISTICS problem can be
solved in O(N1m2 +N2m1) time by using an intersection graph
of T1 and T2, which can be constructed within the same
complexity.

Figure 4 shows how the Matching Statistics of T1 and T2 of our
running example can be computed on their intersection graph G.
For example, to computeMST1 ,T2[1], we look at the paths starting at
nodes (i � 1, j) in the path-automaton of T1, and return the length
of the longest label of such a path. The longest one of such paths
(drawn in blue) corresponds to the string TGC having length 3, and
thus MST1 ,T2[1] � 3.

2.3.2 Breakpoint Matching Statistics
The Breakpoint Matching Statistics between two ED strings T1

and T2 refer to the notion of breakpoint in the genome
rearrangement literature; see Baudet et al. (2010). An ED string
T representing a pangenome results from a multiple sequence
alignment of several genomes with the length n of T corresponding
to the loci where either multiple variants or a conserved fragment
begin: these are the breakpoints that the alignment has detected.
The assumption underlying Breakpoint Matching Statistics is that
biologically relevant fragments in pangenomes are those that begin
at a breakpoint. The Breakpoint Matching Statistics between T1 of
length n1 and T2 of length n2, is an array BMST1 ,T2 of length n1
storing, for each i ∈ [1, n1], the length of the longest local match
between T1 and T2 that is a prefix of a string in L(T1[i. .n1]) and
hence starts at a breakpoint in T1, with the additional constraint
that this must be part of a match that starts at a breakpoint in both
T1 and T2 and ends at a breakpoint in at least one of the ED strings.

Formally, for any two ED strings, T1 and T2, a breakpoint match
(b-match) of T1 and T2, for some 1≤ i1 ≤ i2 ≤ n1 and 1≤ j1 ≤ j2 ≤ n2,
is a string S such that S ∈ L(T1[i1. .i2]) and S ∈ L(T2[j1. .j2]).
Intuitively, S starts and ends at a breakpoint in both T1 and T2.

A string S is a left-breakpoint match (lb-match) if (i)
S ∈ L(T1[i1. .i2]) and S is a prefix of a string in L(T2[j1. .n2]) or
(ii) S is a prefix of a string in L(T1[i1. .n1]) and S ∈ L(T2[j1. .j2]).
Intuitively, S begins at a breakpoint in both ED strings and ends at a
breakpoint in at least one of the two ED strings. We denote this
specific instance of S by Si2 ,j2i1 ,j1 . Note that any b-match is also an
lb-match.

Let us now formalize the problem of computing the Breakpoint
Matching Statistics that we solve in this section.

BREAKPOINT MATCHING STATISTICS

Input: Two ED strings, T1 of length n1, cardinality m1 and size
N1, and T2 of length n2, cardinality m2 and size N2.

Output: For each i ∈ [1, n1], the length BMST1 ,T2[i] of a longest
prefix P of a string in L(T1[i. .n1]) that can be left-extended with a
string from L(T1[i1. .i − 1]) into an lb-match Si2 ,j2i1 ,j1 , for some
i1, i2, j1, j2.

The motivation for allowing a left-extension to an lb-match and
not forcing P to be an lb-match is to maintain the property of the

Frontiers in Bioinformatics frontiersin.org06

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

standard Matching Statistics of not decreasing rapidly from
MSS1 ,S2[i] to MSS1 ,S2[i + 1].

Example 2. Let T1 �
AC
A

TGCT

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ · ε

CA
{ } and T2 � T

ε
{ } ·

AC
GCA

{ } as in Example 1. We have that BMST1 ,T2[1] � 2,

because P � AC starting at position i � 1 is equal to S � AC,
which is a b-match (for i1 � i2 � 1 and j1 � j2 � 2) and hence an
lb-match. We also have BMST1 ,T2[2] � 1, because P � C starting at
position i � 2 is left-extended to S � AC, which is an lb-match (for
i1 � 1, i2 � 2 and j1 � j2 � 2). For both cases (i � 1 and i � 2), we
have that P is the longest possible such prefix.

We now show that the intersection graph G of T1 and T2 can
also be used to efficiently compute their Breakpoint Matching
Statistics. Indeed, the local matches that the Breakpoint
Matching Statistics account for can be characterized in the

intersection graph G of T1 and T2 as the common substrings
that start at a node (i, j) where i is an explicit state of T1, and j
can be either explicit or implicit in T2. Additionally, (i, j) must
be reachable in G from a node (i1, j1) where i1 and j1 are both
explicit: they correspond to a common breakpoint of the two
pangenomes. Moreover, if such a substring ends at node (i2, j2),
then at least one state among i2 and j2 must be explicit. Notice
that, should j be an explicit node, then the reachability
condition above can be fulfilled by j � j1 itself; in that case
we also have i � i1. On the other hand, if j is implicit, then it
must be that i1 ≠ i and j1 ≠ j.

Figure 5 shows the computation of the Breakpoint Matching
Statistics in the intersection graph G of our running example. For
example, for BMST1 ,T2[1], we use the occurrence of AC (blue edge)
starting at a node that corresponds to a pair of explicit states and
ending at a node that also corresponds to a pair of explicit states (a

FIGURE 4
Matching Statistics of T1 and T2 of our running example on their intersection graphG, where, again - to simplify the understanding - we also drawG1

and G2 at the left and on the top, respectively. Note that this time, the pairs of implicit nodes that are reachable in a single extended transition from a pair
that was previously computed are added. In the figure, there is only one such extra node, which is represented by a green open circle at the right of the
graph. Here we highlight the paths that are relevant for computing the Matching Statistics arrayMST1 ,T2 . To computeMST1 ,T2[1], we look at the paths
starting at nodes (i, j)where i is the explicit state one in the path-automaton of T1, and return the length of the longest label of such a path. These are the
paths starting in one of the blue nodes (these are the nodes that correspond to the uppermost explicit node ofG1 paired with any node ofG2, that is, they
correspond to the uppermost dotted copy of G2). The longest one of such paths (also drawn in blue) corresponds to the string TGC having length 3;
therefore,MST1 ,T2[1] � 3. ForMST1 ,T2[2]we do the same but using as starting nodes those in red that correspond to the internal explicit node ofG1 paired
with any node ofG2 (i.e., the nodes of the middle dotted copy ofG2). Here the longest path is drawn in red and it spells the string CA, and therefore we set
MST1 ,T2[2] � 2. ComputingMST2 ,T1 can be performed in a dual manner on the same graph, but using as starting nodes those of the leftmost dotted copy of
G1 for MST2 ,T1[1], and those of the middle dotted copy of G1 for MST2 ,T1[2].

