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Cancer is a heterogeneous disease that results from genetic alteration of cell
cycle and proliferation controls. Identifying mutations that drive cancer,
understanding cancer type specificities, and delineating how driver mutations
interact with each other to establish disease is vital for identifying therapeutic
vulnerabilities. Such cancer specific patterns and gene co-occurrences can be
identified by studying tumor genome sequences, and networks have proven
effective in uncovering relationships between sequences. We present two
network-based approaches to identify driver gene patterns among tumor
samples. The first approach relies on analysis using the Directed Weighted All
Nearest Neighbors (DiWANN) model, which is a variant of sequence similarity
network, and the second approach uses bipartite network analysis. A data
reduction framework was implemented to extract the minimal relevant
information for the sequence similarity network analysis, where a transformed
reference sequence is generated for constructing the driver gene network. This
data reduction process combined with the efficiency of the DiWANN network
model, greatly lowered the computational cost (in terms of execution time and
memory usage) of generating the networks enabling us to work at a much larger
scale than previously possible. The DiWANN network helped us identify cancer
types in which samples were more closely connected to each other suggesting
they are less heterogeneous and potentially susceptible to a common drug. The
bipartite network analysis provided insight into gene associations and co-
occurrences. We identified genes that were broadly mutated in multiple
cancer types and mutations exclusive to only a few. Additionally, weighted
one-mode gene projections of the bipartite networks revealed a pattern of
occurrence of driver genes in different cancers. Our study demonstrates that
network-based approaches can be an effective tool in cancer genomics. The
analysis identifies co-occurring and exclusive driver genes and mutations for
specific cancer types, providing a better understanding of the driver genes that
lead to tumor initiation and evolution.
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1 Introduction

Cancer is caused by genetic alterations in cells that affect growth
regulatory genes. The application of next-generation sequencing
technologies to characterize tumor genomes has greatly expanded
the number of known cancer mutations that contribute to disease
progression and may be therapeutic targets (Goodwin et al., 2016).
In the past decade, hundreds of sequencing efforts have been made,
including large scale efforts led by the International Cancer Genome
Consortium (ICGC) (Hudson et al., 2010) and The Cancer Genome
Atlas (Weinstein et al., 2013). Despite the vast amount of sequencing
data available, understanding how different cancers develop at a
mutation level has been difficult to ascertain. This difficulty largely
originates from the large number of mutations accumulated in each
tumor, the vast majority of which are not involved in driving
tumorigenesis (termed passenger mutations) (Vogelstein et al.,
2013). One of the main goals of cancer genomics is to identify
and study gene mutations that actively drive cancer progression.
These mutations give us insight into why the tumor developed and
how it might be treated. Cancer driver mutations occur in two
classes of genes--oncogenes and tumor suppressors—that function
as positive and negative growth regulators, respectively. However,
not all mutations occurring in oncogenes and tumor suppressor
genes play a role in carcinogenesis (Bányai et al., 2021). Therefore,
most driver mutations are identified through their recurrence in
multiple tumor genomes.

Pan-cancer analyses of driver mutations have additional
complexity in that the number of coding mutations in tumors
varies depending on the cancer type, and that some driver
mutations occur more frequently or exclusively in specific cancer
types (van de Haar et al., 2019). The genetic basis of this
heterogeneity is mostly due to the differences in time and
intensity of exposure to mutational processes (Martínez-Jiménez
et al., 2020). Notable among all tumors that have highmutation rates
are skin and lung tumors, which contain almost
200 nonsynonymous mutations per tumor (Vogelstein et al.,
2013; Hoadley et al., 2018). Rather than studying individual
cancer types, studying multiple cancers together can be
advantageous in elucidating common principles and patterns in
cancer. A better understanding of how common different mutations
and driver genes are in cancer patients could also help in prioritizing
genetic alterations and thus benefit drug development. Many clinical
trials employ a basket-trial format (Park et al., 2020), which involves
treating mutated forms of a protein the same way across different
types of cancer. This characterization of overall occurrence of
mutations in targetable genes can help with drug development as
well as design of personalized medicine clinical trials (Mendiratta
et al., 2021).

Several studies have used computational and statistical
approaches to identify driver genes and understand their
significance in cancer (Cheng et al., 2016; Bailey et al., 2018).
Among these approaches, network-based approaches greatly
increase the precision of identifying cancer genes and their role
in cancer (Ozturk et al., 2018; Oulas et al., 2019; Song et al., 2019).
Network analysis of human diseases can be employed in various
biological and clinical applications. For instance, when genes are
represented as networks, complex patterns of gene associations can
be found. Network analysis metrics and tools can then be used to

prioritize genes for therapeutic targets and identify crucial diseases
associated with them (Ramadan et al., 2016; Shah and Braun, 2019).
Disease networks provide gene-disease associations (Goh et al.,
2007), which, in turn, could help identify better targets for drug
development and drug repurposing (Barabási et al., 2011; García del
Valle et al., 2019). Though many studies have grown our
understanding of genes and their role in cancer, most cover only
a few cancer types. Additionally, pan cancer analyses of genomic
mutations are computationally expensive. To further expand our
understanding of cancer biology, it is crucial to study cancer genes
across all cancers and within each cancer type using a
computationally efficient approach.

