
A layout framework for
genome-wide multiple sequence
alignment graphs

Jeremias Schebera1,2*, Dirk Zeckzer1 and Daniel Wiegreffe1

1Image and Signal Processing Group, Institute for Computer Science, Leipzig University, Leipzig,
Germany, 2Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig,
Leipzig University, Leipzig, Germany

Sequence alignments are often used to analyze genomic data. However, such
alignments are often only calculated and compared on small sequence intervals
for analysis purposes. When comparing longer sequences, these are usually
divided into shorter sequence intervals for better alignment results. This
usually means that the order context of the original sequence is lost. To
prevent this, it is possible to use a graph structure to represent the order of
the original sequence on the alignment blocks. The visualization of these graph
structures can provide insights into the structural variations of genomes in a
semi-global context. In this paper, we propose a new graph drawing framework
for representing gMSA data. We produce a hierarchical graph layout that supports
the comparative analysis of genomes. Based on a reference, the differences and
similarities of the different genome orders are visualized. In this work, we present
a complete graph drawing framework for gMSA graphs together with the
respective algorithms for each of the steps. Additionally, we provide a
prototype and an example data set for analyzing gMSA graphs. Based on this
data set, we demonstrate the functionalities of the framework using two
examples.

KEYWORDS

genome analysis, multiple sequence alignment, graph drawing, visualization, genome
comparison

1 Introduction

The quality and the throughput of sequencing technologies, and thus the variety of data,
have continuously increased in recent years (Genomes Project Consortium et al., 2015;
Goodwin et al., 2016; Hickey et al., 2023). However, there is a large gap between sequence
determination and sequence analysis (Gärtner et al., 2018). Especially, the capabilities for
visually comparing sequences provided by the tools are insufficient, as most tools available
today are designed for comparing closely related sequences or sequences of a limited
length, only.

Multiple sequence alignments (MSAs) are a central procedure in the field of genetic
information analysis (Albers et al., 2011). Sequence alignments are commonly visualized
using dot plots, synteny views, and parallel coordinate views (Albers et al., 2011). Thereby,
the focus is on visualizing local details in the alignments and not global trends. In the MSAs
of higher animals and plants, the alignment block size is usually smaller than the size of
individual genes (Gärtner et al., 2018). Consequently, it is difficult to analyze theMSAs from
a more global perspective on rearrangements like the inversion, the translocation, or the
duplication of a sequence with the traditionally used visualization approaches. On the other

OPEN ACCESS

EDITED BY

William C. Ray,
Nationwide Children’s Hospital, United States

REVIEWED BY

Gianluca Della Vedova,
University of Milano-Bicocca, Italy
Sidharth Mohan,
Janssen Pharmaceuticals, Inc., United States

*CORRESPONDENCE

Jeremias Schebera,
schebera@informatik.uni-leipzig.de

RECEIVED 19 December 2023
ACCEPTED 08 July 2024
PUBLISHED 16 August 2024

CITATION

Schebera J, Zeckzer D and Wiegreffe D (2024),
A layout framework for genome-wide multiple
sequence alignment graphs.
Front. Bioinform. 4:1358374.
doi: 10.3389/fbinf.2024.1358374

COPYRIGHT

© 2024 Schebera, Zeckzer and Wiegreffe. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Technology and Code
PUBLISHED 16 August 2024
DOI 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/articles/10.3389/fbinf.2024.1358374/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1358374/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1358374/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2024.1358374&domain=pdf&date_stamp=2024-08-16
mailto:schebera@informatik.uni-leipzig.de
mailto:schebera@informatik.uni-leipzig.de
https://doi.org/10.3389/fbinf.2024.1358374
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2024.1358374

hand, there are approaches to compare whole genomes with
genome-wide multiple sequence alignments (gMSAs). The
visualizations showing global trends of such gMSAs are
aggregated and are often restricted to only two sequences. As a
result, rearrangements are barely visible in these global approaches.

Recently, research efforts and successes in pangenomes have
increased (Consortium, 2016; Liao et al., 2023). In a pangenome
similarities and differences are usually summarized in the form of a
common reference genome assembly for a selection of individuals of
one species. This addresses the problem that reference-based
comparisons, such as classical MSAs, always have a bias towards
the reference. Pangemones are usually represented by graph models
(Consortium, 2016). The intervals of a pangenome can be visualized
with a graph layout, e.g., by Sequence TubeMaps (Beyer et al., 2019),
to compare the different sequences of the individuals used to
generate the pangenome.

However, it would be also interesting to investigate variations
between different species using a gMSA (Gärtner et al., 2018),
especially if an artificially generated common coordinate system
can be used as an additional order to counteract the bias toward the
reference (Gärtner et al., 2018). Therefore, our overarching objective
is to facilitate the examination of variations in the sequences of a
gMSA from a semi-global perspective. For each original sequence in
the MSA (e.g., a chromosome or contig), a total order of the
alignment blocks can be found that represents the original
sequence with the underlying sequence intervals. The sum of
these alignment block sequences can be represented as a directed
multi-graph (gMSA graph).