Frontiers in Bioinformatics frontiersin.org07

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

breakpoint for both T1 and T2). No longer match satisfies these
conditions; hence, we set BMST1 ,T2[1] � 2.

Notice that the Breakpoint Matching Statistics require more
restricted matches tī ED Matching Statistics. Indeed we have that
for any two ED strings T1 and T2, it holds that
BMST1 ,T2[i]≤MST1 ,T2[i] for all 1≤ i≤ n1. It should be clear that
Breakpoint Matching Statistics can be computed within the same
complexities as the ones described in Theorem 1. We thus obtain
the following.

Theorem 2. The BREAKPOINT MATCHING STATISTICS problem can be
solved in O(N1m2 +N2m1) time by using an intersection graph of
T1 and T2, which can be constructed within the same complexity.

2.4 Our measures for comparing
pangenomes

In this section we describe a similarity and a distance measure
for pangenome comparison. These measures can be derived from
either the MS or the BMS array. We assume that these have been
pre-computed.

We consider both arrays MST1 ,T2 and MST2 ,T1 (resp. BMST1 ,T2

and BMST2 ,T1) as the Matching Statistics is not per se a symmetric
notion: the two arrays do not even need to have the same size (when
n1 ≠ n2). A simple solution for a similarity measure is to consider the
sum of the two averages: each array is turned into a number being
the average of its values, and the sum makes everything symmetric.

FIGURE 5
Breakpoint Matching Statistics computation in the intersection graph G of T1 and T2. To compute BMST1 ,T2[1], the candidate starting nodes of the
match in G are those in blue: nodes (i, j)where i is an explicit state of T1 in the uppermost dotted copy of G2, and j is either an explicit state of T2 (squared
blue nodes) or an implicit one (circled blue nodes). Note that TGC is the longestmatch that starts at the first set of T1 but it does not fulfill the conditions for
the Breakpoint Matching Statistics because it does not end at any breakpoint; for the same reason, TG is also not a good candidate match. The
occurrence of AC corresponding to the blue edge starts at a blue square node; hence it is reachable from the node itself that corresponds to a pair of
explicit states, and it ends at a node that is again a pair of explicit states, and hence a breakpoint for both T1 and T2. There is no longer match satisfying
these conditions; therefore we set BMST1 ,T2[1] � 2. For BMST1 ,T2[2]we do the same but use as starting nodes those in red that correspond to the internal
explicit node of G1 paired with any node of G2 (i.e., the nodes of the middle dotted copy of G2). The red path spelling C: (i) is a prefix in T1[2] starting at an
explicit node of T1; (ii) is reachable from a square node inG by spelling A in both strings (curved brown red edge labeled with A); and (iii) ends where T2[2]
does, that is, at a breakpoint. Since this is the longest such path inG, we set BMST1 ,T2[2] � 1. Note, for example, that the match CA that occurs in T1[2] and
inside T2[2] cannot be used for BMST1 ,T2[2] because it starts at a node that is not reachable from a pair of explicit nodes, meaning that it is not
upperbounded by a breakpoint in T2. Computing BMST2 ,T1 , which is of size n2 � 2, can be done in a dual manner on the very same graph, using as starting
nodes those of the leftmost dotted copy ofG1 forBMST2 ,T1[1] � 2 (obtained by traversing an ε-transition and then AC), and those of themiddle dotted copy
of G1 for BMST2 ,T1[2] � 2 (AC again).

Frontiers in Bioinformatics frontiersin.org08

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

Thus, we define the similarity measure MS(T1, T2)
(resp. BMS(T1, T2)) between T1 and T2 as follows:

MS T1, T2() � MS T2, T1()

� ∑i∈ 1,n1[]MST1 ,T2 i[]
n1

+ ∑j∈ 1,n2[]MST2 ,T1 j[]
n2

and

BMS T1, T2() � BMS T2, T1()

� ∑i∈ 1,n1[]BMST1 ,T2 i[]
n1

+ ∑j∈ 1,n2[]BMST2 ,T1 j[]
n2

We now move further in order to design a notion of distance
between pangenomes based on MS(T1, T2) (resp. BMS(T1, T2)).
Unlike the notion of similarity, the distance has to decrease when the
two pangenomes get more similar; hence, following a standard
procedure, we invert the similarity measure while normalizing
over the logarithm of the size of the pangenome. The reason for
the normalization is that the values inside arrays MST1 ,T2 and
BMST1 ,T2 are affected by the sizes of both strings–a very short
ED string cannot contain a long match. Therefore, for a given T1, to
account for the size N2 of T2, we normalize MS(T1, T2)
(resp. BMS(T1, T2)) by logN2 and then invert4, thus obtaining
logN2/MS(T1, T2) (resp. logN2/BMS(T1, T2)). Again, this gives
rise to a non-symmetric notion, while symmetry is a desired
property for a distance. Another desired property is reflexivity,
requiring any pangenome to have distance zero from itself. The
latter can be ensured by subtracting5 a “correction term” as follows:

�d T1, T2() � logN2

MS T1, T2() −
logN1

MS T1, T1().

and

bd T1, T2() � logN2

BMS T1, T2() −
logN1

BMS T1, T1().

thus guaranteeing that �d(T1, T1) � bd(T1, T1) � 0 for any
nonempty T1. However, both �d and bd are not symmetric yet,
and hence, we finally ensure that our distance is symmetric resorting
again to the sum. Therefore, we set:

d T1, T2() � d T2, T1() � �d T1, T2() + �d T2, T1().
and

bd T1, T2() � bd T2, T1() � bd T1, T2() + bd T2, T1().

Our d and bd distances resemble an analogous widely used
distance measure for standard sequences such as MissMax (Pizzi,
2016) that is based on Matching Statistics with mismatches, and
kmacs (Ulitsky et al., 2006; Leimeister and Morgenstern, 2014;
Thankachan et al., 2017) that is based on an approximation of
Matching Statistics with mismatches.

3 Experiments

We implemented the O(N1m2 +N2m1)-time algorithm for
solving EDSI as well as an O(N1N2)-time algorithm for EDSI
based on the classic product automaton construction. We also
implemented the O(N1m2 +N2m1)-time algorithm computing
both Matching Statistics notions as well as the downstream
similarities and distance measures for any two ED strings. All
implementations were written in C++ and the source code is freely
available at https://github.com/urbanslug/junctions. We compiled all
implementations with gcc version 12.2.0 at optimization level (-O3).

3.1 Efficiency on simulated data

In this section, we compare the running time of our EDSI with that of
the naïve method and with the parameters that define the characteristics
of the input ED strings, with the purpose of validating the time efficiency
of our algorithm and show how it actually improves in practice with
respect to the baseline quadratic running time. In order to do that, we use
synthetic data generated on the alphabet {A,C,G,T}.