Since driver mutations cause cancer (Balmain, 2020), we focus
our study on recurrent mutations in known cancer-associated
genes. We construct a sequence similarity network (SSN) with
“transformed” sequences generated via a data reduction
preprocessing step. SSNs are networks in which nodes are
sequences and edges show the distance (typically, edit distance)
between a pair of sequences, which shows the extent of their
dissimilarity. In this work, we have used a variant of SSN called
the Directed Weighted All Nearest Neighbors (DiWANN)
network (Catanese et al., 2018), which connects every node
(sequence) via a directed edge to its “nearest neighbor”–the
sequence that is the closest to it in terms of edit
distance–among the set of sequences considered. If multiple
sequences are tied as having the same edit distance from a
given “source” sequence, directed edges are added in the
DiWANN model from the source sequence to all the target
sequences (hence the phrase All Nearest Neighbors). The
weights on edges in the DiWANN model are the edit distances.

The DiWANN model, in essence, represents the “backbone”
of the similarity relationship among sequences of interest. It is
much sparser than a typical threshold-based sequence similarity
network and is yet amenable to meaningful analysis, including
cluster analysis and centrality analysis, as previous studies have
shown (Catanese et al., 2018; Patil et al., 2022). The DiWANN
network model uses an efficient algorithm that incorporates
several pruning and optimization strategies to construct the
SSN. The algorithm is found to be much faster to execute
than an all-to-all distance matrix computation that is
commonly used to construct an SSN. In this study, we further
reduce the computational complexity of the DiWANN network-
based analysis by employing a data reduction step, which
drastically reduces sequence length.

Complementing our analysis based on the DiWANN model, we
also employ in this study a bipartite network analysis. The latter was
performed for two purposes: to identify links between genes and
tumor samples and to identify gene associations pertinent to
different cancer types (Venkatraman et al., 2021). Bipartite
networks represent interactions between two sets of nodes where
the connections run across the two sets but not within the sets. Such
networks can, for instance, be used to study gene disease
associations. Additionally, bipartite graphs can be converted into
one-mode projections (Network Science by Albert-László Barabási,
2023) for analysis focused on one of the sets. These projections are
composed of nodes from one set of the bipartite network and the
edges represent interconnections via connections to the nodes of the
other set. Our study, in sum, shows how network-based approaches,
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namely, SSNs and bipartite networks, can effectively be used in
cancer biology.

2 Results

2.1 Mutation data

We obtained a list of single-nucleotide variants (SNVs) and
aggregated mutation information [in mutation annotation format
(maf)] from the Pan-Cancer Analysis of Whole Genomes (PCAWG)
in the ICGC data portal (Campbell et al., 2020). The maf file (DCC
Data Releases | ICGC Data Portal, 2023) contained over 23 million
mutations in tumors from 1,830 donors and 25 cancer types. To focus
our network analysis on mutations likely contributing to disease, we
filtered the data using two steps: (i) identifying variant classes that are
likely to change protein function and (ii) assessing mutations in genes
that occur in significant frequency.Most of themutations in the ICGC
dataset were classified as “inter-genic region” which we excluded
along with Intron, 5’ Flank, and lincRNA variants as non-coding
drivers are rare compared to coding regions (Rheinbay et al., 2020),
and they are less likely to be functionally important (Brown et al.,
2019). This filtering resulted in a dataset of 1.2 millionmutations from
1,830 donors and 25 cancer types.

The second filtering step involved two different filtering
approaches based on whether the gene was present in the
Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer
Gene Census (CGC) catalogue (Sondka et al., 2018). The
COSMIC CGC catalogue consists of 714 documented genes and
our dataset included 708 of them. The first approach applied to
COSMIC CGC genes involved keeping only mutations that were
recurrent, which subsequently resulted in a dataset comprising
293 driver genes, potentially eliminating random passenger
mutations for this study. The second filtering approach was
applied to genes that were not present in COSMIC CGC. Gene
mutations that represented the top 4% of frequency within each
cancer type were retained. This threshold was chosen aiming to
ensure distributed and normalized selection of genes for all cancers.
This resulted in an additional 972 genes, making 1,264 genes in total.

The number of variant types of the dataset before and after
filtering, the number of the final genes for each role in cancer, and
the proportion of different cancer types in this dataset is shown in
Figure 1. The final dataset consists of 1,264 genes and
3,900 mutations from 934 donor samples across 15 distinct
tissues or cancer types. The final reduced mutational list for each
donor sample has been provided in Supplementary Table S1. The
data filtering process reduced the computational cost while making
sure to maintain the relevant information from the original dataset.

FIGURE 1
Number of mutations by variant type (A) before filtering and (B) after filtering. (C)Number of genes and their role in cancer. (D) Pie chart showing the
proportion of different cancer types in the final dataset comprising 934 samples. The inset in Figure A shows the number of mutations for the variants
having the 10 lowest frequencies.
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2.2 Transformed sequence

To employ a sequence similarity network analysis on this data,
we next needed to create a sequence for each tumor containing all
the relevant mutations. Therefore, we implemented another data
reduction step to enable efficient usage of a sequence similarity
network. The conventional way of doing this is to combine the
cDNA sequences of the 1,264 genes remaining in our dataset post
filtering. This resulted in a very long sequence comprising more than
300,000 nucleotides. The computational complexity of creating a
network using this sequence as a reference would be tremendously
high. Thus, we transformed this sequence to only include the
nucleotides that have mutated in the previously filtered data.
This transformed sequence contained the original nucleotides for
all the recurrent mutations in each gene from all the samples, as
shown in Figure 2. This serves as a reference sequence or wild type
for all samples. This reference sequence would be mutated according
to the mutations reported for each sample. The transformation step
reduced the reference sequence to 2,169 nucleotides and the length
of the mutated sequences for all the samples ranges from 2074 to
2,186 nucleotides. Importantly, the order in which this sequence was
constructed will not impact subsequent DiWANN analyses.