Here, we propose a graph layout framework that supports the
visual comparative analysis of such gMSA graphs using the graph
data basis produced by Gärtner et al. (Gärtner et al., 2018). This
layout framework is based on the Sugiyama framework (Sugiyama
et al., 1981) that was developed for directed acyclic graphs (DAGs).
The Sugiyama framework consists of individual steps, for each of
which several algorithms exist. However, most of the existing
algorithms do not lead to layouts that meet the requirement, that
the sequences forming a gMSA graph can be compared easily.
Therefore, we propose new and tailored algorithms for most of
the steps.

Our contribution is the description of the adapted Sugiyama
framework to draw gMSA graphs to support the visual comparative
analysis from a semi-global perspective and a prototype to
demonstrate the results.

First, related work, important definitions, and fundamentals for
both the biological and graph-based aspects are presented (Section
2 and 2.1). Then, the design criteria for the graph layout are
presented (Section 2.2). Next, the entire framework from the
input data to the final graph layout is described (Section 2.3).
Two examples are provided (Section 3) followed by a
discussion (Section 4).

2 Methods

Comparative genomics is the field of research in which two or
more genomes are analyzed based on their conservation and synteny
(Nusrat et al., 2019), The analysis of conservation consists of finding
sequence intervals with a high degree of similarity in the genomes

(e.g., with an alignment). Synteny refers to analyzing if the location,
order, proximity, and orientation of the sequence intervals are
similar in the compared sequences.

Nusrat and Harbig et al. (Nusrat et al., 2019) provide a broad
overview of existing visualization techniques and tools for
comparative genomics. This is the basis for the following
discussion. There are generally three basic techniques for the
visual comparison of genomes (gMSAs):

• comparison by alignment
• comparison by connecting conserved blocks
• comparison by using dot plots

The comparison using alignment based techniques is especially
performed for small sequences or local analyses (Li et al., 2009;
Carver et al., 2012; Yachdav et al., 2016).

When comparing the genomes with connected conserved
blocks, the genomes (sequence intervals) are arranged on two or
more axes and the synteny is displayed using color or line coding.
For this, there are mainly two different types of layouts: linear and
circular arrangements for comparing sequences. Examples for tools
using linear layouts are Cinteny (Sinha and Meller, 2007) (using
colors and lines) or Synteny Explorer (Bryan et al., 2017). Circular
layouts are, for example, used by the tools MizBee (Meyer et al.,
2009), Circos (Krzywinski et al., 2009), or Synteny Explorer (Bryan
et al., 2017). WithMizBee (Meyer et al., 2009), a tool is provided that
supports analyses at the genome, the chromosome, and the block
levels with circular and linear layouts. However, its line based
approach is in some instances not suitable for a detailed
comparisons on the genome level, since it tends to produce
several intersections. Furthermore, most tools like MizBee (Meyer
et al., 2009) are designed for the analysis of only two sequences.

In dot based approaches, the comparative sequence axes are
arranged orthogonally and similarities are indicated by diagonal
rows of dots. Tools using this approach are, for example,: Gepard
(Krumsiek et al., 2007), EDGAR (Blom et al., 2016), Syn-Map2
(Haug-Baltzell et al., 2017), and iDotter (Gerighausen et al., 2017).
Most of the tools only allow the comparative analyses of two
sequences and do not scale well for the comparison of larger regions.

In the following, a brief overview of graph-related related work is
given. We decided to use the Sugiyama framework (Sugiyama et al.,
1981) as the basis to layout the gMSA graphs since it is by far the
most common layout framework for directed graphs (Healy et al.,
2013) and is highly adaptable.

Other graph-based approaches related to our problem setting
can be found in the field of digital humanities. There, the
comparison of different versions of a text is an important aspect.
According to Schmidt et al. (Schmidt and Colomb, 2009), so-called
Text Variant Graphs emphasize such overlapping textual structures.
Jänicke et al. (Jänicke et al., 2014a; Jänicke et al., 2014b) developed
Sentence Alignment Flow, a well readable layout algorithm for Text
Variant Graphs. While their approach is similar to ours, these
graphs are easier to visualize since texts always have the same
reading direction, but this does not always have to be the case in
gMSA graphs. Therefore, and since the sequences can be
considerably longer and the differences are more complex in
gMSA graphs, the development of a separate approach
was necessary.

Frontiers in Bioinformatics frontiersin.org02

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

The following definitions are based on Chapter 7 of the “Handbook
on Graph Drawing and Visualization” (Duncan et al., 2013). Let G �
(V,E) be a directed graphwithV being a finite set of vertices andE being
a finite set of edges. An edge e ∈ E: e � (u, v) is an ordered pair of
vertices, where u ∈ V is the origin and v ∈ V is the destination of the
edge. Furthermore, e � (u, v) is an incoming edge of v and an outgoing
edge of u. A sink is a vertex x ∈ Vwithout outgoing edges and a source is
a vertex y ∈ V without incoming edges. A sequence of distinct vertices
(v1, v2, . . . , vn) is a path from v1 to vn in G, if and only if n> 1 and
∀i ∈ N: 1≤ i< n → (vi, vi+1) ∈ E and ∀1≤ i, j≤ n: i ≠ j → vi ≠ vj. A
cycle meets the same criteria as a path except that v1 � vn. The graph
G � (V,E) is a directed acyclic graph (DAG), if and only if there are no
cycles inG. Amulti-graph is a graphwhere the edges aremultisets, which
means two edges can have the same vertices as the origin and
destination.