The synthetic ED strings were generated using another tool of
ours named SIMED (https://github.com/urbanslug/simed). The tool
starts by generating a random standard string of length W over the
DNA alphabet, assuming a uniform distribution of letters. This is
considered to be an initial sequence. We can view this as an ED
string with N � W and n � m � 1. The SIMED tool assumes a very
simple evolutionary model (where each position has an equal chance
of mutating, and each letter has the same probability of occurring at
any position) and generates an ED string from the initial sequence
based on the following input parameters.

• W as the length of the initial random (not ED yet) string;
• d as the number of positions where a set of multiple strings
occurs, given as a percentage of W (that is, d is the fraction of
degenerate positions);

• S as the maximum number of strings in any set of the resulting
ED string;

• L as the maximum length of the strings in any set of the
resulting ED string.

As aforementioned, the tool first generates a standard string
uniformly at random, which we denote by X (|X| � W). It then
samples δ � �dW� non-overlapping length-L substrings of X
uniformly at random. We denote these by
X[i1. .i1 + L − 1], . . . , X[iδ . .iδ + L − 1], where ij + L≤ ij+1 for
j ∈ [1, δ − 1]. For every j ∈ [1, δ], it picks a uniformly random
integer s from [1, S] and produces s − 1 strings of uniformly
random lengths from [0, L], each string generated uniformly at
random; these s − 1 strings and the original fragment X[ij. .ij + L −
1] form a set Dij of strings. Finally it sets T as
X[1. .i1 − 1] ·Di1 ·X[i1 + L. .i2 − 1] ·Di2/Diδ ·X[iδ + L. .W]. Note
that T is indeed an ED string; we denote its length, cardinality,
and size by n,m,N, respectively. If we choose d, S,W such that
(δ + δ · S)≪W then we have that
m≤ (δ + δ · S)≪W≤N 0 m≪N. It is worth noting that if the
same initial stringX is used to generate two distinct ED strings, then
X will appear in their (nonempty) intersection.

4 We assume that MS(T1 ,T2),BMS(T1 ,T2)>0.

5 For a nonempty T1, the quantities MS(T1 ,T1) and BMS(T1 ,T1) are always

greater than zero

Frontiers in Bioinformatics frontiersin.org09

Gabory et al. 10.3389/fbinf.2024.1397036

https://github.com/urbanslug/junctions
https://github.com/urbanslug/simed
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

Starting from the same base sequence X of length W, in each
experiment described in this section, we used the same parameters d, L
and S to generate both T1 and T2. Thus, X guarantees a nonempty
intersection between T1 and T2, and both implementations always
answered YES (as expected) without a premature ending (hence,
detecting their worst-case running time). As expected, the improved
O(N1m2 +N2m1)-time implementation of EDSI was faster than the
naïve O(N1N2)-time implementation in all datasets, especially with
longer variants and/or with short widely interspersed variants, that is for
ED strings where m≪N. Results are shown below.

We report a table for each set of parameters, and in each table, we
show the data for different starting synthetic string lengths W, up to
|W| � 100k bases. The data reported in the columns of Tables 1, 2 are:
the length W of the initial string, the size N1 and cardinality m1 of the
first synthetic ED string, the size N2 and cardinality m2 of the second
synthetic ED string, and the time taken by the Naïve method and by EDSI,
bothmeasured in seconds. The parametersd (frequency of positionswith
multiple variants), S (maximum number of variants in such positions),
and L (maximum length of such variants) determine the degree of
degeneracy of the ED strings. As shown below, we havem≪N because
(i) wherever the sequence is not degenerate, N grows linearly with W
while m is constant, and (ii) wherever there is a degenerate position,
N ∈ O(S × L) while m ∈ O(S). This explains why our
O(N1m2 +N2m1)-time algorithm is much faster than
the O(N1N2)-time one.

The tables show that the Naïve scales quadratically in the size of the
ED strings while EDSI is much faster as m≪N. A comparison of the
second and third experiments reported in Tables 2 highlights how,
when only L grows (it doubles from 5 to 10 while d and S remain 1%
and 5, respectively), our tool has basically the same performance
whereas the Naïve becomes slower. The explanation is that when L
grows, onlyN grows whilem does not (as we can see), and hencem and
N diverge even more. Finally, we remark that the parameter that most
affects m/N (i.e., the ratio of our asymptotic gain with respect to the
Naïve) is d, as the comparison of Tables 1 and 2 shows for the
corresponding values of S and L.

These experiments were conducted on a laptop with a 64 bit 11th
Gen Intel(R) Core(TM) i7-11800H 8 core processor and 16 GB of

RAM. Timings were recorded using std::chrono from the C++
standard library.

3.2 Efficiency on human genome data

In this section, we present some experiments for the running
time of EDSI on real human genome data with variants. The goal is to
show that our tool is fast even on real data, as the ratio between m
and N is not too large for real pangenomes built out of real human
genome fragments and their Variant Call Format (VCF) data. We
built ED strings for human genome data from the
GRCh38.p13 dataset, specifically from HLA-B in chromosome VI
as well as the actin beta (ACTB) gene in chromosome VII. We used
human genomic sequence data in the FASTA format and variation
data in the Variant Call Format (.vcf file) from the following three
databases: 1000G https://www.internationalgenome.org/ (2024),
TOPmed https://topmed.nhlbi.nih.gov/ (2024), and gnomAD
https://gnomad.broadinstitute.org/ (2024).

The human leukocyte antigen (HLA) gene is contained in the major
histocompatibility complex on the p arm (chromosomal region 6p21.33)
of Chromosome VI which is known to be one of the most polymorphic
regions of the human genome. The HLA gene is involved in immune
system regulation (Crux and Elahi, 2017; Romero-Sánchez et al., 2021)
and is found in the region between positions 31,353,872 and 31,367,067
(hence it is 13 kb long). ACTB is a highly conserved gene in humans that
codes for several proteins involved in cell structure and integrity. For
each genome fragment (HLA and ACTB data), and for each database
(out of the three 1000G, TOPmed, and gnomAD), we selected from the
.vcf file only the variants that are recorded in that specific database, and
we updated the regions containing variation, as denoted in the.vcf file

TABLE 1 Results with simulation parameters: d � 0.1% with S � 3, L � 3 and
with S � 5, L � 5.

