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Introduction: Gene set enrichment analysis (GSEA) subsequent to differential
expression analysis is a standard step in transcriptomics and proteomics data
analysis. Although many tools for this step are available, the results are often
difficult to reproduce because set annotations can change in the databases, that
is, new features can be added or existing features can be removed. Finally, such
changes in set compositions can have an impact on biological interpretation.

Methods: We present bootGSEA, a novel computational pipeline, to study the
robustness of GSEA. By repeating GSEA based on bootstrap samples, the
variability and robustness of results can be studied. In our pipeline, not all genes
or proteins are involved in the different bootstrap replicates of the analyses. Finally,
we aggregate the ranks from the bootstrap replicates to obtain a score per gene set
that shows whether it gains or loses evidence compared to the ranking of the
standardGSEA. Rank aggregation is also used to combineGSEA results fromdifferent
omics levels or from multiple independent studies at the same omics level.

Results: By applying our approach to six independent cancer transcriptomics
datasets, we showed that bootstrap GSEA can aid in the selection of more robust
enriched gene sets. Additionally, we applied our approach to paired
transcriptomics and proteomics data obtained from a mouse model of spinal
muscular atrophy (SMA), a neurodegenerative and neurodevelopmental disease
associated with multi-system involvement. After obtaining a robust ranking at
both omics levels, both ranking lists were combined to aggregate the findings
from the transcriptomics and proteomics results. Furthermore, we constructed
the new R-package “bootGSEA,” which implements the proposed methods and
provides graphical views of the findings. Bootstrap-based GSEA was able in the
example datasets to identify gene or protein sets that were less robust when the
set composition changed during bootstrap analysis.

Discussion: The rank aggregation stepwas useful for combining bootstrap results
andmaking them comparable to the original findings on the single-omics level or
for combining findings from multiple different omics levels.
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1 Introduction

Set-based enrichment methods are an integral part of the
analysis of high-throughput expression data, such as those
originating from transcriptomics or proteomics experiments.
Enrichment methods allow the identification of molecular
pathways, Gene Ontology (GO) terms, and other gene sets that
might play a role in the disease of interest. Most enrichment
methods are subsequently conducted for differential expression
analysis; that is, they rely on the ranking of genes after
comparing two groups of samples. Statistical tests are used to
determine whether the genes of a particular set are
disproportionately highly enriched among the differentially
expressed genes (DEGs) (Beissbarth and Speed, 2004;
Subramanian et al., 2005; Ackermann and Strimmer, 2009). This
contrasts with self-contained gene set tests, which are based on
subsets of expression data related to a particular gene set (Goeman
et al., 2004; Hummel et al., 2008; Jung et al., 2011; Bayerlová
et al., 2015).

Set information for enrichment analyses is usually obtained from
public databases, for example, on molecular pathways or GO terms.
The most commonly used databases are the “Reactome pathway
knowledgebase” (Fabregat et al., 2016) (https://reactome.org/), “Kyoto
Encyclopedia of Genes and Genomes” (Kanehisa and Goto, 2000)
(KEGG; https://www.genome.jp/kegg/), “WikiPathways” database
(Kelder et al., 2012) (https://www.wikipathways.org), “GO”
knowledgebase (Consortium, 2004) (http://geneontology.org/), and
the “Molecular Signatures Database” (Liberzon et al., 2011) (MSigDB;
https://www.gsea-msigdb.org/gsea/msigdb). In the GO database, a
particular GO term comprises a set of genes that can be assigned
to a biological process (BP), molecular function (MF), or cellular
component (CC).

The contents of the databases are curated either automatically by
computer algorithms or manually by experts (Consortium, 2004).
Specifically, WikiPathways provides community-based curation by
registered contributors (Kelder et al., 2012). An example of a
database where curation is done both ways, manually and
computationally, is the MSigDB. Furthermore, pathway
membership can be experimentally validated or predicted
computationally. However, none of the modes of curation can
prevent the uncertainties remaining regarding the membership of
individual genes to a particular pathway (Gillis and Pavlidis, 2013).
This is important because all enrichment analyses rely on the
correctness of the database information, and the results of
enrichment analyses would change if features of a set are
removed or added. This can especially happen when the database
information is retrieved at different times. For example, the GO
database contained 42,442 terms classified as valid and
5,287 classified as obsolete in January 2024. Two months before,
only 4,889 terms were classified as obsolete, meaning that nearly
400 terms would have to be reconsidered when a Gene-set
enrichment analysis (GSEA) is performed after January 2024. In
addition, the WikiPathways database reports roughly between
100 and 700 edits per month. Furthermore, in the KEGG
database, complete pathways can be merged, leading to a large
number of changes. For example, the KEGG pathway map00471 has
been deleted and then added to the KEGG pathway map00470 (“D-
amino acid metabolism”).

In this work, we present bootGSEA as a novel bootstrap
approach to repeatedly sample subsets of pathways or other gene
sets to study whether a result remains significant when the set
composition is changed. The ranking lists of the gene sets obtained
from each bootstrap replicate were aggregated using a score that can
be used for a new ranking list. The analyst can then compare the
original ranking with the bootstrap-based ranking list to study
whether the association of a pathway or GO term with the
disease gains or loses evidence. A similar approach was proposed
by Schmid et al. (2016), who generated a robustness score for each
gene set using random subsets of gene sets. In contrast to their
approach, our method results in a new ranking of gene sets that can
be helpful in aggregating findings from different independent
studies or different omics levels. Thus, our approach for multi-
omics follows the idea of aggregating the different omics levels after
performing primary analysis on the individual levels first. This way
of multi-omics analysis has also been implemented in other studies.
For example, Wang et al. (2014) fused networks that were first
derived on individual omics levels, Xiong et al. (2012) integrated
genetic and transcriptomics results in a joint score, and Kang et al.
(2022) fitted neural networks from individual omics levels and
merged them into a joint model.