2.1 Data definition

According to Wang et al. (Wang and Jiang, 1994), we define a
nucleotide sequence (nt-seq) as an arbitrary, finite string s ∈ ∑* over

the Alphabet∑ � {A,C,G, T} which represents a single DNA strand
(Figure 1A). The following formal definitions are strongly influenced
by Gärtner et al. (Gärtner et al., 2018) as we use their data. Our initial
data is a set of genome assemblies, which Gärtner et al. (Gärtner et al.,
2018) referred to as assemblies, and we just call them genomes. For us,
a genome is a set of nt-seqs that include substructures such as
chromosomes, scaffolds, reftigs, contigs, and others. In the
following, we will always refer to such substructures as contigs.
Every sequence has a usual coordinate system defining the
sequence positions. In addition, each sequence has a direction,
since we are dealing with double-stranded DNA, that occurs either
in the specified direction (σ � +1) or as a reversed complement
(σ � −1). With these specifications, (G, c, i, j, σ) describes a sequence
interval from position i to j on contig c of genome G with a reading
direction σ where i≤ j. For the comparative analysis of genomes
(usually more than 2), we usemultiple sequence alignments (MSA). An
MSA A consists of alignment blocks each of which is composed of
aligned sequence intervals (Figure 1C, D). Thus, an alignment block
B ∈ A is defined as B � (Gu, cu, iu, ju, σu)|u ∈{ rows of B} where the
rows represent the contained sequence intervals. For each contig
contained in the MSAA, a total order of the alignment blocks can be

FIGURE 1
In this example the construction of an MSA A and its corresponding gMSA graph is shown. (A) The three nt-seqs each represent one contig of a
genome to which a unique color is assigned: genome 1 - contig 1 (red), genome 2 - contig 2 (green), and genome 3 - contig three (orange). (B) The nt-
seqs are split into sequence intervals and mapped onto the most similar sequence intervals of the other genomes using an alignment heuristic. It should
be noted that c3 of G3 was completely transferred to the reverse complement in order to map it. (C) From this, the MSAA is built where the intervals
are designated as βk,l � (Gl, cl, ik,l, jk,l ,+1) ∈ Bk and �βk,l � (Gl, cl, ik,l, jk,l ,−1) ∈ Bk . The four alignment blocks Bk also have their own color coding. (D) Shows the
alignment blocks on nt-seq level with the inserted gaps. The gray alignment block is a special case as there were nomatching sequence intervals for β4,2 in
the other contigs and it is therefore alone in a block. (E) TheMSAA can be illustrated as a gMSA graph. The vertices represent the alignment blocks and the
edges represent the order of the sequence intervals in the contigs (recognizable by the color coding). The black edges represent a possible artificial
reference order (supergenom). (F) The alignment block sequences/vertex sequences, which reflect the order of the sequence intervals in the contigs.

Frontiers in Bioinformatics frontiersin.org03

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

found that represents the original contig (Figure 1A) through the
sequence intervals contained (Figure 1C). These alignment block
sequences can be represented as a graph which we call gMSA
graph (Figure 1E). Every vertex in the gMSA graph represents at
least one alignment block. The order of the alignment blocks of a
contig c is represented by the directed edges between the vertices. This
allows tracing the contig (Figure 1A) in the gMSA and in the graph
(Figure 1E). On this basis, Gärtner et al. (Gärtner et al., 2018)
construct their common coordinate system (supergenome). It is
possible to represent artificially created orders (like the
supergenome by Gärtner et al. (Gärtner et al., 2018)) in the gMSA
graph, which is an advantage over existing visualization techniques.
Using such a gMSA graph, the structural differences and similarities of
the contigs, and thus also the genomes, to be compared can
be analyzed.

It should be noted, that a vertex in the gMSA graph can also
represent a sequence of alignment blocks (merged alignment blocks)
if no information is lost as a result. This is the case when two or more
alignment blocks are traversed by only one contig or are traversed
co-linearly in the same order by several contigs. In this manuscript,
the terms alignment block (including merged alignment blocks) and
vertex will be used as synonyms.

The alignment block sequences (also called vertex sequences),
which reflect the contigs in the gMSA (Figure 1F), serve as the data
basis for our visualization. Therefore, our input data consists of a list
of vertex sequences S which represents the gMSA graph (multi-
graph). One of the vertex sequences called guide sequence is selected
as being the reference the other sequences are compared to. The
remaining vertex sequences are compared to the guide sequence and
are called comparative sequences. As already mentioned, the
common coordinate system (supergenome) developed by Gärtner
et al. (Gärtner et al., 2018) can also be used as a comparative
sequence since it is also a vertex sequence. It is important to
mention, that we only allow single hits in the alignments and
therefore every sequence interval is uniquely aligned.