W N1 m1 N2 m2 Naïve (s) EDSI (s)

S � 3 and L � 3

10k 10,019 36 10,023 38 0.69 0.04

30k 30,062 107 30,071 107 6.20 0.14

50k 50,106 173 50,110 172 17.57 0.29

100k 100,225 354 100,203 344 72.81 0.47

S � 5 and L � 5

10k 10,084 49 10,066 50 0.68 0.06

30k 30,198 144 30,212 148 6.21 0.16

50k 50,381 244 50,358 250 18.00 0.29

100k 100,837 515 100,776 500 74.04 0.65

TABLE 2 Simulation parameters: d � 1% with S � 3, L � 3, with S � 5, L � 5,
and with S � 5, L � 10.

W N1 m1 N2 m2 Naïve (s) EDSI (s)

S � 3 and L � 3

10k 10,218 346 10,232 348 0.70 0.05

30k 30,688 1,064 30,659 1,040 6.46 0.21

50k 51,155 1758 51,104 1752 18.84 0.48

100k 102,227 3,469 102,258 3,497 77.86 1.71

S � 5 and L � 5

10k 10,838 504 10,796 494 0.80 0.06

30k 32,362 1,479 32,415 1,505 7.36 0.25

50k 54,098 2,508 54,146 2,525 20.84 0.56

100k 108,071 4,987 107,947 4,986 84.62 1.89

S � 5 and L � 10

10k 11,696 498 11,803 500 0.96 0.06

30k 35,405 1,531 35,140 1,495 8.83 0.25

50k 58,745 2,503 58,659 2,484 25.22 0.59

100k 117,444 4,985 117,417 4,989 101.10 1.97

Frontiers in Bioinformatics frontiersin.org10

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.internationalgenome.org/
https://topmed.nhlbi.nih.gov/
https://gnomad.broadinstitute.org/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

into sets containing both the original in the reference and the variants
contained in.vcf, thus creating an ED string. We performed this in two
ways: one for all variants of that database for that genome fragment, and
one by selecting the SNPs variants only. We then used AEDSO (https://
github.com/urbanslug/aedso) to build the ED strings. Data download
links and commands used are available at https://github.com/urbanslug/
junctions/blob/master/test_data/human.org.

In summary, we have two ED strings (one with all variants and
one with SNPs only) per each database, and each genome fragment.
We remark that all of these ED strings include the original non-
mutated string in the language; hence for each pair the intersection is
nonempty. This ensures detecting a running time of EDSI without a
premature ending due to empty intersection: we ran EDSI for all pairs.
For the HLA data, Table 3 shows the sizes (and types) of the ED
strings and the running times of a few of these experiments. Table 4
shows results for the ACTB data.We observe that EDSI improves over
Naïve by one order of magnitude whenever m≪N (1000G and
gNomad variants datasets), and still improves over the Naïve even
when N/m is a small constant, like with TOPMed data.

Finally, to conduct an experiment on these data with larger inputs,
we picked a larger fragment of reference from Chromosome VI
(spanning over the HLA region) of length 100Kb, and we repeated
the same procedure as above. Table 5 presents the results of the
experiment. We observe that even for these longer ED strings, EDSI is
generally significantly faster than the Naïve method, especially on data
such as that of the 1000G variants dataset–therein the ratio betweenN
and m is larger than in the other data.

These experiments were conducted on a laptop with a 64 bit 11th
Gen Intel(R) Core(TM) i7-11800H 8 core processor and 16 GB of
RAM. Timings were recorded using std::chrono from the C++
standard library.

3.3 Similarity of SARS-CoV-2 clades

To demonstrate the effectiveness of the Breakpoint Matching
Statistics and the similarity measure based on them, we computed
the BMS arrays and the BMS similarity measures for all pairs of
clades of real SARS-CoV-2 data downloaded from NextStrain6

Hadfield et al. (2018), a platform collecting SARS-CoV-
2 evolution analyses, built out of GenBank https://www.ncbi.nlm.
nih.gov/genbank/ (2024) data. As an example of the NextStrain
report, Figure 7 shows a phylogenetic tree of 3357 SARS-CoV-
2 genomes sampled between December 2019 and August 2023,
constructed using a complex pipeline described in https://docs.
nextstrain.org/en/latest/learn/parts.html (2024).

We selected 35 SARS-CoV-2 clades as classified by NextStrain in
https://nextstrain.org/ncov/open/global/alltime (2024) and, within
each of them, we downloaded randomly selected individual genome
samples (10 when available, and less otherwise), ruling out a few
clades with too few samples: we were left with 31 clades. We provide
the raw datasets at https://github.com/urbanslug/junctions/tree/
master/test/_data/SARS/_CoV/_2.

For each clade, we constructed a multiple sequence alignment
(MSA) using abPOA (Gao et al., 2020) and, from each suchMSA, we
generated the corresponding ED string using MSA2EDS7. Our tool
MSA2EDS constructs ED strings from an MSA by simply collapsing
100% conserved columns (that is, columns with the same letter in all
variants) into solid letters in the ED string, and into sets of distinct
variants otherwise.

For all pairs h, k of these 31 SARS-CoV-2 clades, we
computed the Breakpoint Matching Statistics arrays BMSTk,Th

and BMSTh,Tk, and the consequent pairwise
similarity BMS(Tk, Th)8.

Figure 6 shows the graph generated using NetworkX’s spring_
layout toolkit (Hagberg et al., 2008) when given all pairwise BMS
among the 31 clades as input parameters. NetworkX’s algorithm
simulates a force-directed representation of the network, treating
nodes as repelling objects and edges as springs that hold the nodes
close according to the input similarity measures. The simulation
continues until the positions are close to an equilibrium, which
results in a graph in which closely-related (that is, similar according
to our BMS measure) clades are clustered together. We also
computed, for all pairs h, k of the clades, the Matching Statistics
arrays MSTk,Th and MSTh,Tk, and the consequent pairwise similarity

TABLE 3 ED strings with databases and VCF and sizes, and time (in seconds) required by Naïve and by EDSI for HLA data.

DB1 VCF1 N1 m1 DB2 VCF2 N2 m2 Naïve (s) EDSI (s)

1000G all 13,332 224 1000G SNP 13,247 161 1.25 0.05

TOPMed all 15,090 3,452 gNomad SNP 13,941 1785 2.11 1.06

gNomad all 14,436 2044 TOPMed SNP 14,355 3,170 2.10 1.13

TABLE 4 ED strings with databases and VCF and sizes, and time (in seconds) required by Naïve and by EDSI for ACTB data.

DB1 VCF1 N1 m1 DB2 VCF2 N2 m2 Naïve (s) EDSI (s)

1000G all 37,019 644 gNomad SNP 37,876 3,146 9.82 0.53

6 https://nextstrain.org/ncov/open/global/all-time

7 https://github.com/urbanslug/junctions

8 A complete table with all pairwiseBMS scores among clades is available at

the following url:https://github.com/urbanslug/junctions/blob/master/

test_data/SARS/CoV/2/BPMS/similarity.tsv.