The complete process of filtering the original dataset, generating
the transformed reference sequence, and preparing the data for
network analyses is shown in the flowchart in Figure 3. This study
uses the PCAWGmaf file from ICGC and data filtering is performed
as shown in the “Data Filtering” container. The final data is then
used for two analyses: Sequence Similarity Network (SSN) analysis

and bipartite network analysis. The process of generating the
transformed sequences and constructing the SSN using
DiWANN is shown in the “Construction of SSN” container in
the flowchart. Two bipartite analyses are performed for tissue-gene
bipartite network and sample-gene bipartite network.

2.3 Sequence similarity network analysis

A DiWANN network was built where the nodes are the
mutated transformed sequences for samples, and the edges
represent the edit distance between these sequences. A node
representing the wild type sequence that would contain the
unmutated transformed sequence was added to the network.
Only unique sequences were used for the DiWANN network,
which resulted in 672 nodes and 1,451 edges, as shown in
Figure 4. The edge list for the network has been provided in
Supplementary Table S2. The edge weight represents the edit
distance (dissimilarity) and has a maximum value of 335 in this
network, as shown in the histogram in Figure 4B. Over 70% of the
edges have a weight of one indicating that majority of the
sequences are just one edit distance away from each other.
Since only unique sequences were considered for generating the
network, there were some sequences that occurred more than once.
These nodes were sized according to the number of occurrences of
the sequence. The nodes were also colored by tumor tissue to aid in
identifying patterns among different cancer types. There were
about 16 instances where a node represented a sample sequence

FIGURE 2
The top part shows how cDNAs for the selected genes can be combined to form a sequence for each sample and the bottom part shows our
approach that combines only the regions with recurrent mutations in the selected genes. The transformed sample sequence generated using our
approach is much shorter in length than the original sequence. This reference sequence is then mutated according to the mutations in a particular
sample. Note: the figure only demonstrates the approach and thus does not contain the entire cDNAs for the given genes.
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found in more than one cancer type, highlighting the uniqueness of
each cancer. In rare instances of the same sequences occurring in
multiple cancer types, the cancer type with the highest count of the
sample sequence was considered for the node color. The structural

properties of the network were also analyzed and are shown in
Figure 4C. The maximum degree of the network is 570, however,
the average degree of this network is just 4.318 as there are very few
high degree nodes. The network has nine weak components which

FIGURE 3
Flowchart showing the process of data filtering and preparing the data for network analyses. The different sub-processes are placed in named
containers and colored differently. The number of genes and samples remaining after each filtering step are provided.

Frontiers in Bioinformatics frontiersin.org05

Patil et al. 10.3389/fbinf.2024.1365200

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1365200


can also be seen in the plotted network. The global clustering
coefficient is 0.004, indicating low clustering in the network.

In general, the DiWANN network indicated significant
heterogeneity among the tumors in the analysis. However, some
cancer types were more closely associated than others. For
instance, pancreatic and lymph cancers have a significant
number of common edges between their nodes, indicating more
similar routes of evolution between tumors in these cancer types.
Prostate, esophageal, myeloid, and liver cancers just have a few
common edges, that is, they only have a few common mutations in
these cancers, suggesting high variability in the genetic alterations
that cause these cancers. The subgraph of pancreatic nodes has a
global clustering coefficient of 0.006, while for prostate cancer
subgraph, the value is 0, indicating no tendency of the subgraph to
cluster. These patterns are clearer when seen on individual views of
the network for selected tissues as shown in Figure 5. The figure
consists of the network nodes highlighted for pancreatic, lymph,
and prostate tissue tumors. We can see that the pancreatic and
lymph nodes are more connected amongst themselves than the
prostate nodes. These patterns are quantitatively confirmed with
the barplot in Figure 5 showing how many edges out of the total
edges from nodes representing a tissue are connected to nodes of
the same tissue. Networks with individual views for other tissue
types have been shown in Supplementary Figures S1 and S2. Since
there is a network for each cancer type, we did not need to select
the highest count of the cancer type for the node color. If a sample
sequence was found in more than one cancer type, the nodes were
colored the assigned cancer type color in the respective
network view.

The construction of the DiWANN network with the
transformed sequences took 410 min, which is about 2/3rd the
time taken for construction of an SSN with an optimal threshold.
The threshold based SSN generated with an optimal threshold of edit
distance as two had 672 nodes and 32,151 edges. The threshold was
selected in such a way that the network had a balance between
providing enough useful relationships and not becoming too dense.