It should also be noted that each comparative sequence starts at
an alignment block of the guide sequence and ends at another
alignment block of the guide sequence. Between the start and the end
alignment block of a comparative sequence there can be any number
of alignment blocks, which do not necessarily belong to the guide
sequence. These two conditions shall avoid loose ends of the
comparative sequences, which are not shared with the guide
sequence (as this should be in focus).

2.2 Design requirements

We had extensive discussions with our collaboration partners
from the bioinformatics field about what is important and helpful to
them for a comparative analysis of sequences. At the same time, we
were inspired by well-known visualizations, such as classical genome
browsers, and existing graph-based representations for alignment
data, such as text variant graphs. With this, the following design
requirements were derived:

1. The general reading direction of the graph is from left to right.
2. The guide sequence is represented linearly in the layout, i.e., at

the same vertical position with a uniform direction.

3. The first vertex of the guide sequence is placed furthest to the
left and the last one furthest to the right, i.e., at the smallest and
largest horizontal position, respectively.

4. The comparative sequences are ordered by decreasing
relevance, creating a genome order.

5. Sub-sequences of the comparative sequences are arranged
above and below the guide sequence if they diverge from
the guide sequence.

6. Contiguous sub-sequences of the comparative sequences are
aligned horizontally, i.e., at the same vertical position,
if possible.

7. If there is a deviation (e.g., an insertion) from the already
processed sequences (predecessor in the genome order), these
parts are placed between the corresponding vertices if possible.

The Requirements: 1–3 and 5–7 for the layout were highly
inspired by the Text Variant Graphs by Jänicke et al. (Jänicke et al.,
2014a; Jänicke et al., 2014b). The general reading direction of
Requirement 1 (also in accordance with Requirement 3)
describes especially the direction of the guide sequence in which
no edge may be reversed (Requirement 2) and is therefore based on
the familiar representation of genomic data in common genome
browsers. Of course, back edges against the reading direction are
generally possible in the comparative sequences. Requirement five
supports the demonstration of similarities and differences between
the sequences. Following Requirement 5, the space above and below
the reference is used which creates a compact visualization, unlike
classic genome browsers.

Not all comparative sequences can have an equally strong
influence on the final layout. Therefore, the genome order of
Requirement four is important and affects the graph layout in a
strongmanner, since the creation of the DAG (which is necessary for
the Sugiyama framework) depends on it. This will be discussed
further in Section 2.3.1. The length of the contiguous sub-sequences
of Requirement six also depends on the genome order (Requirement
4). The same holds for the deviations (Requirement 7).

We impose additional constraints (adapted from Healy and
Nikolov (Healy et al., 2013)):

1. Edges should point in a uniform direction,
2. Short edges are preferred over long edges,
3. The vertices should be uniformly distributed in the

drawing space,
4. Edge crossings should be avoided, and
5. Straight edges should be preferred

These constraints are frequently imposed in general onto the
layout of directed graphs (e.g., by the Sugiyama framework).

2.3 Framework

Our layout algorithm for gMSA graphs is based on the Sugiyama
framework (Sugiyama et al., 1981; Healy et al., 2013) (Steps 2–4).
While the original framework applies to DAGs only, it was extended
to general directed graphs by adding one step at the beginning (Step
1) and at the end (Step 5) of the original framework. In addition of
being cyclic, our graphs also contain multiple edges between

Frontiers in Bioinformatics frontiersin.org04

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

vertices. Therefore, an additional step for routing these edges was
added to the framework (Step 6). At the end, the final layout is
computed (Step 7). Overall, we obtain the following
extended framework:

1. Cycle removal by reversing edges (Section 2.3.1)
2. Layer assignment (Section 2.3.2)
3. Vertex ordering (Section 2.3.3)
4. Orthogonal coordinate assignment (Section 2.3.4)
5. Reversing the edges reversed in Step 1 (Section 2.3.5)
6. Routing the edges between vertices (Section 2.3.6)
7. Computing the final drawing (Section 2.3.7)

For each step, we describe, which algorithms were used for
performing the respective step. Besides taking algorithms from
literature, we also adapted known algorithms and created new
ones for meeting the requirements (Section 2.2). A data flow
diagram of the described framework is shown in the
Supplementary Section S1.

The Sugiyama framework has the following additional
properties:

1. The algorithm produces a layered graph layout, i.e., every
vertex is assigned to exactly one layer.

2. There are no edges between two vertices of the same layer.
3. Crossings of the edges are minimized.
4. Crossings between edges and vertices are avoided.

It is generally assumed that edge crossings impede the
readability of graphs and create visual clutter. This is
mitigated by reducing the number of edge crossings as
reflected by Property 3.

As the requirements partially contradict the properties of the
Sugiyama Algorithm such as, e.g., Requirement five and Property 3,
it is necessary to consider which is more important for the resulting
visualization. In the example mentioned, the straight arrangement of
genome parts (Requirement 5) is more important for the visual
comprehension than the minimization of the edge crossings
(Property 3), which will be reflected by our algorithms.

2.3.1 Cycle removal
Although each alignment block sequence (contig) is cycle-free

by itself, there may (and frequently will) be cycles in a gMSA graph
due to the sum of the contigs. The simplest example for this is if
contig one first visits alignment block one and then alignment block
two in its sequence and this is reversed for contig 2. Thus, a
preparation step is necessary to create a proper DAG which can
be processed by the Sugiyama framework. Therefore, the orientation
of some of the edges of the original graph has to be reversed. This
step is very important because the edge selection strongly influences
the layering and with this the resulting layout.