Frontiers in Bioinformatics frontiersin.org11

Gabory et al. 10.3389/fbinf.2024.1397036

https://github.com/urbanslug/aedso
https://github.com/urbanslug/aedso
https://github.com/urbanslug/junctions/blob/master/test_data/human.org
https://github.com/urbanslug/junctions/blob/master/test_data/human.org
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://docs.nextstrain.org/en/latest/learn/parts.html
https://docs.nextstrain.org/en/latest/learn/parts.html
https://nextstrain.org/ncov/open/global/alltime
https://github.com/urbanslug/junctions/tree/master/test/_data/SARS/_CoV/_2
https://github.com/urbanslug/junctions/tree/master/test/_data/SARS/_CoV/_2
https://nextstrain.org/ncov/open/global/all-time
https://github.com/urbanslug/junctions
https://github.com/urbanslug/junctions/blob/master/test_data/SARS/CoV/2/BPMS/similarity.tsv
https://github.com/urbanslug/junctions/blob/master/test_data/SARS/CoV/2/BPMS/similarity.tsv
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

MS(Tk, Th). However, the graph built using NetworkX’s spring_
layout with the Matching Statistics similarity measures (data not
shown here) did not exhibit clade clusters as significant as those in
Figure 6 generated with the Breakpoint Matching Statistics
similarity.

As our annotation shows, the graph in Figure 6 sketches a
phylogenetic network of SARS-CoV-2 clades that essentially
reproduces the NextStrain phylogeny shown in Figure 7. The
former is a complete graph in which all edges are present, and
their length is related to our similarity measure (the closer, the
more similar); the latter is a typical unrooted phylogenetic tree
structure in which clades similarities group subpopulations
into subtrees (the closer the common ancestor is, the
more similar).

• 2019 clades. The two 2019 clades 19A and 19B, are very close
in Figure 6 (circled by a red cloud shape), and belong to the
same subtree in Figure 7 of the NextStrain phylogeny.

• Delta and Kappa variant clades. The three clades 21A, 21I
and 21J, which all belong to the Delta variant are clustered
together and highlighted by a (blue) cloud shape at the top of
Figure 6 as they turn out to have a higher similarity compared

to each other. The grouping of these clades reproduces that of
the NextStrain phylogeny shown in Figure 7, where the three
Delta clades are the cluster of blue branches at the bottom
right. Moreover, in both figures clade 21B of theKappa variant
is very close to the Delta variants.

• 20F, Gamma and Lambda variant clades. In the graph in
Figure 6, the 20F clade and the Lambda and Gamma variants
seem to be outliers, as they stand slightly away from everything
else. Indeed, by looking at the data and maps in NextStrain6, it
turns out that variant gamma is, in fact, peculiar, as it has
lasted over a year with a quite regular but limited incidence,
and checking its location on the world map of NextStrain6, we
can actually see that it was diffused almost exclusively in South
America, thus explaining its isolated position in our graph.
Similarly, the Lambda variant has only been observed in
western South America. Finally, clade 20F turns out to
have been observed basically only in center Australia. These
type of isolated clades are also highlighted as independent of
each other in Figure 7, where subtrees that include their
sample are all rooted in the main thick branch of the
phylogeny (as it is better visible in NextStrain6 than
in Figure 7).

TABLE 5 ED strings with databases and VCF and sizes, and time (in seconds) required by Naïve and by EDSI for a fragment of data.

DB1 VCF1 N1 m1 DB2 VCF2 N2 m2 Naïve (s) EDSI (s)

1000G all 100,951 3,730 1000G SNP 101,252 2,753 73 1.12

TOPMed all 113,111 21,253 TOPMed SNP 108,669 18,931 99.04 21.44

gNomad all 130,918 42,572 gNomad SNP 117,793 38,877 150.72 109.83

FIGURE 6
SARS-CoV-2 clades pairwise similarity graph generated according to average Breakpoint Matching Statistics. The annotation (all non grey nor black
graphics and text) highlights similarities with Figure 7.

Frontiers in Bioinformatics frontiersin.org12

Gabory et al. 10.3389/fbinf.2024.1397036

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

• Alpha variant clade. The alpha variant of SARS-CoV-2 has
spread worldwide, with a high incidence for over 2 years. In
Figure 7 its many samples all lay in a subtree rooted (like those
of the Gamma and Lambda variants) directly at the main
branch of the phylogeny; accordingly, in the graph of Figure 6,
the node corresponding to the Alpha variant pangenome is
not specifically close to any other clade.

• 2020 clades. Apart from the aforementioned variants, not
surprisingly, all the other 2020 clades appear in Figure 6 and
are all clustered in the center of the graph.

• 2022 and 2023 clades. Finally, the late variants of
2023 and their 2022 ancestors are all clustered at the
top right of our graph, again highlighted by a cloud
(yellow) shape. This is again in agreement with the
NextStrain phylogeny, as we observe these clades at the
top of Figure 7. In both figures, we also observe that two
2021 clades appear as outliers inside (21L) or close to
(21K) the areas of these late variants (they are pointed by
green arrows in both figures).

Thus, we can conclude that ourBMS similarity measure allowed us
to reproduce the clade clustering of an established phylogeny for SARS-
CoV-2 data. For the computing performance, for each pair of clades, we
recorded the CPU time required to build the two ED strings out of the
MSAs, compute their intersection graph, and compute the BMS array

and its average. The 465 pairwise similarity computations required 17 h of
CPU time in total and 2min on average (30 min for the slowest pair); we
remark that these computations can be performed in parallel. Memory
usage ranged from 22MB to 361 MB. These values show the moderate
resource requirements of ourmethods.9 These experiments were run on a
DELL PowerEdge R750 machine, used in non-exclusive mode, with
2 Intel(R) Xeon(R) Gold 5318Y CPUs, each running at 2.10 GHz and
using 24 physical cores (and 48 hyperthreading cores). Themainmemory
is shared and is of size 992 GB. The operating system used is
Ubuntu 22.04.2 LTS.

4 Future work

We plan to investigate methods for local comparison of ED
strings, that is, devising efficient methods to find fragments that are
common to two or more ED strings (like the fragments we detect
with Matching Statistics) but that are not necessarily identical in all
of their occurrences (unlike those we detect with Matching
Statistics). This could be achieved by means of a preliminary

FIGURE 7
Phylogeny of 3357 SARS-CoV-2 genomes samples. The figure is generated and downloaded from Nextstrain https://nextstrain.org/ncov/open/
global/all-time (2024), and some annotation is added here to highlight similarities with the graph of Figure 6.

9 Precise measurements are listed here: https://github.com/urbanslug/

junctions/blob/master/test_data/covid.org.