We also demonstrated that this method is useful for aggregating the
results of enrichment analysis fromdifferent omics domains in the same
experiment. We applied our new bootstrap pipeline to a single-omics
scenario (transcriptomics only) comprising six independent renal
cancer datasets. This example was used to show how our bootstrap
pipeline can help study the robustness of GSEAwhen comparing results
from multiple independent datasets from studies on a similar research
question. In addition, we analyzed our multi-omics kidney data
(transcriptomics and proteomics) from our research consortium on
spinal muscular atrophy (SMA). The data were obtained from a SMA
mouse model to demonstrate the usefulness of our approach when
comparing GSEA results between different omics levels. SMA is a
monogenic disease caused by the mutation or deletion of the survival
motor neuron 1 (SMN1) gene (Lefebvre et al., 1995). The disease is
characterized by the degeneration of motoneurons, with the subsequent
atrophy of skeletal muscles to muscular atrophy since the SMN affects
all tissues, which also include non-skeletal muscles. Moreover, SMA is a
multi-system disorder that also affects peripheral organs, such as the
kidney (Allardyce et al., 2020). Three treatment methods are available,
all increasing SMN expression. The SMN is expressed ubiquitously and
has several important cellular functions, including snRNP assembly,
R-loop resolution, and regulation of the actin cytoskeleton and
translation (Hensel et al., 2020). Therefore, SMA is a highly
complex disease with expected dysregulations in pathways in several
cell types and on several molecular levels.

2 Methods

In this section, we describe the analysis pipeline, including the
approach for the bootstrap step used to repeatedly analyze different
random subsets of the data. Furthermore, the rank aggregation step
and examples of transcriptomics and proteomics data are presented.
The complete workflow is shown in Figure 1. All the analyses were
implemented in the R programming environment [www.r-project.
org, version 4.2 (R Core Team, 2022)].
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2.1 Differential expression analysis and
bootstrap method for Gene-set
enrichment analysis

Prior to enrichment analysis, differential expression analysis was
performed on normalized expression data from different groups of
interest (for example, disease vs. control) to obtain the ranks of genes
and proteins. For the microarray and proteomics data,
normalization was performed using the quantile method (Bolstad
et al., 2003; Välikangas et al., 2018; Zhao et al., 2020), and for the
RNA-seq data, the internal normalization of the DESeq method of
the R package “DESeq2” was used (Love et al., 2014). Differential
analysis of the proteomics data was performed using the
functionality of the R package “limma” (Ritchie et al., 2015), and
differential analysis of the RNA-seq data was done using the R
package “DESeq2” (spinal muscular atrophy data) and microarray
data using “limma” (Ritchie et al., 2015) (renal cell carcinoma
datasets).Next, enrichment analysis based on the results of the
differential expression analysis was initially performed using the
complete dataset, that is, using all genes or proteins that were
assigned to a particular gene set according to the database
information. We denote this as the original analysis. Gene sets

were defined based on pathway data from the KEGG, Reactome, and
WikiPathways databases, as well as GO terms. KEGG, Reactome,
andWikiPathways enrichment analyses were performed using the R
package “clusterProfiler” (Wu et al., 2021), and GO term enrichment
analyses were performed using the R package “topGO” (Alexa and
Rahnenführer, 2009). The enrichment analyses in “clusterProfiler”
implement the methods described by Subramanian et al. (2005),
which are independent of thresholds for differentially expressed
features. In contrast, the “topGO” method uses a threshold but has
the advantage of incorporating information about the hierarchy of
GO terms.

To study the variability and robustness of the outcome of the
enrichment analysis, B bootstrap samples were drawn using only
95% of all the genes in each run. The genes were randomly drawn
without replacement. GSEA was repeated for these randomly
selected subsets of genes B times, where B is the number of times
the whole set was resampled. The composition of the defined gene
sets changed when bootstrapping from the gene sets was performed.
Consequently, the composition of the gene sets was different for
each bootstrap run. Thus, the effect of individual genes was also
reflected in this approach. From this bootstrap procedure, B ranking
lists of the gene sets were obtained.

FIGURE 1
Workflow of the analysis pipeline for bootstrap enrichment analysis at the single-omics level and the steps for single- and multi-omics rank
aggregation. For the data obtained from each omics domain (transcriptomics and proteomics data), Gene-set enrichment analysis (GSEA) is performed
after differential expression analysis using all data (original standard analysis). Next, gene set enrichment analysis is performed on subsets of data based on
bootstrap samples. Finally, the different rankings of the GO terms or pathways can be integrated not only within each omics level but also across all
omics levels. The robustness of gene set enrichment analysis can be studied by comparing the original results with either single- or multi-omics results.

Frontiers in Bioinformatics frontiersin.org03

Hemandhar Kumar et al. 10.3389/fbinf.2024.1380928

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1380928


2.2 Rank aggregation for single- and multi-
omics analyses

The resulting enrichment analysis from the B bootstrap runs
with B lists of GO terms was aggregated using the R package
“RobustRankAggreg” (Kolde et al., 2012). The aggregation score
for each pathway was obtained based on the number of occurrences
and the ranks from each bootstrap run. The aggregation score was
further transformed into a rank for each pathway. To study the
robustness of the original findings, the rank obtained from the
aggregated score can be compared with the actual analysis, that is,
the analysis without a bootstrap step.

For multi-omics data, original and bootstrap enrichment
analyses were first performed for each omics domain, resulting in
one list of aggregated ranks per domain. The aggregated scores from
each omics domain were further aggregated. In one of our data
examples, enrichment analysis was performed separately for the
transcriptomics and proteomics data, and both ranking lists were
aggregated into one final ranking list. Thus, the final multi-omics
score for each pathway or GO term was obtained.