Several heuristics address the problem of reversing a minimal
number of edges for transforming a directed graph containing cycles
into a DAG, as this problem is NP-complete (Di Battista et al., 1999;
Healy et al., 2013). The heuristics by Berger and Shor (Berger and
Shor, 1990) and Eades et al. (Eades et al., 1993) use approaches based
on linear ordering. Another approach by Gansner et al. (Gansner
et al., 1993) uses a depth-first traversal of strongly connected

components to solve this problem. According to them (Gansner
et al., 1993), the heuristic reverses edges whose direction against the
flow is natural. The heuristic by Demetrescu and Finocchi
(Demetrescu and Finocchi, 2003) solves the problem for
weighted directed graphs. For us, however, the comparative
aspect of the vertex sequences, by meeting our requirements
(Section 2.2), is more important than the number of reversed
edges. For example, the greedy heuristic by Eades et al. (Eades
et al., 1993) was tested and even adapted without success
(Figure 2D). This and similar techniques potentially produce
sinks or sources in the DAG and therefore Requirements 2, 3,
and seven are potentially violated, as sinks and sources would be
placed furthest to the right or to the left (Figure 2D). Therefore, a
new approach for edge reversal was developed that adheres to these
requirements. An example of a DAG created by the new algorithm is
shown in Figure 2C.

The genome order (Requirement 4) has an important
significance for this algorithm and thereby for all the subsequent
steps. The higher the priority of a comparative sequence in the
genome order, the higher the influence on the DAG and thus on the
final layout.

Before describing our algorithm, we introduce the following
definitions. A vertex sequence Si is a path. The input of the
algorithm is the list of vertex sequences S � (S1 � GS, . . . , Sn)
where the first vertex sequence represents the guide sequence
(GS) and the remaining vertex sequences represent the
comparative sequences. As already mentioned, the list of vertex
sequences is a representation of the gMSA graph and is ordered by
importance (genome order).

We introduce the notion of a bypath. Let Vp �
{v ∈ V | valready processed} be the set of already processed
vertices of the gMSA graph during the algorithm. Further, let

σ: Vp → 2Vp

v ↦ σv � {w ∈ Vp | ∃path(v, ..., w)} (1)

be a successor function (see Equation 1), mapping each vertex v
to its successors, i.e., the set of all vertices σv such that there is a path
from v to w ∈ σv. Similarly, let

τ: Vp → 2Vp

v ↦ τv � {u ∈ Vp | ∃path(u, ..., v)} (2)

be a predecessor function (see Equation 2), mapping each vertex
v to its predecessors, i.e., the set of all vertices τv such that there is a
path from u ∈ τv to v.

A sub-path (v1, v2, . . . , vn) ⊆ Si with n> 1, v1, vn ∈ Vp, and
∀i ∈ N, 1< i< n: vi ∉ Vp is called a bypath. In other words, a
bypath is associated to a vertex sequence and starts and ends at
an already processed vertex but may have only unprocessed vertices
in between.

For layout purposes, the set of edges EDAG resulting from the
cycle removal algorithm will contain only one edge between two
vertices, while in the gMSA graph multiple edges between two
vertices are possible. Note, that having both edges (u, v) and
(v, u) is not possible in a DAG. To associate the edges of the
DAG to the edges of the original gMSA graph that finally need
to be drawn, we introduce the following concepts. The direction
tuple set D (see Equation 3) consists of tuples (d, S) where an edge

Frontiers in Bioinformatics frontiersin.org05

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

direction d ∈ {forward, backward} is combined with a vertex
sequence S ∈ S:

D � {forward, backward} × S (3)

For S � (v1, . . . , vn), let ES � {(vi, vi+1)|1≤ i< n}. Further, let
ϵ: EDAG → D

eDAG � (u, v) ↦ ϵe � {(forward, S) |(u, v) ∈ ES}
∪{(backward, S)|(v, u) ∈ ES}

(4)
be a function (see Equation 4), mapping an edge from the DAG

eDAG ∈ EDAG to a set of direction tuples ϵe ⊆ D.
The pseudo code of the algorithms described in this section is

provided in in the Supplementary Section S2.1. The original
graph is represented by the list of vertex sequences S

(Figure 2A) and may contain cycles. The graph is transformed
into a DAG by first processing the guide sequence, and then
processing the remaining vertex sequences in the order of the list
S (genome order) satisfying Requirement 4. The remaining
vertex sequences are split into bypaths based on the already
processed vertices Vp. If vn ∈ σv0, that is, if the last vertex of
the bypath BP is a successor of the first vertex of the bypath, then
the bypath BP is added in its original direction. Otherwise, the
bypath BP is added in the opposite direction. Reversing the edges

of the complete bypath with v0 ∈ σvn avoids creating potential
additional sinks or sources and is essential to fulfill the
Requirement 2, 3, and 7 (Figure 2D).