Frontiers in Bioinformatics frontiersin.org13

Gabory et al. 10.3389/fbinf.2024.1397036

https://nextstrain.org/ncov/open/global/all-time
https://nextstrain.org/ncov/open/global/all-time
https://github.com/urbanslug/junctions/blob/master/test_data/covid.org
https://github.com/urbanslug/junctions/blob/master/test_data/covid.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

preprocessing filtering step such as those of Peterlongo et al. (2009)
for edit distance and Peterlongo et al. (2005), (2008) for Hamming
distance. This filtering step could possibly be paired with suitable
notions of maximality in frequency (Federico and Pisanti, 2009) or
in conservation (Grossi et al., 2009; 2011) for the common fragments
in order to avoid redundancy in the output results.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

EG: Writing–original draft, Writing–review and editing. MM:
Writing–original draft, Writing–review and editing. NP:
Writing–original draft, Writing–review and editing. SP:
Writing–original draft, Writing–review and editing. JR:
Writing–original draft, Writing–review and editing. MS:
Writing–original draft, Writing–review and editing. WZ:
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was partially supported by the PANGAIA, ALPACA and
NETWORKS projects that have received funding from the

European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant
agreements No. 872539, 956229 and 101034253, respectively.
Nadia Pisanti was partially supported by MUR PRIN
2022 YRB97K PINC and by NextGeneration EU programme
PNRR ECS00000017 Tuscany Health Ecosystem. Jakub
Radoszewski was supported by the Polish National Science
Center, grant no. 2022/46/E/ST6/00463.

Acknowledgments

We are also very grateful to NextStrain for maintaining and
allowing access to their platform and the reports therein.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alzamel, M., Ayad, L. A. K., Bernardini, G., Grossi, R., Iliopoulos, C. S., Pisanti, N.,
et al. (2018). “Degenerate string comparison and applications,”. 18th international
workshop on algorithms in bioinformatics, WABI 2018, August 20-22, 2018, Helsinki,
Finland. Editors L. Parida and E. Ukkonen (Schloss Dagstuhl: LIPIcs), 21, 1–21:14.
113 of LIPIcs. doi:10.4230/LIPIcs.WABI.2018.21

Alzamel, M., Ayad, L. A. K., Bernardini, G., Grossi, R., Iliopoulos, C. S., Pisanti, N.,
et al. (2020). Comparing degenerate strings. Fundam. Inf. 175, 41–58. doi:10.3233/FI-
2020-1947

Aoyama, K., Nakashima, Y., I, T., Inenaga, S., Bannai, H., and Takeda, M. (2018). “Faster
online elastic degenerate string matching,”. Annual symposium on combinatorial pattern
matching, CPM 2018, july 2-4, 2018 - qingdao, China. Editors G. Navarro, D. Sankoff, and
B. Zhu (Schloss Dagstuhl: LIPIcs), 9, 1–9:10. doi:10.4230/LIPIcs.CPM.2018.9

Apostolico, A., Guerra, C., Landau, G. M., and Pizzi, C. (2016). Sequence similarity
measures based on bounded hamming distance. Theor. Comput. Sci. 638, 76–90. doi:10.
1016/J.TCS.2016.01.023

Apostolico, A., Guerra, C., and Pizzi, C. (2014). “Alignment free sequence similarity
with bounded hamming distance,” in Data compression conference, DCC 2014,
snowbird, UT, USA, 26-28 march, 2014. Editors A. Bilgin, M. W. Marcellin, J. Serra-
Sagristà, and J. A. Storer (IEEE), 183–192. doi:10.1109/DCC.2014.57

Baaijens, J. A., Bonizzoni, P., Boucher, C., Vedova, G. D., Pirola, Y., Rizzi, R., et al.
(2022). Computational graph pangenomics: a tutorial on data structures and their
applications. Nat. Comput. 21, 81–108. doi:10.1007/s11047-022-09882-6

Baudet, C., Lemaitre, C., Dias, Z., Gautier, C., Tannier, E., and Sagot, M. (2010).
Cassis: detection of genomic rearrangement breakpoints. Bioinform 26, 1897–1898.
doi:10.1093/bioinformatics/btq301

Bernardini, G., Gawrychowski, P., Pisanti, N., Pissis, S. P., and Rosone, G. (2019).
“Even faster elastic-degenerate string matching via fast matrix multiplication,”. 46th
international colloquium on automata, languages, and programming, ICALP 2019,
july 9-12, 2019, patras, Greece. Editors C. Baier, I. Chatzigiannakis, P. Flocchini, and

S. Leonardi (Schloss Dagstuhl: LIPIcs), 21, 1–21:15. doi:10.4230/LIPIcs.ICALP.
2019.21

Bernardini, G., Gawrychowski, P., Pisanti, N., Pissis, S. P., and Rosone, G. (2022).
Elastic-degenerate string matching via fast matrix multiplication. SIAM J. Comput. 51,
549–576. doi:10.1137/20M1368033

Bernardini, G., Pisanti, N., Pissis, S., and Rosone, G. (2017). “Pattern matching on
elastic-degenerate text with errors,” in 24th international symposium on string
processing and information retrieval (SPIRE), 74–90. doi:10.1007/978-3-319-67428-
5_7

Bernardini, G., Pisanti, N., Pissis, S. P., and Rosone, G. (2020). Approximate pattern
matching on elastic-degenerate text. Theor. Comput. Sci. 812, 109–122. doi:10.1016/j.
tcs.2019.08.012

Bonizzoni, P., Dondi, R., Klau, G. W., Pirola, Y., Pisanti, N., and Zaccaria, S.
(2016). On the minimum error correction problem for haplotype assembly in
diploid and polyploid genomes. J. Comput. Biol. 23, 718–736. doi:10.1089/cmb.
2015.0220

Büchler, T., Olbrich, J., and Ohlebusch, E. (2023). Efficient short read mapping to a
pangenome that is represented by a graph of ED strings. Bioinformatics 39, btad320.
doi:10.1093/bioinformatics/btad320

Carletti, V., Foggia, P., Garrison, E., Greco, L., Ritrovato, P., and Vento, M. (2019).
“Graph-based representations for supporting genome data analysis and visualization:
opportunities and challenges,” in Graph-based representations in pattern recognition -
12th IAPR-TC-15 international workshop, GbRPR 2019, tours, France, june 19-21, 2019,
proceedings. Editors D. Conte, J. Ramel, and P. Foggia (Springer), 237–246. 11510 of
Lecture Notes in Computer Science. doi:10.1007/978-3-030-20081-7_23

Cisłak, A., Grabowski, S., and Holub, J. (2018). SOPanG: online text searching over a
pan-genome. Bioinformatics 34, 4290–4292. doi:10.1093/bioinformatics/bty506