2.3 R package: bootGSEA

The workflow shown in Figure 1 has been compiled and
implemented in the new R package “bootGSEA” available at the
GitHub repository (https://github.com/klausjung-hannover/
bootGSEA). The input requires the results of differential
expression analysis. The package currently has eight functions.
The functions boot.GO and boot.pathway are used for GO and
pathway enrichment analyses, respectively, of the complete data
(original analysis) and of bootstrapped data samples, and aggr.boot.
GO and aggr.boot.pathway are used for the rank aggregation of
pathways obtained from the former functions. In the functions boot.
GO and boot.pathway, the user can specify which percentage of
features should be drawn during the bootstrap runs. Furthermore, to
understand the robustness of pathways at a broader level, we used a
multi-omics approach by aggregating ranks from individual omics
levels using the aggr.multiomics function. In addition, three
functions are provided to visualize these results and study the
robustness of the findings. Examples of these visualizations are
presented in Section 3. The function compareRank was
implemented to compare the original and bootstrapped results at
a single-omics level, the function plotRank, for both single- and
multi-omics levels, and the function histDiff to understand the rank
difference between original and bootstrap analyses.

2.4 Example data 1: transcriptomics data
from a renal cancer study

The gene expression profiles of renal cell carcinoma (RCC)
datasets (GSE6344 (Copland, 2008), GSE14762 (Dykema and Furge,
2009), GSE11024 (Kort, 2008), GSE14994 (Signoretti and
Beroukhim, 2010), GSE53757 (John Copland et al., 2014), and
GSE15641 (Jones et al., 2005)) were downloaded from the Gene
Expression Omnibus (GEO) database using the GEOquery (Davis
and Meltzer, 2007) package in the R platform. Detailed information

about the datasets, including platform and sample size, is given in
Table 1. Differential expression analysis was performed using the
limma (Ritchie et al., 2015) package in R. DEGs were screened based
on FDR-adjusted p-values < 0.05 as the cut-off value for all datasets.
The results from the differential analysis were further analyzed
following the pipeline shown in Figure 1 at the single-omics level.

2.5 Example data 2: transcriptomics and
proteomics data from a study on SMA

Severe (“Taiwanese”) SMA mice [(FVB.Cg-Tg (SMN2)2Hung
Smn1tm1Hung/J)] (Hsieh-Li et al., 2000) were bred by an
established breeding scheme (Riessland et al., 2010), resulting in a
litter of half SMA mice (tgSMN2tg/0, mSmn1−/−) and half control
mice (tgSMN2tg/0, mSmn1+/−). For analysis, the animals were
euthanized by decapitation on pre-symptomatic post-natal day 3
(P3), and a tail tip biopsy was taken for genotyping, as described
previously (Hensel et al., 2012). The kidneys were dissected, snap-
frozen in liquid nitrogen, and stored at −80°C until analysis. Tissue
was lyzed either for RNA-seq or for proteomics analyses, respectively,
as described previously (Allardyce et al., 2020; Hensel et al., 2021),
using total organ and total RNA. All animal experiments were
conducted in accordance with the German Animal Welfare law
and approved by the Ministry of Food, Agriculture, and Consumer
Protection of Lower Saxony (LAVES file no. 19/3309).

The datasets including 54,146 mRNA transcripts and
7,959 proteins from the kidney samples of severe SMA and
heterozygous control littermates were used for analysis. These data
were used to evaluate our new bootstrap and rank aggregation
approach in view of multi-omics data. Transcriptomic data
included two control and two SMA-pooled samples, and
proteomics data included four control and four SMA samples.
Differential expression analysis was performed for the
transcriptomic and proteomic data based on the control and SMA
groups. These differentially expressed genes and proteins were further
analyzed to determine the enriched pathways and GO terms using the
pipeline (Figure 1).

3 Results

The bootGSEA pipeline used the results from the differential
expression analysis as input, and GSEA was performed separately
for the following types of gene sets: GO terms (BP, MF, and CC),
KEGG, Reactome, and WikiPathways databases. The enrichment
analysis performed in this pipeline provided two ranking lists of
gene sets as outputs: one list from the original analysis of the
complete data and one aggregated list from the analysis of the
bootstrap samples. The original analysis included the entire list of
genes or proteins from differential expression analysis. The
bootstrap analysis involved taking the subsampled lists of genes
or proteins for enrichment analysis, providing B additional
ranking lists of results for enrichment analysis. To further
determine the robustness of the bootstrap analysis, we
aggregated the B lists to make them comparable to the ranking
of the original analysis. All analyses were initially performed at a
single-omics level.
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For multi-omics analysis, rank scores from single-omics levels
(transcriptomics and proteomics) were further integrated by rank
aggregation to obtain an integrated score for the pathways or GO
terms retrieved.In the following sections, we describe the results of
the differential expression analysis, original findings of the GSEA,
bootstrap enrichment analysis, and aggregated results from the six
cancer datasets and the two omics levels from the SMA data. First,
the results for the renal cancer data are shown, followed by the
results for the multi-omics data from SMA mouse kidney
samples.To compare the ranking obtained from the original and
bootstrap GSEA, we mainly described rank gains and losses of
individual GO terms or pathways. We avoided using the
correlation coefficient since a correlation of, for example,
0.90 sounds high but can still include large rank differences.
Only for the comparison between transcriptomics and
proteomics in the SMA example did we use Kendall’s τ to
describe the advantage of the bootstrap approach.