Additionally, community detection on the DiWANN network
revealed patterns among cancer types. Using the Louvain algorithm
(resolution = 1), we obtained 44 clusters. With resolution >1, the
network clusters were enriched with 6–10 cancer types and up to
997 causative genes based on the Fischer exact test. Resolutions
equal to and greater than 1.5 had the highest number of enriched
causative genes in their communities, as shown in Figure 6B. For
values lower than the default resolution value (resolution = 1), only
causative genes were enriched for resolution of 0.5. The cluster
information for resolution 1, which was used as the background for
the test has been provided in Supplementary Table S3. Overall,
resolution value of 1.5 seems to be optimal in terms of cancer types
and causative genes. Enriched genes tended to group together
amongst themselves as the number of clusters reduced. The
distribution of cancer types and cluster sizes are shown for
resolution values one and 1.5 in Figure 6. Clusters for all the
selected resolutions include one large cluster containing almost
all cancer types.

Community detection using resolution value of 1.5 resulted in
53 clusters, among which one large cluster contained 143 nodes
from all cancer types except head. About half of the clusters contain
just one or two cancer types. The complete information about these

FIGURE 4
(A) DiWANN network consisting of 672 nodes colored by tissue, as shown in the legend. (B) Histogram of the edge weights of the network. (C)
Structural network properties of the DiWANN network. The inset in Figure B shows histogram for edge weights more than 210.
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clusters has been provided in Supplementary Table S4. Thirteen
clusters were found exclusive to one cancer type. Pancreatic and
lymph cancer were dominant or exclusively present in half the
number of clusters. Skin and breast cancer also seem to dominate in
the clusters they are present in or form their own clusters.
Esophageal cancer was a part of many clusters, as it grouped
with almost all other cancer types and did not have any pattern
of its own. Among enriched cancer types were prostate, stomach,
biliary, myeloid, CNS, ovary, kidney, bone, and head. They were
more represented in the communities now due to smaller clusters, or
they formed their own clusters. The largest cluster had half of the
liver cancer samples and only 20% of the CTNNB1 gene mutations

that were present in the largest cluster for resolution of 1.
CTNNB1 is an important driver gene for liver cancer (Wang and
Zhu, 2023) and hence their removal highlights the disease subtype.

Over 3/4ths of the clusters that are dominated by TP53 and
KRAS mutations are dominated by pancreatic cancer. Clusters in
which breast cancer was exclusive or dominant contained PIK3CA
or GATA3 genes. Clusters dominated by Skin cancer were
dominated by BRAF. BCL2 was dominant in all clusters that
were exclusive to Lymph cancer. The largest cluster, which
contains all the cancer types, is dominated by driver gene
BCL2 as it mutates in 126 samples, indicating that BCL2 has a
significant role in driving multiple cancer types. About 2/3rds of the

FIGURE 5
DiWANN networks consisting of 672 nodes with colored nodes for (A) Pancreatic cancer, (B) Lymph cancer and (C) Prostate cancer. (D) Barplot
containing the number of edges from nodes of each tissue in blue and the number of edges to nodes of the same tissue in orange.
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clusters have a mean mutational load lower than 3, which indicates
the number of mutations per sample.

2.4 Bipartite network analysis

To assess the cancer type-specificity of driver gene mutations
and identify mutations that work in concert to promote disease, we
analyzed two bipartite networks--a tissue-gene bipartite network
and a sample-gene bipartite network--and their corresponding
weighted one-mode projections. The tissue-gene bipartite
network shows interactions between the tissue and gene set. A
connection between a node in the tissue set to a node in the
gene set means the gene has mutated in that tissue. The edge list
for this bipartite network has been provided in Supplementary Table
S5. Our dataset consists of 1,264 genes and 15 tissues from our
dataset of 934 samples. Thus, we have 1,264 nodes in the gene set
and 15 in the tissue set. This resulted in a bipartite network
consisting of 1,279 nodes and 1718 edges.

Degree analysis of the two sets of the bipartite network provided
information about the occurrence of mutations and genes across all
the cancer types. The table in Figure 7A consists of degrees of nodes
in the gene set that are greater than or equal to seven and are sorted
in descending order. The degree in this table provides the count of
tissues in which the gene has mutated. TP53 plays a role in almost all
the cancer types present in this dataset, followed by PIK3CA and
SMARCA4, which occur in nine cancer types. Genes PTEN,
CSMD3, and MUC16 also occur in more than half the cancer
types, suggesting their relevance as general cancer driver genes
that impact multiple cancer types. The degree table for tissues in
Figure 7B provides information on how many genes have been
mutated in that cancer type. The degree values have been sorted in
descending order. Prostate cancer is heavily mutated in driver genes,
followed by pancreatic, myeloid, and skin cancer.

A weighted projection of each set of the bipartite graph provided
us with more information on the similarity of different cancer types
in terms of gene mutations. Figure 8 shows the projection on the
tissue nodes, and Figure 9 shows the projection on the gene nodes.