Depending on which comparative sequences are processed first,
the decomposition of these vertex sequences in the bypaths will be
strongly affected. This also influences the amount of reversed edges,
the created DAG, and therefore the subsequent steps of the
Sugiyama framework. Since the similarities in vertex sequences
between phylogenetically closely related genomes should be large,
the priority of a comparative sequence should be higher whenever its
relation to the guide sequence is higher. This promotes the visual
comparability of the genomes in the gMSA graph layout. It could
therefore be advantageous to sort the comparative sequences
according to their phylogenetic proximity to the guide sequence,
creating a genome order (Requirement 4).

The edges of the guide sequence are always added in their
original direction to fulfill Requirement 2. For a given bypath BP, all
of its edges point either in the same direction as the ones of the guide
sequence or in the opposite direction. To obtain a uniform direction
for later steps, in the first case, the edges of the bypath BP are added
in their original direction, while in the second case, the edges of the
bypath BP are reversed before being added.

First, between all adjacent vertex pairs u and v of the guide
sequence and the bypaths, edges e � (u, v) or eR � (v, u) are created.

FIGURE 2
An example of our new cycle removal algorithm and the results for a greedy heuristic (Eades et al., 1993) are shown. (A) The vertex sequences of the
selected sequences. This is the data basis for the graph created in this example. (B) A possible final graph representation of the data from (A). (C) A DAG
created by applying Algorithm one to the data from (A). The bypath (v6 , v8 , v1)was reversed. This is important to fulfill the design requirements (Section X).
(D) A possible DAG created by the greedy heuristic by Eades et al. (Eades et al., 1993). The Requirements 2,3, and seven are violated in this result. v1
being a sink is especially problematic for the resulting graph layout.

Frontiers in Bioinformatics frontiersin.org06

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

Next, the nodes u and v are added toVp. Moreover, the edge e, or the
edge eR is added to EDAG. Further, the successor function σ is
updated with the edge e � (u, v) in two steps:

1. v and all successors of v are inserted into σu, if not already
present: σu ← σu ∪ {v} ∪ σv

2. For all predecessors w ∈ τu, all successors of u are inserted into
σw, if v ∉ σw: σw ← σw ∪ σu

If the bypath needs to be reversed, the reversed edge eR � (v, u)
is used instead and all u and v are interchanged. In the samemethod,
the predecessor function τ is updated with the edge e � (u, v) in
these two steps:

1. u and all predecessors of u are inserted into τv, if not already
present: τv ← τv ∪ {u} ∪ τu

2. For all successors w ∈ σv, all predecessor of v are inserted into
τw, if u ∉ τw: τw ← τw ∪ τv

Again, if the bypath needs to be reversed, the reversed edge eR �
(v, u) is used instead and all u and v are interchanged. These four
steps are always performed for the guide sequence, while they are
only performed for any bypath if the edge e or the edge eR are not
already part of the DAG. Consequently, there will be at most one
edge between two vertices in the DAG at any time.

The direction tuple set ϵe or ϵeR (depending on not reversing or
reversing the bypath) of the function ϵ is always updated. Therefore,
a tuple consisting of the direction with respect to the DAG (‘forward’
or ‘backward’) and the currently processed vertex sequence S is
created and added to ϵe or ϵeR. This information is needed and used
to create the final layout, such that all edges can then be drawn in
their original direction in the final layout.

In Supplementary Section S2.2 an example is provided showing
the results for the sets Vp and EDAG as well as for the mappings σ, τ,
and ϵ, when adding each of the sequences shown in Figure 2A.
Furthermore, a differentiation from an ear decomposition and a
complexity analysis are included in the Supplementary
Section S2.3, 2.4.

The result of this step is a DAG with only one source (the first
vertex of the guide sequence) and only one sink (the last vertex of the
guide sequence) (Figure 2C). This is necessary but not sufficient for
fulfilling the Requirements 1, 2, 3, and 7. These requirements are
only completely met after the layering step (Section 2.3.2). Besides,
this step is the foundation for fulfilling Requirement six since the
length of the sub-sequences is determined by the bypaths.
Requirement four is essential for the resulting layout since with
every change in the genome order, the DAG created and thus the
final layout could be completely different. Finally, the mapping of
the multiple edge function ϵ produced here will be used in
subsequent steps.

2.3.2 Layer assignment
For assigning the vertices to layers, quite some algorithms

meeting different requirements exist (Healy et al., 2013). For the
layer assignment, we use the longest-path algorithm without any
adaption. A more detailed explanation of the algorithm with
associated pseudo code can be found in the
Supplementary Section S3.

It is worth emphasizing that our cycle removal algorithm from
Section 2.3.1 paired with the properties of the longest-path
algorithm satisfies the Requirements 1, 2, 3, and 7, since the
guide sequence is the longest path in the graph. The resulting
layers represent the horizontal position (x-coordinate) of the
vertices in the final layout.

For the subsequent steps of the framework, a proper layering is
required, which can be obtained from the results of the longest path
algorithm as follows (Healy et al., 2013). Let L � {L1, L2, . . . , Lh} be a
partition of V into h≥ 1 subsets such that
∀u ∈ Li ∧ v ∈ Lj: (u, v) ∈ EDAG → i< j. Then, L is called a layering
of G and the subsets L1, . . . , Lh are called the layers. In a layering, all
edges of the DAG point from a vertex in a lower layer to one in a higher
layer, and in our case they will be drawn in the layout from left to right.