3.1 Example 1: analysis of renal cancer data

The six microarray datasets were downloaded from the GEO
database using the GEOquery package in R. The total number of
mRNA transcripts in each dataset used for differential expression
analysis was as follows: GSE6344 with 21,225 transcripts,
GSE11024 with 17,637 transcripts, GSE14762 with
17,232 transcripts, GSE15641 with 21,225 transcripts,
GSE14994 with 21,238 transcripts, and GSE53757 with
44,134 transcripts. We used these data as examples to
demonstrate how bootstrap GSEA can help study the robustness
of the results across the six datasets.

3.1.1 Differential expression analysis
Differential expression analysis of mRNA transcripts was

performed using the limma package in R for all datasets, and
DEGs were filtered based on an adjusted p-value < 0.05. The
number of DEGs retrieved was as follows: 6,947 for GSE6344;
4,199 for GSE11024; 7,256 for GSE14762; 9,665 for GSE15641;
10,465 for GSE14994; and 27,968 for GSE53757.

3.1.2 Gene set enrichment analysis
GSEA for each of the six datasets was performed individually,

with the total number of transcripts from the differential expression
analysis as input. GSEA was performed using the function boot.GO

for GO enrichment analysis and boot.pathway for pathway
enrichment analysis, obtained from our new package bootGSEA.
The analyses were performed separately for each dataset. For
example, for the GSE6344 dataset, BP-GO analysis was
performed using the boot.GO function, which provides two lists
of results: the original analysis and bootstrap analysis. With B = 100,
100 ranking lists were obtained for the bootstrap analysis. Following
this analysis, the rank aggregation approach using aggr.boot.GO
function was used to build a score representing the bootstrap
analysis. This analysis resulted in a table with GO terms, ranks
from each bootstrap run, and the aggregated rank score for each GO
term. Similarly, analysis was performed for MF, CC, and pathway
analyses (KEGG, Reactome, and WikiPathways) using the
boot.pathway function. The resulting table consists of GO terms
or pathways, aggregated scores, individual ranks of GO terms or
pathways from bootstrap runs, original ranks, Fisher’s p-value from
the original analysis, and bootstrap ranks based on the aggregated
score. A summary of the number of annotated GO terms and
pathways is given in Table 2.

3.1.3 Robustness analysis of pathways and
GO terms

Robustness analysis of the pathways and GO terms to evaluate
the stability of the identified pathways and GO terms across
100 iterations versus the original analysis was performed as
follows. First, a scatter plot was used to identify pathways or GO
terms with a high degree of variability in ranks between the original
and bootstrapped analyses (ranks based on scores from rank
aggregation). Scatter plots for each pathway analysis (KEGG,
Reactome, and WikiPathways) and GO terms (BP, MF, and CC)
were analyzed for the six datasets. In the following paragraphs, we
describe the results exemplarily for the MF-GO enrichment analysis
in dataset GSE6344. For the remaining results of this and the other
cancer datasets, we refer to Supplementary Figures S1–S35. The
distribution of the GO-MF terms for dataset GSE6344 is shown in
Figure 2A. The x-axis displays the ranks from the original analysis,
while the y-axis shows the aggregated ranks from the bootstrap
analysis. The top scatter plot shows all pathways with gain, loss, or
retained ranks. The bottom scatter plots show the individual
distribution scales of the gain, loss, or retained ranks. Only very
few gene sets had the same rank in the original and bootstrap
analyses. Therefore, the gain or loss of ranks indicates a certain level
of variability in comparison. The higher the variability, the less
robust the findings of the original analysis. To further understand

TABLE 1 Renal cell carcinoma (RCC) datasets with accession numbers from the GEO database, sample sizes in the normal and tumor groups, and references
to the publication of the original analysis.

Accession no. Platform n Normal n Tumor Reference

GSE6344 GPL96 10 10 Copland (2008)

GSE14762 GPL4866 12 10 Dykema and Furge (2009)

GSE11024 GPL6671 12 67 Kort (2008)

GSE14994 GPL3921 11 59 Signoretti and Beroukhim (2010)

GSE53757 GPL570 72 72 John Copland et al. (2014)

GSE15641 GPL96 23 69 Jones et al. (2005)

Frontiers in Bioinformatics frontiersin.org05

Hemandhar Kumar et al. 10.3389/fbinf.2024.1380928

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1380928


TABLE 2 Summary information about the gene set enrichment analysis (GSEA) on the six renal cancer datasets. Displayed numbers per dataset are the total
number of annotated GO terms or pathways and the number of enriched GO terms or pathways based on Fisher’s p-value < 0.05 for the original analysis.

GSE ID GSEA No. of GO terms or pathways

Annotated Significant in the original analysis

GSE11024 GO:BP 15,444 1,643

GO:MF 4,684 525

GO:CC 1,939 329

KEGG 343 204

Reactome 1,489 410

WikiPathways 600 191

GSE11024 GO:BP 15,847 1,465

GO:MF 4,900 424

GO:CC 1,977 295

KEGG 344 55

Reactome 1,527 93

WikiPathways 605 57

GSE14762 GO:BP 15,799 5,029

GO:MF 4,889 831

GO:CC 1,978 521

KEGG 344 64

Reactome 1,515 69

WikiPathways 603 41

GSE15641 GO:BP 15,445 1,876

GO:MF 4,659 537

GO:CC 1,976 336

KEGG 343 294

Reactome 1,489 340

WikiPathways 600 179

GSE14994 GO:BP 15,417 1,796

GO:MF 4,672 204

GO:CC 1,942 180

KEGG 342 171

Reactome 1,490 594

WikiPathways 610 202

GSE53737 GO:BP 15,927 1,184

GO:MF 4,944 157

GO:CC 1,986 108

KEGG 344 255

Reactome 1,543 872

WikiPathways 625 348
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this variability of ranks in GO terms, the distribution of rank
difference between the original and bootstrapped analyses was
analyzed (Figure 2B). We determined the quantiles of this
distribution to identify terms with extreme gains or losses.
Specifically, GO terms that fall below the 2.5% or exceed the
97.5% quantile have a larger rank difference and are, therefore,
less reliable and more susceptible to variation in the data. In this
example, the minimum size for rank losses below the 2.5% quantile
is 2,091; that is, gene sets that fall below this quantile have a
difference in rank of at least 2,091. The minimum rank gain at
the 97.5% quantile was 1,525. These gene sets, with such differences
in rank, are considered not robust and, therefore, appear rather
unsuitable for biological interpretation.