Crux, N. B., and Elahi, S. (2017). Human leukocyte antigen (HLA) and immune
regulation: how do classical and non-classical HLA alleles modulate immune response

Frontiers in Bioinformatics frontiersin.org14

Gabory et al. 10.3389/fbinf.2024.1397036

https://doi.org/10.4230/LIPIcs.WABI.2018.21
https://doi.org/10.3233/FI-2020-1947
https://doi.org/10.3233/FI-2020-1947
https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://doi.org/10.1016/J.TCS.2016.01.023
https://doi.org/10.1016/J.TCS.2016.01.023
https://doi.org/10.1109/DCC.2014.57
https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1093/bioinformatics/btq301
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.1137/20M1368033
https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1089/cmb.2015.0220
https://doi.org/10.1089/cmb.2015.0220
https://doi.org/10.1093/bioinformatics/btad320
https://doi.org/10.1007/978-3-030-20081-7_23
https://doi.org/10.1093/bioinformatics/bty506
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

to human immunodeficiency virus and hepatitis C virus infections? Front. Immunol. 8,
832. doi:10.3389/fimmu.2017.00832

Eizenga, J. M., Novak, A. M., Kobayashi, E., Villani, F., Cisar, C., Heumos, S., et al.
(2021). Efficient dynamic variation graphs. Bioinform 36, 5139–5144. doi:10.1093/
bioinformatics/btaa640

Equi, M., Mäkinen, V., Tomescu, A. I., and Grossi, R. (2023). On the complexity of
string matching for graphs. ACM Trans. Algorithms 19 (21), 1–25. doi:10.1145/3588334

Federico, M., and Pisanti, N. (2009). Suffix tree characterization of maximal motifs in
biological sequences. Theor. Comput. Sci. 410, 4391–4401. doi:10.1016/J.TCS.2009.
07.020

Gabory, E., Mwaniki, N. M., Pisanti, N., Pissis, S. P., Radoszewski, J., Sweering, M.,
et al. (2023). “Comparing elastic-degenerate strings: algorithms, lower bounds, and
applications,”. 34th annual symposium on combinatorial pattern matching, CPM 2023,
june 26-28, 2023, marne-la-vallée, France. Editors L. Bulteau and Z. Lipták (Schloss
Dagstuhl: LIPIcs), 11, 1–1120. doi:10.4230/LIPIcs.CPM.2023.11

Gao, Y., Liu, Y., Ma, Y., Liu, B., Wang, Y., and Xing, Y. (2020). abPOA: an SIMD-
based C library for fast partial order alignment using adaptive band. Bioinformatics 37,
2209–2211. doi:10.1093/bioinformatics/btaa963

Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T.,
et al. (2018a). Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nat. Biotechnol. 36, 875–879. doi:10.1038/nbt.
4227

Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T., et al.
(2018b). Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nat. Biotechnol. 36, 875–879. doi:10.1038/nbt.4227

Gibney, D., Thankachan, S. V., and Aluru, S. (2022). On the hardness of sequence
alignment on de bruijn graphs. J. Comput. Biol. 29, 1377–1396. doi:10.1089/cmb.2022.
0411

Grossi, R., Iliopoulos, C. S., Liu, C., Pisanti, N., Pissis, S. P., Retha, A., et al. (2017).
“On-line pattern matching on similar texts,”. 28th annual symposium on combinatorial
pattern matching, CPM 2017, july 4-6, 2017, Warsaw, Poland. Editors J. Kärkkäinen,
J. Radoszewski, andW. Rytter (Schloss Dagstuhl: LIPIcs), 9, 1–9:14. doi:10.4230/LIPIcs.
CPM.2017.9

Grossi, R., Pietracaprina, A., Pisanti, N., Pucci, G., Upfal, E., and Vandin, F. (2009).
“MADMX: a novel strategy for maximal dense motif extraction,” in Algorithms in
bioinformatics, 9th international workshop, WABI 2009, Philadelphia, PA, USA,
september 12-13, 2009. Proceedings. Editors S. Salzberg and T. J. Warnow (Springer),
362–374. 5724 of Lecture Notes in Computer Science. doi:10.1007/978-3-642-04241-
6_30

Grossi, R., Pietracaprina, A., Pisanti, N., Pucci, G., Upfal, E., and Vandin, F. (2011).
MADMX: a strategy for maximal dense motif extraction. J. Comput. Biol. 18, 535–545.
doi:10.1089/CMB.2010.0177

Gusfield, D. (1997). Algorithms on strings, trees, and sequences - computer science and
computational biology. Cambridge University Press. doi:10.1017/cbo9780511574931

Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., et al.
(2018). Nextstrain: real-time tracking of pathogen evolution. Bioinform 34, 4121–4123.
doi:10.1093/bioinformatics/bty407

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). “Exploring network structure,
dynamics, and function using networkx,” in Proceedings of the 7th Python in science
conference. Editors G. Varoquaux, T. Vaught, and J. Millman (Pasadena, CA USA),
11–15.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2003). Introduction to automata
theory, languages, and computation - international edition. 2nd Edition. Addison-
Wesley.

Iliopoulos, C. S., Kundu, R., and Pissis, S. P. (2021). Efficient pattern matching in
elastic-degenerate strings. Inf. Comput. 279, 104616. doi:10.1016/j.ic.2020.104616

Jain, C., Zhang, H., Gao, Y., and Aluru, S. (2020). On the complexity of sequence-to-
graph alignment. J. Comput. Biol. 27, 640–654. doi:10.1089/cmb.2019.0066

Lawson, M. V. (2004). Finite automata. Chapman and Hall/CRC.

Leimeister, C., and Morgenstern, B. (2014). kmacs: the k-mismatch average common
substring approach to alignment-free sequence comparison. Bioinform 30, 2000–2008.
doi:10.1093/bioinformatics/btu331

Li, H., Feng, X., and Chu, C. (2020). The design and construction of reference pangenome
graphs with minigraph. Genome Biol. 21, 265. doi:10.1186/s13059-020-02168-z

Liao,W.-W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., et al. (2023). A draft
human pangenome reference. Nature 617, 312–324. doi:10.1038/s41586-023-05896-x

Mwaniki, N. M., Garrison, E., and Pisanti, N. (2023). “Fast exact string to D-texts
alignments,” in Proceedings of the 16th international joint conference on biomedical
engineering systems and Technologies, BIOSTEC 2023, volume 3: BIOINFORMATICS,
Lisbon, Portugal, february 16-18, 2023. Editors H. Ali, N. Deng, A. L. N. Fred, and
H. Gamboa, 70–79. doi:10.5220/0011666900003414

