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Recent advancements in contact map-based protein three-dimensional (3D)
structure prediction have been driven by the evolution of deep learning
algorithms. However, the gap in accessible software tools for novices in this
domain remains a significant challenge. This study introduces GoFold, a novel,
standalone graphical user interface (GUI) designed for beginners to perform
contact map overlap (CMO) problems for better template selection. Unlike
existing tools that cater more to research needs or assume foundational
knowledge, GoFold offers an intuitive, user-friendly platform with
comprehensive tutorials. It stands out in its ability to visually represent the CMO
problem, allowing users to input proteins in various formats and explore the CMO
problem. The educational value of GoFold is demonstrated through benchmarking
against the state-of-the-art contact map overlap method, map_align, using two
datasets: PSICOV and CAMEO. GoFold exhibits superior performance in terms of
TM-score and Z-score metrics across diverse qualities of contact maps and target
difficulties. Notably, GoFold runs efficiently on personal computers without any
third-party dependencies, thereby making it accessible to the general public for
promoting citizen science. The tool is freely available for download for macOS,
Linux, and Windows.1
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1 Introduction

The study of protein three-dimensional (3D) structure prediction has undergone rapid
development in recent years, driven largely by advancements in accurate prediction of inter-
residue contact map powered by deep learning algorithms (Abriata et al., 2019; Hou et al., 2019;
Senior et al., 2019; Xu and Wang, 2019; AlQuraishi, 2021). Despite these strides, the field still
faces a significant challenge: the dearth of software tools accessible to novices. Existing tools
often fail to bridge the gap between advanced protein folding methodologies and foundational
learning for beginners (McGehee et al., 2020). Historically, tools like FoldIt (Kleffner et al.,
2017) have been instrumental in demystifying protein folding for the lay audience. FoldIt, an
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online platform, leverages the power of crowdsourcing and the Rosetta
molecular modeling software (Leaver-Fay et al., 2011; Adolf-et al.,
2013; Schenkelberg and Bystroff, 2015), allowing users to engage in
solving protein folding puzzles.While FoldIt and its standalone version
address aspects of protein folding, they primarily cater to research
needs and do not offer comprehensive guidance for beginners.
Similarly, PolyFold (McGehee et al., 2020) provides user-friendly
manipulation of protein structures but falls short in offering the
level of assistance that beginners might require https://drive.google.
com/drive/folders/1_hQ5Yy0seCdfC71KMzRBqMM1pIM0uNJE?
usp=sharing.

Moreover, protein 3D structure prediction, including template-
based methods (Yang et al., 2011; Ma et al., 2012; Bhattacharya and
Bhattacharya, 2019a; Bhattacharya and Bhattacharya, 2019b; Xu and
Wang, 2019; Bhattacharya and Bhattacharya, 2020; Zhang and Shen,
2020; Bhattacharya, 2021; Bhattacharya, 2021; Bhattacharya et al.,
2022; Bhattacharya et al., 2023), has been revolutionized by the use
of contact maps powered by deep learning. A contact map represents
the three-dimensional (3D) structure of a protein by capturing the
spatial closeness between residues. These maps have been shown to
considerably enhance the accuracy of template-based protein 3D
structure prediction (Hou et al., 2019; Xu and Wang, 2019; Pearce
and Zhang, 2021). In this context, the analysis of contact map
overlap (CMO) becomes vital for evaluating the suitability of a
template protein in template-based modeling (Ovchinnikov et al.,
2017; Bhattacharya and Bhattacharya, 2019b; Bhattacharya et al.,
2022). Researchers have addressed the CMO problem with different
approaches (Di Lena et al., 2010; Buchan and Jones, 2017;
Bhattacharya et al., 2022). In particular, Al-Eigen (Di Lena et al.,
2010), EigenTHREADER (Buchan and Jones, 2017), and
CEthreader (Zheng et al., 2019) are tools which calculate the
eigenvectors of the contact maps for two input proteins, and
compare them by performing a global alignment of the
eigenvectors by utilizing eigendecomposition. GR-Align (Malod-
Dognin and Pržulj, 2014), a program which analyzes the two
proteins in the CMO problem as graphs and graphlets, is intended
for large-scale testing of databases for alignments. map_align
(Ovchinnikov et al., 2017), inspired by (Taylor, 1999), analyzes the
target and template proteins using scoring matrices determined by
initially using the Smith-Waterman (Smith and Waterman, 1981)
algorithm to identify subsequence alignments and determine the best
alignment between the target and template proteins. However, these
tools do not allow the visualization of the contact map overlapping and
some tools (Ovchinnikov et al., 2017; Zheng et al., 2019; Bhattacharya
et al., 2022) take sequential and structural features along with contact
information to calculate the CMO score,making them time consuming
(Bhattacharya et al., 2022) and difficult to use for novice.