To better understand and assess the robustness of the gene sets
identified in the six independent datasets, the original and bootstrap
analyses of the common terms/pathways in at least two datasets
among the top 1,000 gene sets ordered based on their Fisher’s values
and aggregated scores from the bootstrap analysis have been
performed (Figure 3 Supplementary Figure S36). The plot of GO-
MF terms shows a clear difference between the original and
bootstrap analyses, indicating that the gene sets found by the
original standard analysis might not be robust and require
further investigation. In contrast, the gene sets were consistent
across the original and bootstrap analyses (Supplementary Figure
S37, line plots of KEGG, Reactome, and WikiPathways), indicating
that the gene sets were robust and reliable when comparing the
results from the six independent datasets.

To further evaluate the robustness of our analysis, a network-
based approach was performed for the 58 GO-MF terms
obtained from the enrichment analysis of all 6 datasets from
the bootstrap and original analyses. The 58 GO-MF terms
(Supplementary Table S1) were selected by combining the
bootstrap aggregated results of all 6 datasets. The same
procedure was performed for the original enrichment analysis.
A network was then constructed for these 58 GO terms in
REVIGO (Supek et al., 2011), with each GO term as a node
and edges between the nodes if there is a significant correlation
between the corresponding gene sets. The constructed network
was visualized in Cytoscape (Shannon et al., 2003) to evaluate the
robustness of the network with one of the network metrics in
cytoHubba available in Cytoscape. We used the radiality metric
to evaluate the robustness. Bootstrap analyses have higher well-
connected GO terms in the network when the top 10 GO terms of
the original and bootstrap analyses are ranked based on their
radiality metric (Figure 4). Comparatively, the original analysis

FIGURE 2
Comparison of the original analysis and bootstrap analysis for Gene Ontology (GO) terms of molecular functions in the renal cancer dataset
GSE6344. (A) Top: along the x-axis are the ranks from the original GSEA, and the y-axis corresponds to the ranks from the bootstrap GSEA. The GO terms
that have gained, lost, or retained the same rank after 100 bootstrap runs are shown separately in the plots at the bottom. (B) Histogram of differences in
ranks between the original rank and aggregated rank from the bootstrap GSEA.

FIGURE 3
Comparison analysis between the original and bootstrapped
analyses of common GO terms in molecular function among the six
renal cell carcinoma (RCC) datasets. A higher agreement between the
six datasets is observed when using the ranking of GO terms
according to the bootstrap analysis.
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has fewer connections, indicating that the bootstrap analyses
provide more robust results.

3.2 Example 2: multi-omics of the kidney in a
SMA mouse model

3.2.1 Differential expression analysis
Transcriptomic and proteomic data were pre-processed for

differential expression analysis. This processing included the
imputation of missing values in the proteomics data, for which the
KNN method implemented in the R package “impute” was used.
Differential expression analysis using “DESeq2” and the “limma”
package in R was performed for transcriptomic and proteomic data,
respectively. The analysis retrieved 29,596 transcripts and
7,959 proteins. A total of 81 DEGs and 148 differentially expressed
proteins (DEPs) were selected based on the criteria of p-value <
0.05 and |logFC| > 1.

3.2.2 Gene set enrichment analysis
GSEA for the original and bootstrap analyses was performed

separately at the transcriptomic and proteomic levels using
our new R package bootGSEA with the functions boot.GO (for
GO analysis) and boot.pathway (for KEGG, Reactome, and
WikiPathways). The input data were the results obtained from
the differential expression analyses. The analyses resulted in
two outputs: original analysis and bootstrapped analysis. The
bootstrapped analysis included B = 100 lists of enrichment
analyses based on random subsets of genes and proteins. These
100 lists of enrichment results were aggregated by rank aggregation
using the functions aggr.boot.GO (for GO analysis) and
aggr.boot.pathway (for KEGG, Reactome, and WikiPathways
analyses), where the input is the output from the functions
boot.GO and boot.pathway.This analysis was performed for all
GO terms (BP, MF, and CC), KEGG, Reactome, andWikiPathways

at a single-omics level (transcriptomics and proteomics data
individually) of the SMA kidney data (Table 3).

3.2.3 Robustness analysis of pathways and GO
terms at the single-omics level

The original and bootstrapped analyses for the GO terms and
pathways of transcriptomics and proteomics data were compared
using a scatter plot to analyze the distribution of ranks for their
robustness (Figure 5). The GO-CC terms that show an increase in
robustness from our pipeline are shown as gain of rank, the terms
that lost their rank after B bootstrap runs show lesser robustness,
and those terms that retained their ranks even after 100 runs
retained their ranks. However, the comparison of transcriptomic
analyses did not result in any retained ranks (Figure 5A). Therefore,
all terms either gained or lost their ranks in this analysis. Proteomics
analysis (Figure 5B), on the other hand, had very few retained ranks.
The same comparison analysis was performed for the other GO
terms and pathways (Supplementary Figures S38–S42). It should be
noted that transcriptomic analysis for both BP andMF had only one
term with a retained rank of 11,489 and 1,249, respectively.
However, both terms (GO:0072429 and GO:0004985) were
ranked very low, indicating that they were not significantly enriched.