FIGURE 6
Community detection using Louvain algorithm (A) Resolution profile showing the cluster size at resolutions ranging from 0 to 2. (B) Percentage of
enriched terms for all annotations across resolutions. Barplots containing the count of different cancer type samples in each cluster for (C) resolution = 1,
(D) resolution = 1.5. The inset in plots C and D show cluster information for cluster IDs more than 32 for resolution = 1.5 and for cluster IDs more than
25 for resolution = 1.
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The edge weights in each case are a count of the different ways in
which two nodes are connected in the bipartite graph, for example,
the number of different genes through which two tissues are
connected. The edge weight cutoff used for the projection in the
tissue graph (Figure 8) is 6 as the number of edges drops drastically
after that, and, in the visualizations, the widths of the edges were set
proportional to the edge weights. The figure also shows a histogram
of the weights of the projection and a table showing the top overlaps
of genes. The maximum weight in this one mode projection is 103,
which can be seen from the histogram, indicating an overlap of
103 genes between pancreatic and prostate cancer.

A one mode weighted gene projection graph was produced from
the tissue-gene bipartite graph. A subset of this projection
containing only the nodes that had an edge with weight more
than or equal to three is shown in Figure 9. This projection helps

us identify gene pairs that are relevant in multiple cancer types. For
instance, TP53 mutated along with each of the four genes, PIK3CA,
SMARCA4, CSMD3, and MUC16 in eight different tissues, though
the projection does not provide us information about their co-
occurrence. Similar to what was done in Figure 8, we set the edge
widths in the visualization proportional to the edge weight. The table
depicts gene pairs that have an overlap of at least seven tissues in the
projection. We see that TP53 is overlapping with most of the genes
in this table. The nodes in the projection are colored blue if they are
present in COSMIC CGC, or else they are colored red. We see that
the top gene pairs shown in this projection are all documented
driver genes.

To get more precise information about the co-occurrence of
driver genes in cancer, we generated a sample-gene bipartite graph
and analyzed the weighted one mode weighted gene projection

FIGURE 7
Barplots showing degrees (sorted in descending order) of (A) gene node set and (B) tissue node set in the bipartite network. Degree ≥ 7 considered
for gene set and all 15 tissues were considered for tissue set.

FIGURE 8
(A) Weighted one mode tissue projection from the tissue-gene bipartite network. (B) Histogram of the edge weights of the projection. (C) Table
consisting of the top 10 edge weights in the projection.
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derived from it. The sample-gene bipartite network consists of
2,198 nodes and 3,086 edges. The edge list for this bipartite
network has been provided in Supplementary Table S6. A subset
of the gene projection containing only the nodes that had an edge
with weight more than or equal to four is shown in Figure 10. The
table shows the sorted edge weights greater than 8. The sample-gene
bipartite network highlights genes that co-occur in the tumor
samples. We see that KRAS and TP53 co-occur in many tumor
samples, followed by three other pairs that occur in over 10 samples,
which is also a significant number considering we analyzed
934 samples.

We know that these pairs co-occur in significant number of
samples. However, we do not know if the pairs co-occur exclusively
in specific cancer types or if they coexist in multiple cancer types.
One mode gene projection from the sample gene bipartite network
for each of the 15 cancer types helped us perform a deeper analysis
and identify cancer specific patterns. The edge weights of these gene
projections provided in Supplementary Table S7 give us the exact
number of co-occurrences of genes in different cancer types. The
table provides gene pairs that have a weight of more than two in the
gene projections, that is, they co-occur in more than two samples.

The one mode projections for pancreatic and esophageal cancer
are shown in Figure 11. The most striking result observed in this
analysis is that pancreatic cancer contains most of the TP53 and
KRAS connections we saw in the gene projection for all the cancer
types (i.e. 103 out of the total 107 shown in the weights table in

Figure 10C). This strong association highlights a likely requirement
for both inactivation of TP53 and oncogenic activation of KRAS in
pancreatic cancer development. The second highest co-occurring
pair in the common gene projection, CDKN2A and KRAS, also
majorly occurs in pancreatic cancer. Most of the nodes in esophageal
cancer are connected to TP53, with APC having the highest edge
weight of five to TP53, followed by SMAD4, ARID1A, and NRG1,
each of which have an edge weight of four to TP53.

The other cancer type projections have been provided in
Supplementary Figures S3 and S4. We see myeloid and skin
projections have many edges. Although there is a high number of
edges in these cancer projections, there is no pair of genes with a
high weight; in other words, no pair dominantly co-occurs. Prostate
and myeloid cancer are dominated by genes that are not present in
COSMIC CGC. Some genes co-occur with most other genes,
including TP53 in biliary cancer, CTNNB1 in liver cancer, and
PIK3CA in breast cancer. Bone, kidney and central nervous system
(CNS) cancer projections have the fewest connections. The genes
PIK3CA and TP53 seem to be most connected to other genes in
breast cancer, with PIK3CA and GATA3 co-occurring the highest
number of times. Prostate cancer does not show an evident co-
occurrence pattern, and almost all edges have a weight of 1, however,
there were some central nodes including CTNNB1, RB1, and AR.
Lymph and skin cancer have multiple edges with mostly low weights
and a few genes that are more connected, namely, SGK1 in lymph
cancer and MUC16, TP53, and BRAF in skin cancer. The other

FIGURE 9
(A) Weighted one mode gene projection from the tissue gene bipartite network where the nodes are colored depending on whether the gene is
present in COSMIC CGC, as shown in the legend. (B) Histogram of the edge weights of the projection. (C) Table consisting of the edge weights greater
than 6 in the projection.
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cancer types have fewer edges, with TP53 connected to almost every
other node in ovarian cancer.