GoFold–our novel, standalone GUI design to demystify the
basics of protein 3D structure prediction and CMO problem.
Unlike tools that assume a foundational understanding of the
subject, GoFold is tailored for beginners. It features a user-
friendly interface with collapsible, accessible tutorials that guide
users through the basic functionalities of protein structure
prediction. This approach allows novices to grasp the
complexities of the field without the added layer of confusion.
GoFold stands out in its ability to visualize the CMO problem.
While existing tools offer unique methodologies for analyzing
protein alignments, they do not provide a visual representation

of the overlap. GoFold addresses this gap by allowing users to input
proteins in either the CASP residue-residue format (Senior et al.,
2019; Kryshtafovych et al., 2021) or the common PDB format
(Berman et al., 2000), offering a visual display of the distance
maps and their overlaps. The tool is freely available for download
at https://drive.google.com/drive/folders/1_hQ5Yy0seCdfC71KMz
RBqMM1pIM0uNJE?usp=sharing for macOS, Linux, and Windows.

2 Methods and materials

2.1 GoFold’s features

GoFold is designed to simulate and educate users about the
intricacies of protein folding. The primary components of GoFold
are divided within two basic modes, each crafted to offer a unique
aspect of protein folding. Template Matching Mode: In the Template
Matching Mode, users are introduced to template-based protein
folding through an interactive 3D interface. Initially, 3D structures,
prepared in Chimera (Pettersen et al., 2004), are imported into GoFold,
allowing users to manually manipulate these structures to match the
template closely with the target protein. This hands-on approach aids
users in visually identifying the most suitable template for their target
protein. As shown in Figure 1, the interface displays a 3D structure of a
target protein shaded in red. The core challenge for the user is to select
the best-fit template for the given target. Adjacent to the target, on the
right side of the interface, three template options are presented as
clickable buttons. When a template is selected, it is rendered in white
and positioned at the same origin point as the target protein for direct
comparison (refer to Figure 1). This visual juxtaposition allows the user
to evaluate and choose the template that best matches the target.
Additionally, users can adjust the camera angle via mouse controls,
enabling a comprehensive view of the protein structures. Importantly,
users can only select one template at a time, mirroring the critical
decision-making process in template-based protein folding. Contact
Map Matching Mode: Diverging from the 3D visualization, this mode
presents the user with two-dimensional (2D) contact (or distance)
maps of target and template proteins. As shown in Figure 2, the user
selects a template contact map from the right-hand side of the screen.
Upon selection, the template is superimposed on the target contact
map with the target contact map shifting to grayscale and the template
map adopting a blue hue (refer to Figure 2). The objective remains
consistent with the previous mode. This mode emphasizes
understanding spatial relationships and distances within protein
structures. The next subsection outlines the approach taken by
GoFold to address the contact map overlap problem.

2.2 GoFold’s contact map overlap approach

In addressing the contact map overlap problem, our approach
employs a novel strategy inspired by previous studies (Taylor, 1999;
Ovchinnikov et al., 2017; Bhattacharya et al., 2022). Our algorithm is
designed to enhance the accuracy of contact map alignment through
a two-step dynamic programming process (Supplementary Text S1).
First Step: In this phase, we calculate scores for each row
(representing a specific residue) of the first contact map against
each row of the second contact map. The score computation involves
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the summation of Gaussian functions: exp {-x2/[2y (Xu and Wang,
2019)]}, where “x” is the difference in sequence separation of aligned
contacts, and “y” (standard deviation) is a function of the smaller of
the two sequence separations. Dynamic programming is then

employed to identify the alignment of contacts for the two rows
that maximizes the sum of these Gaussian functions. The optimized
scores are recorded in a second matrix. Second Step: To refine the
alignment, we utilize the Smith–Waterman algorithm in a second

FIGURE 1
A representative Template Matching mode of GoFold. A template (in white) is selected, which is overlayed across the target (in red).