Next, the distribution of rank differences between the original
and bootstrapped analyses of the GO-CC terms and pathways was
analyzed (Figure 6). The terms and pathways that fall below the 2.5%
or exceed the 97.5% quantiles have a very large difference between
the original and bootstrapped analyses and should not be considered
for biological interpretation. Quantiles to specify terms with extreme
changes between the original and bootstrap analyses were
determined (Figure 6). For transcriptomics data (Figure 6A), the
minimum rank difference for the lost rank below the 2.5% quantile
is −939.5, that is, GO terms below this quantile have a difference of
equal to or more than 939.5 between the original analysis and
bootstrap analysis. The minimum rank gain at the 97.5% quantile
was 602. Such huge differences in ranks mean that the terms below

FIGURE 4
Comparative network analysis between the original (left) and bootstrapped (right) analyses, including the top 10where each node represents the GO
term among the six RCC datasets.
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or above these quantiles should rather not be considered for
biological interpretation. For proteomics data (Figure 6B), there
was a rank difference of 195.6 and 62.3 for lost and gained ranks,
respectively. Histograms for the difference between original and
bootstrap rankings related to other GO terms and pathways are
given in Supplementary Figures S43–S47.

3.2.4 Multi-omics analysis
Transcriptomics and proteomics data analyzed individually

using the proposed pipeline yielded several GO terms and
pathways with increased or decreased robustness, while only
few GO terms and pathways retained the same rank after B
bootstrap runs at the single-omics level. These terms or
pathways were further analyzed for common terms using a
Venn diagram, where an integrated score for these common

terms was obtained by aggregating the ranks between
omics levels.

Common cellular component terms among the transcriptomic
and proteomic omics levels were retrieved using a Venn diagram
(Figure 7). Of the 2,020 terms from the transcriptomics analysis and
1,829 terms from the proteomics analysis, there were 1,823 common
GO-CC terms from the analysis, for which an integrated score was
obtained for these common terms. A plot comparing the integrated
rank score and the original analysis was constructed at each omics
level to analyze and evaluate the robustness of the common cellular
component terms (Figure 8). The GO-CC terms that showed an
increase in robustness from our pipeline were shown as a gain of
rank, whereas the terms that lost their rank after 100 bootstrap runs
were indicated as a decrease in robustness. The terms that retained
their ranks even after 100 runs were deemed robust. However, the

TABLE 3 Summary of the gene set enrichment analysis (GSEA) of the spinal muscular atrophy (SMA) mouse data. The total number of annotated GO terms
and pathways and the number of enriched GO terms and pathways based on Fisher’s value < 0.05 for the original analysis are given.

GSEA No. of GO terms or pathways retrieved

Transcriptomics Proteomics

Annotated Significant in the original analysis Annotated Significant in the original analysis

GO:BP 15,995 228 13,670 130

GO:MF 4,837 99 3,893 58

GO:CC 2,020 27 1,829 18

KEGG 337 5 305 22

Reactome 1,093 38 617 30

WikiPathways 150 7 89 6

FIGURE 5
Comparison of the original and bootstrapped analyses for the GO term of cellular components in the transcriptomics (A) and proteomics (B) spinal
muscular atrophy (SMA) kidney data. Top plots: along the x-axis is the original enrichment analysis, and the y-axis corresponds to the bootstrapped
enrichment analysis. The GO terms that have gained, lost, or retained the same rank after B = 100 bootstrap runs are shown separately in the plots at
the bottom.
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comparison of transcriptomics analyses did not result in any
retained ranks (Figure 8A), indicating that all terms either gained
or lost their rank in this analysis. In contrast, the proteomics analysis
(Figure 8B) had very few retained ranks, suggesting that the terms
with retained ranks are robust and other terms that have either
gained or lost rank ranks are subject to uncertainty.

To further understand this variability of ranks (gains and losses)
in GO terms, we analyzed the distribution of rank differences
between the original and integrated analyses (Figure 9). We
determined the quantiles of this distribution to identify terms
with extreme gains or losses. Specifically, GO terms that fall
below the 2.5% or exceed the 97.5% quantile have a larger rank
difference and are, therefore, less reliable and more susceptible to
variation in data. These gene sets with such large differences in rank
are considered less robust and rather not suitable for biological
interpretation.

The same procedure was performed for the other GO terms
and pathways, where the Venn diagrams of the common terms
are given in Supplementary Figure S48. Next, a plot to compare
the distribution of ranks between the original analysis and
the integrated rank score for these common terms and
pathways are given in Supplementary Figures S49–S53.
Histograms showing the difference in rank based on the
integrated score and the original rank from the single-omics
level are given in Supplementary Figures S54–S58. Table 4
provides a summary of the top 20 GO-CC terms ranked based
on the integrated score obtained from the transcriptomics
and proteomics analyses. In addition, the table also includes
the robustness rank difference of the GO term on the
transcriptomics (robustness T) and proteomics (robustness P)
levels. A lesser robustness rank difference indicates that the GO
term is more robust across the transcriptomics and proteomics
data, while a higher robustness rank difference indicates that
the GO term is less robust (refer to Supplementary Table S2 (CC)
for complete data).

These results highlight the importance of analyzing the
robustness of GSEA to ensure that the results are reliable and
reproducible. By identifying the GO-CC terms that are most
robust across different omics levels, researchers can gain a more
comprehensive understanding of the biological processes involved
in the studied system.