3 Discussion

This study reduces the computational complexity of sequence
similarity network analyses applied to human cancer genomes by
focusing on likely driver mutations to identify cancer type mutation
specificities and patterns of co-occurrence. Additionally, the
computational burden is further lowered by filtering the dataset
to keep only recurrent gene mutations and generating a reference
sequence containing only the needed genetic information. The final
dataset comprised 934 samples involving 1,264 genes. The genes
were filtered using different approaches depending on whether the
genes were present in the COSMIC Cancer Gene Census (CGC)
catalogue. This list is the most comprehensive and accurate set of
validated cancer genes annotated from the literature (Forbes et al.,
2017). Hence, a more lenient filtering step was used for COSMIC
CGC genes compared to genes not in COSMIC CGC.

Two network-based approaches, SSN analysis and bipartite
network analysis, were implemented to study cancer driver genes
and their role in tumors. Using DiWANN, a variant of SSN that has
not been previously used to study cancer genes, we got insights into
the general pattern of different cancers. For instance, it is evident
from the DiWANN network that pancreatic cancer nodes are more

connected amongst themselves than to other nodes. The individual
views of each cancer type helped us identify patterns more
conveniently. These individual networks suggest that cancer types
vary in terms of connectedness, that is, how similar samples are to
other samples of the same cancer type. Pancreatic and lymph cancer
nodes are well connected, while prostate cancer nodes have very few
connections to each other. Among the other cancers shown in
Supplementary Figures S1 and S2, esophageal, liver, and myeloid
seem to have just a few connected nodes.

Community detection results complemented our findings and
provided additional insights on the behavior of different cancer
types. The Louvain algorithm has proven to be among the most
efficient community detection algorithms based on evaluation for
appropriate community size and significant representation of
groups within communities (Rahiminejad et al., 2019), and hence
was chosen for this study. Different resolution values used for
Louvain clustering enriched annotations differently, with the
resolution value of 1.5 being the most optimal in terms of
enrichment of cancer types as well as causative genes. The
smaller clusters obtained with resolution values more than one
are more enriched and could potentially help prioritize genes or
mutations for targeted drug development. Clusters breaking down
also signifies disease subtypes.

Cancer specific insights from clustering can be used to set up
experiments on identifying drug targets. For instance, the largest
cluster comprising all cancer types contained 212 samples, out of

FIGURE 10
(A)Weighted onemode gene projection from the sample gene bipartite network where the nodes are colored depending on if the gene is present in
COSMIC CGC, as shown in the legend. (B)Histogram of the edge weights of the projection. (C) Table consisting of the edge weights greater than 8 in the
projection.
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which 160 had mutations in BCL2. This indicates that BCL2 has a
significant role in pan cancer analysis and could be a common target
for cancer treatments. Community detection also showed that
certain cancer types tend to cluster more with their own types,
such as pancreatic, lymph, skin and breast.

The time complexity of generating the SSN is reduced using
DiWANN as DiWANN maintains only the minimum distance
edges. The calculation needed for maintaining nearest distances
is made efficient by prunings and bounding optimizations, unlike
standard threshold-based SSN, where all pairwise distance
computations are made. Besides computational efficiency,
DiWANN is also advantageous in terms of structural information
it retains. Specifically, since an edge in DiWANN is drawn from
every node to the node’s nearest neighbor in the similarity space,
there are no singleton nodes in the eventual network, unlike
threshold-based SSN that could contain singleton nodes,
potentially causing loss of information.

Bipartite network analysis provided insights into gene
associations in tumor samples and cancer types. The first
bipartite network consisting of tissues in one set and genes in the
other shows which genes occur in which cancer types (tissues). The
degree analysis of this bipartite network suggests that TP53 occurs in
almost all cancer types (Olivier et al., 2010), followed by PIK3CA
and SMARCA4 occurring in nine cancer types, indicating their
importance in multiple cancers (Kang et al., 2020; Peng et al., 2021).
The tissues that have the highest degrees are the ones that are driven
by many genes and can be said to be more heterogeneous. For
instance, prostate, lymph and skin have the highest degrees (genes)
and are highly heterogeneous tumors (O’Connor and Tobinai, 2014;
Grzywa et al., 2017; Carm et al., 2019), suggesting they might be too

diverse for common drugs and treatments. The weighted one mode
tissue projection from the tissue gene bipartite graph shows the
number of common genes a pair of tissues have, with the highest
being 103 among pancreatic and prostate, suggesting they have the
greatest number of common genes mutated in the two cancers.

We obtained information about the co-occurrence of genes from
the sample gene bipartite network. From the weighted one mode
gene projection generated from this bipartite network in Figure 10,
we see that TP53 and KRAS are the most frequently co-occurring
pair, with an edge weight much higher than any other edge. Other
pairs that noticeably co-occur are KRAS and CDKN2A, TP53 and
CDKN2A, and TP53 and CTNNB1. Most of these pairs are tumor
suppressor gene-oncogene pairs except for TP53 and CDKN2A,
which are both TSGs, suggesting a strong need for both inactivation
of a TSG and activation of an oncogene to promote cancer
progression (Zhu et al., 2015). Weighted one mode projections
generated individually for each cancer type suggest that there are
certain genes or gene associations that are exclusive to certain
cancer types.