FIGURE 2
A representative Contact MapMatchingmode of GoFold. A template contactmap is selected and is overlayed (in blue) across the target contactmap
(in gray).
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dynamic programming phase. This process iterates once, updating
the second-step similarity matrix based on the current alignment.
This iterative refinement addresses the overestimation issue in
individual row-row comparisons encountered in the first step.

The integration of this two-step dynamic programming process
into GoFold’s Contact Map Matching Mode not only enhances the
game’s educational value but also mirrors the complexities
encountered in real-world protein folding scenarios. By
simulating these intricate processes, GoFold offers an immersive
learning experience, enabling users to grasp the introductory
concept of protein structure alignment and analysis.

It is important to note the adaptability of GoFold to different
user needs. For Figure 1, the 3D structures are pre-generated and
imported, allowing users to interactively explore template matching
through manual adjustments. In contrast, the contact maps shown
in Figure 2 are outcomes of GoFold’s algorithm, utilized in an
educational context to simplify the concept for users. To
accommodate a range of experiences, from novices to advanced
users, GoFold’s design intentionally avoids real-time computation in
the Contact Map Matching Mode for enhanced user experience and
accessibility. Advanced users, however, have the option in a
subsequent phase to directly input contact maps and engage with

TABLE 1 Performance comparison on PSICOV dataset based on the mean TM-score of predicted models and mean Z-score of target-template alignments.
One sample t-test’s p-value is shown in brackets. We include contact maps predicted by PSICOV, trRosetta, and true (native) contact maps. Best
performance are listed in bold.

Contact source Mean TM-score Mean Z-score

map_align (p-value) GoFold map_align (p-value) GoFold

PSICOV 0.4053 (1.9495E-06) 0.4297 22.8816 (9.8636E-13) 25.9258

trRosetta 0.4891 (5.0218E-17) 0.5307 44.4660 (1.4591E-25) 52.7320

Native Contact 0.5083 (6.3859E-20) 0.5607 47.8723 (8.0532E-29) 58.1173

FIGURE 3
A head-to-head Performance comparison of GoFold and map_align on PSICOV dataset based on the TM-score of predicted models. We include
contact maps predicted by PSICOV, trRosetta, and true (native) contact maps. (A) GoFold versus map_align using PSICOV predicted contact maps, (B)
TM-score distribution of models predicted by GoFold (in green) versus map_align (in grey) using PSICOV predicted contact maps, (C) GoFold versus
map_align using trRosetta predicted contact maps, (D) TM-score distribution of models predicted by GoFold (in green) versus map_align (in grey)
using trRosetta predicted contact maps, (E) GoFold versus map_align using native (or true) contact maps, (F) TM-score distribution of models predicted
by GoFold (in green) versus map_align (in grey) using native (or true) contact maps.
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the CMO algorithm for a comprehensive exploration of GoFold’s
capabilities.

2.3 Benchmarking datasets, competing
methods, and evaluation metrics

While GoFold is primarily an interactive visual simulator for
protein folding as opposed to a protein structure prediction method,
we assess GoFold’s contact map overlap predictive ability using two
benchmarking datasets. Our first benchmark dataset is the PSICOV
dataset (Jones et al., 2012), containing 116 single chain, single
domain proteins with a length cutoff of 200 to focus our analysis
on small target proteins. In order to test the impact of different types
of contact maps in the performance, we consider predicted contact
maps including (i) sparse inverse covariance estimation method
(PSICOV) (Jones et al., 2012), (ii) state-of-the-art deep learning
method (trRosetta) (Yang et al., 2020), and (iii) native
(experimentally determined) contact maps. PSICOV contacts are
collected from the MetaPSICOV benchmark dataset (Jones et al.,
2015). trRosetta contact maps are collected by submitting jobs to the
trRosetta server (https://yanglab.nankai.edu.cn/trRosetta/).

Our second benchmark dataset is the CAMEO dataset (Haas
et al., 2019) officially released from 20 August 2022 to 11 February
2023 with a length ranges from 50 to 150. This dataset contains
25 easy, 39 medium, and 16 hard targets. On this dataset, we use
predicted contact maps by trRosetta by submitting jobs to the
trRosetta server. These maps are predicted as intermediate
features by trRosetta, alongside other features, while predicting
3D models. We utilize these intermediate contact maps directly
and do not derive contact information from the final trRosetta-
predicted 3D structures.