Finally, we compared the ranks obtained from the
transcriptomics level with those from the proteomics level
separately for the original results and bootstrap results. For
the GO categories, we found that transcriptomics and
proteomics ranks from the bootstrap analyses are more
correlated than the related ranks from the original analysis (BP:
Kendall’s τorig. = 0.29 and τboot = 0.56; MF: τorig. = 0.25 and τboot =
0.49; and CC: τorig. = 0.33 and τboot = 0.53). For GSEA results with
KEGG, Reactome, and WikiPathways databases, no significant
correlation between the proteomics and transcriptomics levels
was found.

FIGURE 6
Histogram of the difference in rank of the original rank and the aggregated rank of the bootstrapped analysis in cellular components for
transcriptomics and proteomics SMA kidney data. (A)Distribution of rank difference in the transcriptomics data of 2,020 terms, where cellular component
terms beyond the 2.5% and 97.5% quantiles have a difference of 939.5 and 602, respectively. (B) Distribution of rank difference in the proteomics data of
1,829 terms, where cellular component terms beyond the 2.5% and 97.5% quantiles have a difference of 195.6 and 62.3, respectively.

FIGURE 7
Venn diagram showing the overlap of significant GO terms for
cellular components in the transcriptomics and proteomics data of
the SMA study.
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4 Discussion

Set-based enrichment tests are a necessary part of omics
data analyses to better understand the biological meaning of
differentially expressed genes, proteins, or other molecules.

However, because the set compositions provided in the
databases are subject to uncertainties, incorrect pathways can
emerge from the analysis and lead to biological interpretations
in the wrong direction. We observed in the two data examples
of this work that pathways or terms obtained from several

FIGURE 8
Scatter plot for the evaluation of the robustness of GO-CC terms comparing the rank of the original analysis and the rank obtained from the
integrated score of common terms at the multi-omics level. (A) Top: along the x-axis is the original rank of transcriptomic analysis, and the y-axis
corresponds to the rank of commonGO-CC terms based on the integrated score. The gained and lost ranks of the GO-CC terms are shown separately in
the bottom plots. No ranks were retained in this comparison. (B) Top: along the x-axis is the original rank of the proteomics analysis, and the y-axis
corresponds to the rank of commonGO-CC terms based on the integrated score. The gained, lost, and retained ranks of the GO-CC terms are presented
separately in the bottom plots. Very few terms have retained ranks, meaning that most terms have either gained or lost their robustness after
100 bootstrap runs.

FIGURE 9
Histogram of the difference in rank of the original rank and the rank obtained from the integrated score of common terms at the multi-omics level.
(A) Distribution of rank difference in transcriptomics data, where GO-CC terms beyond the 2.5% and 97.5% quantiles have a difference of 961 and 602,
respectively. (B)Distribution of rank difference in proteomics data, where GO terms beyond the 2.5% and 97.5% quantiles have a difference of 193 and 62,
respectively.
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independent datasets of the same omics domain or different omics
domains can have only a moderate overlap. For example, in the
SMA dataset, some pathways or GO terms were selected from
either transcriptomics or proteomics data analysis. Here, cellular
component terms ordered by their integrated score comprise of
complex and subunits of complex terms that are indirectly related
to neuromuscular diseases. The SMN is a part of the SMN complex

and interferes functionally with several other complexes, such as
the cytoplasmic ubiquitin ligase complex (GO:0000153) or ER
ubiquitin ligase complex (GO:0000835) (Chaytow et al., 2018),
which are highly ranked when ordered by their integrated score but
were ranked much lower using the original ranking (Table 4).
Furthermore, the top GO-BP term (Supplementary Table S2 (BP))
with the highest integrated rank (GO:0000245, spliceosomal

TABLE 4 Top 20 GO terms of cellular components ranked based on the integrated score from the bootstrap analysis. The original ranks of each omics level
(original rank T and original rank P), aggregated bootstrap rank (bootstrap rank T and bootstrap rank P), integrated score (the score obtained from common
GO terms between omics levels), and robustness (gain T and gain P) of the term (either gain, loss, or the same rank compared with the ranks of the original
analysis and the bootstrap analysis). Negative numbers indicate rank loss, and positive numbers indicate rank gain, while zero indicates no rank change.