Certain gene pairs exhibit distinct mutation patterns in different
cancer types (Sinkala, 2023). The gene projections generated for
each cancer type show that most of the co-occurring TP53 and
KRAS pairs are in pancreatic cancer, as shown in Figure 11A and
Supplementary Table S7, suggesting their importance in driving
pancreatic cancer (Kim et al., 2021) and highlighting that both
mutations are likely required for metastasis on these tumors.
Figure 11B suggests that TP53 is required along with most of the
other driver genes in esophageal cancer. Supplementary Figures
S3 and S4 suggest patterns in occurrence of genes in other cancer
types. Genes in CNS, bone and kidney cancer tend to exist

FIGURE 11
Weighted one mode gene projections for (A) Pancreatic and (B) Esophageal. The nodes are colored depending on if the gene is present in COSMIC
CGC, as shown in the legend, and the edge width is 1/10th of edge weight. The pancreatic projection is a subgraph of the original projection and consists
of nodes having an edge weight of two or more.
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individually, indicating there is less co-occurrence of genes driving
the cancer. TP53 is an important gene inmany cancers, however, it is
seen to be co-occurring withmost of the other genes in biliary, ovary,
pancreatic, and skin suggesting TP53’s vital role in driving these
cancers. Lymph, prostate, and skin cancers seem to have many
connected genes suggesting they are diverse with high
mutational frequency.

Identifying driver mutations and how mutated genes affect the
biology of a given tumor are fundamental challenges in cancer
genomics. The same somatic mutation in a driver gene may have
different effects in different cancer types (Watson et al., 2013; Porta-
Pardo et al., 2020). This could depend on the other mutations in the
tumor. Different analytical approaches have been used in previous
studies to understand the role of driver genes in human cancers.
Some studies have performed pathway analysis to understand
interactions between genes and mutational heterogeneity in
cancer (Leiserson et al., 2015; Reyna et al., 2020). However, these
methods focus on the discovery of cancer modules rather than
prioritizing individual cancer driver genes. In contrast, this study
analyses mutations in the genomic sequences of individual driver
genes in 15 human cancers. Some studies have used statistical
methods to identify or prioritize driver genes and their
interactions (Miller et al., 2011; Jiang et al., 2019) Such methods
can be error prone (Nussinov et al., 2019).

This study has used edit distance as the similarity metric to
generate the SSNs. There are studies that have constructed gene
similarity networks using different metrics, including co-occurrence
probabilities (Mirzaei, 2023). Identifying co-occurring genes is one
of the important findings in this study, and so is identifying cancer
specific behaviors using the DiWANN network. Edit distance
accurately quantifies the similarity between sequences of each
TCGA sample.

With advances in DNA-sequencing technologies and
collaborative projects such as TCGA and ICGC, thousands of
cancer genomes have been sequenced and made available.
However, there is still not enough diversity and sequences
available to identify driver genes in all cancer types. This study
focuses on individual cancer driver genes in 15 human cancers and is
a data-centric, efficient computational approach. Therefore, as the
number of cancer genomes sequences increases over time, we expect
the usefulness of this approach will increase.

There are a few limitations of this study that can be further
improved. Firstly, the data is slightly imbalanced in terms of number
of samples from different cancer types. As seen from the pie chart in
Figure 1D, the proportion of pancreatic cancer samples is much
higher than the others, while some cancers, such as head, kidney,
and bone, have very few tumor samples. Additionally, excluding
amplifications and large deletions might have filtered out some
tumor samples from the original dataset. Therefore, there might be
some bias in the observations we see, however, most of the
observations made have been validated and seem to be consistent
with all the results.

Another limitation of this study is the way the driver genes have
been selected, that is, using mutation frequency more than one for
COSMIC CGC genes and the top 4% for others. However, the
threshold for COSMIC CGC is very low, reducing chances of
missing driver mutations and the threshold for other genes was
selected in a way to ensure the top occurring genes were selected

while maintaining a fair distribution of cancer types. The dataset can
be expanded by taking care of these concerns in the future and with
continued accumulation of human tumor whole genome sequences.
This increase in dataset size will likely power additional patterns of
cancer mutations upon similar network analyses.

4 Materials and methods

4.1 Data sources

The study focuses on mutational driver genes capable of driving
tumorigenesis via single-nucleotide variants (SNVs) and short
insertions or deletions. With reduction in sequencing costs, it has
become easier to obtain genomic information at the level of SNVs. A
mutation annotation format (maf) file containing SNVs and
aggregated mutation information at a project level, which is a
part of The Pan-Cancer Analysis of Whole Genomes (PCAWG)
study, was extracted from International Cancer Genome
Consortium (ICGC) (Campbell et al., 2020). The PCAWG is an
international collaboration to identify common patterns of mutation
in more than 2,600 cancer whole genomes from the ICGC. The maf
file contained over 23 million mutations for 1830 donors and
25 projects. Additionally, we have made use of the Catalogue of
Somatic Mutations in Cancer (COSMIC) Cancer Gene Census
(CGC), which is a catalogue of genes that contain mutations that
have been causally implicated in cancer to help us consider only the
relevant genes in the dataset (Tate et al., 2019).