We use a representative non-redundant library of templates,
collected from: https://zhanglab.ccmb.med.umich.edu/library/, (Roy
et al., 2010; Yang et al., 2015). We use TM-align (Zhang and
Skolnick, 2005) to randomly select template(s) for each target
with a TM-score <0.9 to the target, avoiding the chance of
selecting the native structure as a template for a target. Following
this procedure, we have 184 target-template pairs for the PSICOV
dataset, and 46 easy, 39 medium and 30 hard target-template pairs
for the CAMEO dataset. Recognizing that medium and hard targets

are often challenging to model with a single template, our strategy in
selecting templates is driven by the understanding that even partial
alignments with medium and hard targets can provide valuable
insights into protein structure prediction.

Over these datasets, the performance of GoFold is benchmarked
against the state-of-the-art contact map overlap method, map_align
(Ovchinnikov et al., 2017). To run map_align and GoFold, we only
use contact maps as inputs. We cannot include recent contact map
overlap methods (Di Lena et al., 2010; Buchan and Jones, 2017;
Zheng et al., 2019; Bhattacharya et al., 2022) for benchmarking
because either the tool is not publicly available, or it requires other
sequential and/or structural features along with contact maps as
inputs. Here, it is worth mentioning that GoFold is specifically
designed to work efficiently with just contact maps, streamlining its
use for educational purposes and making it highly accessible to users
without the need for generating other sequential and
structural features.

The predicted target-template alignment quality by GoFold and
map_align is evaluated using the Z-score by CCpro (Di Lena and
Baldi, 2021). CCpro outputs a Z-score, the greater the value the
better the alignment. In addition, the output alignments are then fed
into MODELLER (Webb et al., 2014) to build the 3D structures of
the target proteins. TM-score (Xu and Zhang, 2010) is used to
evaluate the quality of the predicted 3D structure of target proteins
with respect to the native (experimentally determined) structures.
The value of TM-score lies in the range (0,1), where a higher score
indicates better similarity. A TM-score >0.5 indicates a correct fold
to the native structure. To make a fair comparison, the same contact
maps, the same template, and the same modeling strategy by
MODELLER are used for both competing methods.

3 Results and discussion

3.1 Performance on PSICOV dataset with
contact maps of diverse qualities

To investigate the impact of quality of contacts on the
performance, we benchmark our method, GoFold, against the
state-of-the-art contact map overlap method, map_align, using
contact maps of diverse qualities on the PSICOV dataset. Notably,

TABLE 2 Performance comparison of GoFold against map_align on CAMEO dataset based on themean TM-score of predictedmodels andmean Z-score of
target-template alignments. One sample t-test’s p-value is shown in brackets. The target category is officially released by CAMEO. Best performance are
listed in bold.

Evaluation metrics Target category map_align GoFold

Mean TM-score Easy 0.4260 (1.5913E-05) 0.4879

Medium 0.4058 (1.8842E-05) 0.4402

Hard 0.3254 (0.04666) 0.3565

All 0.3962 (2.4115E-19) 0.4381

Mean Z-score Easy 36.9084 (2.5487E-08) 44.8056

Medium 36.0894 (6.123E-08) 42.6156

Hard 33.2852 (2.2119E-06) 40.1224

All 35.7877 (7.8818E-19) 42.7841
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we include contact maps predicted by PSICOV, trRosetta, and native
(true) contact maps. To make a fair comparison, the same contact
maps, the same template and the same modeling strategy by
MODELLER are used for both competing methods.

Using PSICOV Predicted Contact Maps: As shown in Table 1,
GoFold exhibits superior performance using PSICOV predicted
contact maps with a mean TM-score of 0.4297 and a mean
Z-score of 25.9258, compared to map_align with a mean TM-
score of 0.4053 and a mean Z-score of 22.8816. The performance
improvement of GoFold over map_align is also statistically
significant at the 95% confidence level (p < 0.05). We also note
that GoFold outperforms map_align by accurately predicting the
correct fold with a TM-score exceeding 0.5 in 64 out of 184 target-
template pairs, surpassing map_align’s performance of 55 pairs.
Using trRosetta Predicted Contact Maps: Moreover, GoFold
demonstrates a statistically significant advantage over map_align
when employing high-quality contacts from trRosetta. GoFold
achieves a mean TM-score of 0.5307 compared to map_align’s
0.4891, showcasing GoFold’s ability to surpass a mean TM-score
of 0.5 and map_align falls short to achieve a mean TM-score of 0.5.
Furthermore, GoFold outperforms map_align by accurately
predicting the correct fold (TM-score >0.5) in 93 out of