Let l(u) � i be the index of the Layer Li which contains the
vertex u ∈ V. If the span s(e) � l(v) − l(u)> 1 of an edge e � (u, v),
the edge is called long edge and therefore traverses more than one
layer. In contrast to this, edges with a span s(e) � 1 are called tight
edges. A layering L without long edges is called proper and can be
obtained as follows: all long edges are replaced by s(e) many tight
dummy edges by creating s(e) − 1 dummy vertices and placing them
in the layers that are traversed by the long edge. In other words, the
path of the long edge is replaced by the path of the dummy edges
with the dummy vertices in between.

An edge between two dummy vertices is called inner edge and all
other edges are called outer edge. All dummy vertices of a properly
layered DAG are added to the set of dummy vertices VD and to the
set of vertices of the DAG VDAG � V ∪ VD while the dummy edges
are added to the set of dummy edges ED and to the set of edges of the
DAG EDAG � EDAG ∪ ED. Further, every replaced long edge is
removed from the set of edges of the DAG. In the function ϵ, all
dummy edges of a replaced long edge e are mapped to the same set as
the replaced long edge ϵe. The mapping of e to ϵe in ϵ is removed.

In the following, the notion GDAG � (VDAG, EDAG, L) is used for
the properly layered DAG.

2.3.3 Vertex ordering
An important step of the Sugiyama framework is the reduction

of edge-edge crossings (edge crossings) to improve the readability
and to avoid visual clutter. There are three different crossing types,
depending on the involved number of inner edges:

• Type 0: two outer edges are crossing each other
• Type 1: an inner and an outer edge are crossing each other
• Type 2: two inner edges are crossing each other

Especially the Type 2 conflicts should be avoided because they
produce crossings of long edges, which are hard to follow even
without crossings. Moreover, Type 2 conflicts can always be avoided
and their absence is a precondition for some algorithms computing
the orthogonal coordinates.

To minimize the number of those crossings, the order of the
vertices within the layers is changed. We adapted the global k-level
crossing reduction heuristic called global sifting that was introduced
by Bachmaier et al. (Bachmaier et al., 2010) such that the
Requirements 2, 5, and six are fulfilled.

The following formal explanations are based on Bachmaier et al.
(Bachmaier et al., 2010). Let the graph GDAG � (VDAG, EDAG, L) be

Frontiers in Bioinformatics frontiersin.org07

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

an ordered properly layered graph with its vertices in each layer
being ordered top down (vertically).

A block B is either a single vertex v ∈ V or a maximum path of
adjacent dummy vertices (v1, . . . , vn), vi ∈ VD, (vi, vi+1) ∈ ED

comprising the inner edges of a long edge. Thus, every vertex
v ∈ V and every dummy vertex vD ∈ VD is assigned to a block B,
which is retrievable by block(v) � B and block(vD) � B,
respectively (Figure 3).

We introduce the term block-set BS, which is a sequence of
consecutive blocks of the inner vertices of a bypath (Section 2.3.1),
including the dummy vertices of the long edges. Consequently, every
bypath defines a block-set (Figure 3), except for bypaths of length 2,
which just consist of a short edge without vertices.

LetBS be an arbitrarily ordered list of all block-sets and let the
current position of each block-set in this ordering be assigned by
η: BS → {0, . . . , |BS| − 1}. The blocks in a block-set are sorted
increasingly from lowest to highest layer. Like in the original
heuristic, every block B is placed at a unique position π(B) that
depends on the position of the corresponding block-set BS in the list
BS and the position of the block B in the block-set BS.

The idea of the heuristic proposed by Bachmaier et al.
(Bachmaier et al., 2010) is to place a block at every position
(every block has a unique vertical position) thus finding the
optimal position of the block with minimal edge intersections.
This is done successively for every block and repeated several
times (according to the original heuristic ten sifting rounds
suffice). Using the original heuristic, the Requirements two
and 6 may be violated by placing the blocks of a block-set far
apart concerning their vertical position so that they cannot be
horizontally aligned during the next step of the Sugiyama
framework. In our heuristic, block-sets, which consist

ordinarily of a sequence of blocks, are shifted instead of the
blocks. By doing this, the connected blocks of the bypaths can be
placed horizontally aligned thus complying with the
Requirements two and six (illustrated in Figure 3). The result
of this algorithm is an order of the block-sets BS, with a
heuristically calculated minimum of edge crossings and an
avoidance of type 2 conflicts. A detailed description of the
adapted algorithm, including pseudo code, and a complexity
analysis can be found in the Supplementary Section S4.

2.3.4 Assignment of the orthogonal coordinate
For each vertex v ∈ VDAG, its relative horizontal position

(x-coordinate) is obtained from its layer determined previously
(Section 2.3.2), i.e., x(v) � l(v). Moreover, the order of all
vertices v ∈ VDAG within the same layer l(v) was fixed (Section
2.3.3). Now, the vertical position (y-coordinate) that is orthogonal
to the layers will be determined for each vertex v ∈ VDAG while
retaining the order in this direction for each layer.