GO ID Term Orig.
rank T

Bt.
rank T

Orig.
rank P

Bt.
rank P

Integrated
score

Gain T Gain P

GO:
0000109

Nucleotide excision repair complex 202 37 1 2 0.0007 165 −1

GO:
0000153

Cytoplasmic ubiquitin ligase
complex

217 41 68 62 0.0019 176 6

GO:
0016021

Integral component of the
membrane

43 1 277 252 0.0020 42 25

GO:
0005914

Spot adherens junction 503 1,228 2 1 0.0020 −725 1

GO:
0000124

SAGA complex 209 27 101 65 0.0021 182 36

GO:
0000813

ESCRT I complex 278 82 76 64 0.0033 196 12

GO:
0031224

Intrinsic component of the
membrane

50 2 263 244.5 0.0039 48 18.5

GO:
0001527

Microfibril 298 94 69 47 0.0043 204 22

GO:
0001533

Cornified envelope 299 95 117 87 0.0044 204 30

GO:
0000974

Prp19 complex 293 90 107 103 0.0052 203 4

GO:
0000315

Organellar large ribosomal subunit 239 51 113 110 0.0059 188 3

GO:
0012505

Endomembrane system 59 3 397 371 0.0059 56 26

GO:
0097229

Sperm end piece 1,578 1,768 3 3 0.0059 −190 0

GO:
0001917

Photoreceptor inner segment 315 116 36 60 0.0066 199 −24

GO:
0002178

Palmitoyltransferase complex 334 125 49 49 0.0076 209 0

GO:
0071944

Cell periphery 86 4 353 319.5 0.0079 82 33.5

GO:
0098965

Extracellular matrix of the synaptic
cleft

1,733 1,768 4 4 0.0079 −35 0

GO:
0001750

Photoreceptor outer segment 312 110 167 128 0.0080 202 39

GO:
0000835

ER ubiquitin ligase complex 282 130 28 23 0.0082 152 5

GO:
0000836

Hrd1p ubiquitin ligase complex 283 132 29 25 0.0084 151 4
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complex assembly) has been associated with SMA (Price et al.,
2018) but was ranked much lower with the standard GSEA of
the single-omics analyses (transcriptomics rank: 1,596; proteomics
rank: 81). Furthermore, vitamins play, in general, an important
role in neurodegenerative disorders. Lack of water-soluble
vitamins (GO:0006767, water-soluble vitamin metabolic process,
integrated rank: 6) (Supplementary Table S2 (BP)) can lead to
neurological diseases (Rai et al., 2021). In particular, vitamin B6
(GO:0042816, vitamin B6 metabolic process, integrated rank:
2) is necessary for the production of various neurotransmitters
such as serotonin, dopamine, and γ-aminobutyric acid (GABA).
Deficiencies in vitamin B6 have been linked to depression
and impaired brain function, such as epilepsy (Hellmann
and Mooney, 2010). This suggests that it might be beneficial
to consider providing sufficient supplementation of nutrients
involved in maintaining an optimal methylation state, including
folic acid, vitamin B12, and vitamin B6, for individuals with
SMA (Fitzgerald and McArdle, 1941; Friesen et al., 2001).
Therefore, our new pipeline provides not only robust terms
but also biologically relevant terms when ordered by their
integrated score.

Several attempts have been made to obtain a more robust
enrichment analysis, for example, by integrating information
about pathway topology (Draghici et al., 2007; Glaab et al.,
2010; Massa et al., 2010) or GO hierarchy (Alexa et al., 2006)
into the algorithms. Other approaches use sample permutations
(Subramanian et al., 2005) or comparisons with results for
random gene sets (Kim and Volsky, 2005) to account for
uncertainties. The GAGE method (Luo et al., 2009) improves
the robustness of GSEA by treating curated gene sets as either a
pathway or an experimentally derived differential expression set.
A method to evaluate the contribution of individual features to
the significance of a gene set was presented as well by Jung
et al. (2011).

Here, we present a new approach that combines bootstrap
analysis at the gene set level with rank aggregation. This approach
accounts for the uncertainty in set compositions by repeatedly
analyzing subsets of each gene set. The percentage of genes
or proteins to be selected for bootstrap can be chosen by the
user of our R package. In case the user assumes much uncertainty
in the database, a lower percentage should be taken. A major
advantage of this approach is that it can be easily combined
with other GSEA approaches. Exemplarily, we demonstrated the
combination of our approach with pathway and GO term
enrichment analyses implemented using the R packages
clusterProfiler and topGO. We showed that overlaps of the
detected GO terms between independent datasets were larger
when using the bootstrap approach instead of the ranking from
the standard analysis (Figure 3; Supplementary Figure S36).
Similarly, we showed a higher rank correlation for the detected
GO terms from transcriptomics and proteomics in the SMA
data. Although increased overlaps were not observed for
all types of sets, overlaps obtained using the bootstrap
analysis were in no case smaller than the overlaps from the
standard analysis.

In contrast to other approaches to account for uncertainty in
GSEA, the rank aggregation step of our pipeline also allows the
combination of results from multiple datasets or omics domains.

This could also improve the stability and reproducibility of
the findings.

In contrast to the approach proposed by Schmid et al. (2016), we
derived not only a measure for the robustness of the result for each
set but also provided a new ranking of sets. The size of either a gain
or loss can be used as a measure of robustness. While we used the
2.5% and 97.5% quantiles, the user is free to use other thresholds to
identify sets with extreme gains or losses. Nevertheless, thresholds
are useful to account for different numbers of sets in an analysis.
When having an overall large number of sets, the values of the
quantiles will be larger as well, meaning that larger gains or losses are
allowed before flagging a gain or loss as extreme. A disadvantage of
the current rank aggregation approach is that the new ranking is
based on a score and not on a p-value. Therefore, it is a bit more
difficult to specify a threshold for the selected sets.

To conclude, set-based analyses now have a long history of
omics data analysis to facilitate the biological interpretation
of selected features from differential expression analysis.
However, the large number of different computational GSEA
methods presented in the last two decades and the huge
databases with pathway annotations provide an unmanageable
number of possible results, and analysts may be conventional in
their biological interpretations. Moreover, some entries in the
databases may be less supported by experimental findings or by
the literature than other entries. In this regard, our bootstrap
approach can help separate less robust findings from more robust
findings. The rank aggregation step can additionally help combine
gene set results from multiple datasets of the same or different
omics levels. In particular, a GO term or pathway is only highly
ranked by the integrated score if there is evidence for the
importance of a term or pathway from different omics levels.
We demonstrated the use of our approach in an example with
transcriptomics and proteomics data, but it could be extended by
GSEA from other omics domains, such as metabolomics (Mahajan
et al., 2024). The rank aggregation step also supports the idea of
research synthesis, that is, integrating findings from different
studies or data sources to obtain a higher level of scientific
evidence. Our new pipeline bootGSEA is universal as it can be
combined with the most common GSEA methods. However, when
using “topGO” for GO analysis, which works in the sense of
overrepresentation analysis, users must keep in mind that the
results depend on thresholds for differentially expressed features.

As a future extension of our approach, we also consider to not
only remove features of pathways but to also move features between
pathways, which is also an action we observed in databases. This can,
however, only be done using biological information about whether a
pathway feature makes biological sense in a certain pathway.
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