184 target-template pairs as opposed to 79 by map_align. The
Z-scores also affirm the robust performance of GoFold over
map_align (52.732 vs. 44.466). Using Native Contact Maps:
GoFold continues to exhibit a statistically significant superiority
over map_align when utilizing native contact maps, showcasing a
substantial margin in both mean TM-score (~0.06) and mean
Z-score (~11). In terms of predicting the correct fold, GoFold
achieves correct folds in 107 out of 184 pairs compared to map_
align’s 84, illustrating while GoFold predicts models with TM-
score >0.5 for 23 cases, map_align falls short to achieve it.

As shown in Figure 3A, GoFold outperforms map_align in
48.9% of cases, emphasizing GoFold’s resilience with low-quality
PSICOV predicted contacts. We see a similar trend in Figure 3B
where the distribution of GoFold is towards the higher TM-score
than that of map_align, illustrating that GoFold predicts models
with a higher TM-score than that of map_align. Figure 3C further
illustrates that GoFold, using high-quality trRosetta predicted
contact maps, outperforms map_align using the same contact
maps for 62% of the cases, whereas 16.8% of the cases show that
map_align outperforms GoFold. Using the same contact maps,
we observe a similar trend when we plot the distribution plot
(Figure 3D) of predicted models by GoFold and map_align.

FIGURE 4
A head-to-head Performance comparison of GoFold and map_align on CAMEO dataset based on the TM-score of predicted models. The target
category is officially released by CAMEO. We include contact maps predicted by trRosetta for both GoFold and map_align. (A)GoFold versus map_align,
(B) TM-score distribution of models predicted by GoFold (in green) versus map_align (in grey) over all targets, (C) TM-score distribution of models
predicted by map_align over easy (in green), medium (in yellow), hard (in red) targets. (D) TM-score distribution of models predicted by GoFold over
easy (in green), medium (in yellow), hard (in red) targets.
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Figures 3E, F further demonstrate the superior performance of
GoFold over map_align using native contact maps. In particular,
while GoFold outperforms map_align in 65.7% of the cases, map_
align outperforms GoFold in 16.5% of the cases. Moreover, as
shown in Figure 3E, the peak of GoFold’s distribution plot is
higher as well as towards the higher TM-score range than map_
align, illustrating that GoFold significantly outperforms map_
align. Additionally, when evaluating the target-template
alignment prediction quality in terms of Z-score
(Supplementary Figure S1), a similar trend is observed, further
highlighting GoFold’s superiority over map_align in terms of
Z-score of predicted alignments. Overall, we note the impact of
different qualities of contacts on the performance of GoFold and
map_align, as well as the statistically significantly superior
performance of GoFold over map_align in terms of predicting
the on the PSICOV dataset.

3.2 Performance on CAMEO dataset

The performance of GoFold is further benchmarked against
map_align on the CAMEO dataset, containing 25 easy targets
(results into 46 target-template pairs), 39 medium targets (results
into 78 target-template pairs), and 16 hard targets (results into
30 target-template pairs). The target difficulty is officially assigned
by CAMEO.

The comparative evaluation of predictive performance, as
measured by TM-score and Z-score metrics, between map_align
and GoFold across different target categories is presented in