4.2 Data reduction

The maf file contained over 23 million mutations and
32,269 genes. The mutations were of different variant types and
included non-coding region mutations. We are interested in
functionally significant regions, so the dataset was filtered to
exclude non-coding regions, which include three variant classes,
namely, inter-genic region (IGR), intron, lincRNA, and 5’ Flank.
Non-coding genes are rarely found to be driver genes (Rheinbay
et al., 2020). Furthermore, the dataset was filtered based on inclusion
of genes in the COSMIC CGC. Recurrence of a mutation in patients
remains one of the most reliable markers of its driver status, and its
frequency can be adjusted based on background mutability (Brown
et al., 2019). Therefore, for CGC genes, we chose to select mutations
that occur more than once, potentially eliminating random
passenger mutations for this study. For genes not included in
COSMIC CGC, we chose gene–mutation pairs that represented
the top 4% of frequency within each cancer type. This ensured
distributed and normalized selection of genes for all cancers.

This study required generation of a single sequence for each
donor by combining mutation information for all the genes in the
final dataset. A straight-forward way of doing this would be to
combine the cDNA sequence for each gene into a single sequence
and only change the nucleotides that have mutated for that donor.
However, this would result in a very long sequence, leading to a
computationally extremely expensive process of creating the
DiWANN network. To reduce the computational cost of the
process, we create a transformed sequence for each donor using
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only the recurrent mutations for each gene. All the recurrent
mutations are considered for each gene, and a sequence is made
by concatenating the original nucleotide for each mutation. These
sequences representing the wild type nucleotides for each gene are
then combined to form a single transformed sequence. The order in
which the genes and the mutations for each gene are concatenated is
kept the same for every donor, avoiding any possible difference in
the significance of the biological sequences. Consequently, we have a
reference sequence for each donor in which we change the
nucleotides that have mutated for that donor and keep the other
wild type nucleotides the same. The source code for data reduction
and network analysis done in this study is available at https://github.
com/ShrutiPatil13/CancerNetworkAnalysis.

4.3 Network analysis

Two network-based approaches were implemented to study
cancer driver genes: DiWANN network analysis and bipartite
network analysis. The DiWANN network is a variant of sequence
similarity network (SSN) where each node (sequence) is connected
to only its closest neighbor(s). The distance (dissimilarity) between
nodes is measured using edit distance (Kim et al., 2021). The
construction algorithm used in the DiWANN model uses a
pruning and bounding method to avoid costly distance
calculations (Catanese et al., 2018). The algorithm calculates the
distances for the first sequence and then prunes out the distance
calculations not needed and bounds the calculations needed for
other sequences. This avoids calculating pairwise distance matrix for
all sequences, reducing the computation needed and ultimately the
time to construct the network. Note, we use the reference (wild type)
sequence generated as the first sequence.

The implementation was run on Washington State University’s
high performance computing cluster, Kamiak, which further reduced
the network construction time. The constructed DiWANN network
was visualized using tools from igraph and NetworkX in Python
(Proceedings of the Python in Science Conference SciPy: Exploring
Network Structure, Dynamics, and Function using NetworkX, 2022;
Csárdi and Nepusz, 2006). The force directed layout called
Fruchterman-Reingold layout was utilized to place nodes on the
plane. The nodes were colored by tumor tissue (type) and sized
according to the number of occurrences of the sequence in the final
dataset. The edge length and width were made proportional to the
edge weight, connecting more dissimilar sequences with a longer and
thicker edge. Additionally, to see patterns in each cancer type better,
individual views of the DiWANN network were generated. The
implementation efficiency of a DiWANN network was compared
to the standard threshold-based SSN using the same distance metric,
edit distance. Community detection was performed on the DiWANN
network using the Louvain algorithm. Node annotations, namely,
cancer type and causative genes, were analyzed for enrichment at
different resolution values using the Fischer exact test (Upton, 1992).

The second network-based approach used bipartite networks to
study associations between driver genes in samples and in different
cancer types. Two bipartite networks were constructed: a tissue-gene
bipartite network and a sample-gene bipartite network. Weighted
one mode projections of genes and cancer types (tissues) were then
constructed from these bipartite networks. NetworkX was used to

construct and study these bipartite networks. Degree analysis of the
bipartite networks provided us with information on the occurrences
of genetic alterations in genes and different cancer types.
Additionally, weighted one mode projections were generated for
individual cancer types for a deeper analysis.

5 Conclusion

Identifying driver genes and understanding the behavior of
mutations is important in cancer genetics. This study implemented
two network-based approaches: analysis done using the DiWANN
network model, which is a variant of SSN, and analysis done using an
underlying bipartite network to identify patterns in driver genes and
in different cancer types. A data reduction framework extracted
relevant information from a PCAWG maf file provided by ICGC
and generated a transformed reference sequence from the selected
driver genes to construct the DiWANN network. The data reduction
process and utilization of the DiWANN model to study sequences
lowered the computational expenses. The DiWANN networks helped
us identify cancer types that are more connected than others
suggesting which cancers would benefit from generalized
treatments and which would need more personalized treatments.
We identified many gene associations pertinent to cancer using the
bipartite network analysis. Some driver genes played a role inmultiple
cancer types while some were exclusive to specific cancer types.
Therefore, we demonstrated how network analysis can effectively
be used to study cancer genetics.
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