Mwaniki, N. M., and Pisanti, N. (2022). “Optimal sequence alignment to ED-strings,”
in Bioinformatics research and applications - 18th international symposium, ISBRA
2022, haifa, Israel, november 14-17, 2022, proceedings. Editors M. S. Bansal, Z. Cai, and
S. Mangul (Springer), 204–216. 13760 of Lecture Notes in Computer Science. doi:10.
1007/978-3-031-23198-8_19

Paten, B., Novak, A. M., Eizenga, J. M., and Garrison, E. (2017). Genome graphs and the
evolution of genome inference. Genome Res. 27, 665–676. doi:10.1101/gr.214155.116

Peterlongo, P., Pisanti, N., Boyer, F., do Lago, A. P., and Sagot, M. (2008). Lossless
filter for multiple repetitions with hamming distance. J. Discrete Algorithms 6, 497–509.
doi:10.1016/J.JDA.2007.03.003

Peterlongo, P., Pisanti, N., Boyer, F., and Sagot, M. (2005). “Lossless filter for finding
long multiple approximate repetitions using a new data structure, the bi-factor array,” in
String processing and information retrieval, 12th international conference, SPIRE 2005,
Buenos Aires, Argentina, november 2-4, 2005, proceedings. Editors M. P. Consens and
G. Navarro (Springer), 179–190. 3772 of Lecture Notes in Computer Science. doi:10.
1007/11575832_20

Peterlongo, P., Sacomoto, G. A. T., do Lago, A. P., Pisanti, N., and Sagot, M. (2009).
Lossless filter for multiple repeats with bounded edit distance. Algorithms Mol. Biol. 4, 3.
doi:10.1186/1748-7188-4-3

Pissis, S. P., and Retha, A. (2018). “Dictionary matching in elastic-degenerate texts
with applications in searching VCF files on-line,”. 17th international symposium on
experimental algorithms, SEA 2018, june 27-29, 2018, L’aquila, Italy. Editor G. D’Angelo
(Schloss Dagstuhl: LIPIcs), 16, 1–16:14. doi:10.4230/LIPIcs.SEA.2018.16

Pizzi, C. (2016). Missmax: alignment-free sequence comparison with mismatches through
filtering and heuristics. Algorithms Mol. Biol. 11, 6. doi:10.1186/S13015-016-0072-X

Rakocevic, G., Semenyuk, V., Lee, W.-P., Spencer, J., Browning, J., Johnson, I. J., et al.
(2019). Fast and accurate genomic analyses using genome graphs. Nat. Genet. 51,
354–362. doi:10.1038/s41588-018-0316-4

Rautiainen, M., Mäkinen, V., andMarschall, T. (2019). Bit-parallel sequence-to-graph
alignment. Bioinform 35, 3599–3607. doi:10.1093/bioinformatics/btz162

Rautiainen, M., and Marschal, T. (2020). GraphAligner: rapid and versatile sequence-
to-graph alignment. Genome Biol. 21, 253. doi:10.1186/s13059-020-02157-2

Romero-Sánchez, C., Hernández, N., Chila-Moreno, L., Jiménez, K., Padilla, D., Bello-
Gualtero, J. M., et al. (2021). HLA-B allele, genotype, and haplotype frequencies in a group of
healthy individuals in Colombia. J. Clin. Rheumatol. 27, S148–S152. doi:10.1097/rhu.
0000000000001671

Sankoff, D., and Blanchette, M. (1998). Multiple genome rearrangement and
breakpoint phylogeny. J. Comput. Biol. 5, 555–570. doi:10.1089/cmb.1998.5.555

Thankachan, S. V., Chockalingam, S. P., Liu, Y., Krishnan, A., and Aluru, S. (2017). A
greedy alignment-free distance estimator for phylogenetic inference. BMC Bioinform 18
(238), 238–8. doi:10.1186/s12859-017-1658-0

The Computational Pan-Genomics Consortium (2018). Computational pan-
genomics: status, promises and challenges. Briefings Bioinforma. 19, 118–135. doi:10.
1093/bib/bbw089

Ulitsky, I., Burstein, D., Tuller, T., and Chor, B. (2006). The average common
substring approach to phylogenomic reconstruction. J. Comput. Biol. 13, 336–350.
doi:10.1089/cmb.2006.13.336

Frontiers in Bioinformatics frontiersin.org15

Gabory et al. 10.3389/fbinf.2024.1397036

https://doi.org/10.3389/fimmu.2017.00832
https://doi.org/10.1093/bioinformatics/btaa640
https://doi.org/10.1093/bioinformatics/btaa640
https://doi.org/10.1145/3588334
https://doi.org/10.1016/J.TCS.2009.07.020
https://doi.org/10.1016/J.TCS.2009.07.020
https://doi.org/10.4230/LIPIcs.CPM.2023.11
https://doi.org/10.1093/bioinformatics/btaa963
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1089/cmb.2022.0411
https://doi.org/10.1089/cmb.2022.0411
https://doi.org/10.4230/LIPIcs.CPM.2017.9
https://doi.org/10.4230/LIPIcs.CPM.2017.9
https://doi.org/10.1007/978-3-642-04241-6_30
https://doi.org/10.1007/978-3-642-04241-6_30
https://doi.org/10.1089/CMB.2010.0177
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.1016/j.ic.2020.104616
https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1093/bioinformatics/btu331
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.5220/0011666900003414
https://doi.org/10.1007/978-3-031-23198-8_19
https://doi.org/10.1007/978-3-031-23198-8_19
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1016/J.JDA.2007.03.003
https://doi.org/10.1007/11575832_20
https://doi.org/10.1007/11575832_20
https://doi.org/10.1186/1748-7188-4-3
https://doi.org/10.4230/LIPIcs.SEA.2018.16
https://doi.org/10.1186/S13015-016-0072-X
https://doi.org/10.1038/s41588-018-0316-4
https://doi.org/10.1093/bioinformatics/btz162
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1097/rhu.0000000000001671
https://doi.org/10.1097/rhu.0000000000001671
https://doi.org/10.1089/cmb.1998.5.555
https://doi.org/10.1186/s12859-017-1658-0
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1089/cmb.2006.13.336
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1397036

	Pangenome comparison via ED strings
	1 Introduction
	2 Methods
	2.1 ED strings intersection
	2.2 The intersection graph
	2.3 Matching statistics for ED strings
	2.3.1 ED matching statistics
	2.3.2 Breakpoint Matching Statistics

	2.4 Our measures for comparing pangenomes

	3 Experiments
	3.1 Efficiency on simulated data
	3.2 Efficiency on human genome data
	3.3 Similarity of SARS-CoV-2 clades

	4 Future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