Table 2. Notably, GoFold consistently demonstrates superior
predictive capabilities across all target difficulty categories. For
easy targets, GoFold achieves a TM-score of 0.4879, surpassing
map_align’s TM-score of 0.4260, with a p-value of 1.5913E-05.
Moreover, while GoFold predicts the correct fold with a TM-
score>0.5 for 23 (out of 46) cases, map_align only predicts it for
14 cases. In medium difficulty targets, GoFold achieves a TM-
score of 0.4402, outperforming map_align’s 0.4058 with a p-value
of 1.8842E-05. In terms of correct folds prediction, GoFold
achieves TM-score>0.5 for 27 cases, which is 6 more than that
of map_align. On hard targets, GoFold achieves a TM-Score of
0.3565, surpassing map_align’s 0.3254, with a p-value of 0.04666.
Overall, across all targets, GoFold yields a superior mean TM-
Score of 0.4381 compared to map_align’s 0.3962, with a
statistically significant p-value of 2.4115E-19. Moreover,
GoFold outperforms map_align in terms of predicting the
correct folds with TM-score>0.5 (7 vs. 6), illustrating the
advantage of GoFold across all target difficulty over map_
align. Similar trends are observed when considering Z-Scores,
with GoFold consistently outperforming map_align across all
target categories, emphasizing the statistically significantly
superior performance of GoFold over map_align in predicting
higher-quality models and alignments.

As shown in Figure 4A, while GoFold outperforms map_align
in 65.6% of cases (out of 154), map_align is better only for 16.9%
of cases, illustrating superior performance of GoFold in
predicting higher TM-score than that of map_align. Figure 4B
shows the TM-score distribution for GoFold is towards higher
TM_score range compared to map_align, demonstrating GoFold

FIGURE 5
A representative example on CAMEO target 7xhsA. The target is officially classified as hard by CAMEO. (A)Native 3D structure of 7xhsA. (B) Predicted
model by map_align with a TM-score of 0.461. (C) Predicted model by GoFold with a TM-score of 0.547. (D) Color bar (E) The sequence alignment
between GoFold and native structure. (F) The sequence alignment between map_align and native structure.
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predicts more models with higher TM-score than that of map_
align. Figures 4C, D further show the TM-score distribution of
predicted models by map_align and GoFold, respectively, for
different target categories, demonstrating the superior
performance of GoFold over map_align across all target
categories. Moreover, we note a similar trend when evaluating
the prediction quality in terms of Z-score (Supplementary Figure
S2), illustrating GoFold’s superiority over map_align in terms of
Z-score of predicted alignments across all target categories.

3.3 Case study

As a representative example, we present a case study on
CAMEO hetero-oligomer target: 7xhsA of 104 residues. As per
the CAMEO official target classification, 7xhsA is categorized as
hard. To ensure a fair comparison between GoFold and map_align,
the same contact maps predicted by trRosetta, the same template
and the same modeling strategy by MODELLER are used for both
competing methods. Moreover, the recent CASP (Senior et al.,
2019) experiments highlighted exceptional ability of AlphaFold2
(Senior et al., 2019; Jumper et al., 2021) in predicting protein 3D
structures, significantly outperforming other groups. AlphaFold2,
an end-to-end deep learning-based protein structure prediction
method, utilizes a variety of sequential and structural features,
including distance maps, which are integral to its superior
performance. Given AlphaFold2’s advanced methodology, a
direct comparison with an educational tool such as GoFold,
which is designed primarily for educational purposes and uses a
simpler input feature, may not be entirely fair. Nonetheless, we
include AlphaFold2’s performance on the target 7xhsA. Using the
Colab notebook (Mirdita et al., 2022) with default parameter
settings, AlphaFold2 achieved a TM-score of 0.562,
demonstrating the effectiveness of its deep learning approach
and the importance of comprehensive feature utilization in
predicting high-quality protein 3D structures.

In contrast, despite the inherent limitations when compared to
the state-of-the-art predictive method, AlphaFold2, as shown in
Figures 5B, C, GoFold predicts the correct fold with a TM-score of
0.547 (and a Z-score of 30.038), whereas map_align predicts an
incorrect fold with a TM-score of 0.4849 (and a Z-score of 23.831),
demonstrating GoFold’s ability over map_align in predicting the
correct fold with TM-score >0.5 as well as high-quality target-
template alignments (measured by Z-score).

4 Conclusion

GoFold represents a significant stride in bridging the gap
between advanced protein folding methodologies and
foundational learning for beginners. Its user-friendly interface
and comprehensive tutorials demystify the complexities of
protein 3D structure prediction, making it a valuable tool for
both educational and research purposes. Benchmarking results
from the PSICOV and CAMEO datasets clearly demonstrate
GoFold’s superior predictive capabilities over existing method,
map_align, particularly in handling diverse contact map qualities

and various target difficulties. The success of GoFold in various test
scenarios underscores its potential as a crucial educational and
research tool in the rapidly evolving field of protein structure
prediction.
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