According to Healy and Nikolov (Healy et al., 2013), straight
edges (especially for long edges) and vertices that are centered with
respect to their neighbors are aesthetically desirable in this step. A
standard algorithm for this purpose is the approach by Brandes and
Köpf (Brandes et al., 2002), which is linear in time in the number of
vertices and edges, and allows at most two bends per edge.
Unfortunately, this approach might violate some of our
requirements. For all vertices of a block-set, the vertical positions
have to be the same to fulfill the Requirements 2, 5, and 6. This is not
always the case when using the algorithm by Brandes and Köpf
(Brandes et al., 2002). Therefore, a new approach was developed
where the vertical positions of the block-sets and thus also the
vertical positions of the vertices are determined. This algorithm also

FIGURE 3
The blue rectangles in the graphs represent the vertices and the black circles the dummy vertices. The edges between them indicate the order of the
selected vertex sequences corresponding to their color. The black frames around single vertices or sequences of dummy vertices illustrate blocks. Block-
sets are represented by the gray rectangles. Each block-set has a unique vertical position in the block-set order. (A) The vertex order of the selected
genomes. (B) A possible initial block-set order with avoidable edge intersections. (C) A possible block-set order after applying our algorithm.

Frontiers in Bioinformatics frontiersin.org08

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

guarantees at most two bends per edge in the final layout like the
algorithm by Brandes and Köpf (Brandes et al., 2002).

The output of the previous step (Section 2.3.3) was a sorted
block-set list BS where the positions of the block-sets in the list
are equivalent to unique vertical positions, i.e., no two block-sets
have the same vertical position. The current step aims at
minimizing the vertical space needed by the graph without
creating additional edge crossings. At the same time, it is
attempted to shorten the vertical length of the edges between
the block-sets.

In two steps, all block-sets are placed as closely as possible to the
guide sequence without creating intersections between the block-
sets. During the first step, the block-sets before the guide sequence in
BS and during the second step, the block-sets after the guide
sequence are processed, respectively. Only the first step will be
discussed, as the second step is handled symmetrically.

As a prerequisite, the index of the guide sequence indexGS has
to be known. The sorted block-set listBS is processed backwards
from the block-set just before the guide sequence with index �
indexGS − 1 to the first block-set in the list with index � 0. The
current block-set BS is thereby stacked at the next free vertical
position above the guide sequence, where no intersections with
other block-sets occur.

This step defines the relative vertical position for all vertices
(block-sets) and fulfills the Requirements 2, 5, and 6. Improving the
vertical position of an aesthetically unpleasing special case and a
complexity analysis of this approach are discussed in the
Supplementary Section S5.

2.3.5 Preparing the graph to be drawn
The last step of the Sugiyama framework, putting back the edges

reversed in Section 2.3.1 in their original direction, is not necessary
in this framework because the edges of the DAG are mapped by the
multiple edge function ϵ to the edges of the input graph with their
original direction. Instead, a preparation step handling dummy
paths that represent the long edges EL is performed. Thereby, the
number of dummy vertices and the number of dummy edges are
reduced. A detailed explanation of this step is provided in the
Supplementary Section S6.

2.3.6 Edge routing
The Sugiyama framework was created for directed acyclic graphs

with single edges between two nodes. The gMSA graph, however, is a
multi-graph with potentially multiple edges between two vertices.
Therefore, a routing algorithm for multiple edges is proposed, which
is applied after the positioning of the vertices using the
Sugiyama framework.

Themultiple edges ofG � (V, E) are represented by themultiple
edge function ϵ. Every edge e ∈ EDAG is mapped to a set of direction
tuples where every tuple represents an edge of the layout graph with
an associated vertex sequence S ∈ S and the edge direction
(“forward” or “backward”) relative to the reading direction. The
direction tuples of ϵ are used as the input of this step and called edges
in the following unless explicitly stated otherwise.

Let e be the edge between the vertices u and v with the edge
direction not being important (Figure 4). The vertical orientation
of the edge e, regarding u is downward (down), if the y-position of
v in the layout is below the y-position of u. Consequently, the
vertical orientation of e regarding u is upward (up), if the
y-position of v in the layout is above the y-position of u. In
case both vertices are on the same y-position, the vertical
orientation is straight. The vertical difference between u and v
is the absolute value of the y-position difference between those
two vertices. Moreover, the inter layer space describes the area
between two adjacent layers.

Our requirements for routing the edges are the avoidance of
additional edge intersections and a compact edge packing, which
still supports readability (Figure 5B). To achieve these requirements,
we adhere to the following conventions and impose the following
constraints:

• An orthogonal edge layout consisting of horizontal and
vertical lines is used. A vertical line is only needed, if the
vertical orientation of the edge is either up or down.

• Edges start and end at the right and left borders of the
vertices, only.

• Edges starting and ending at the same vertices with the same
edge direction are bundled into one edge. The line width of a
bundled edge represents the number of the edges bundled.
This allows one edge in the DAG be represented by at most
two bundled edges in the final layout (forward and/
or backward).

• The vertical and horizontal lines of forward and backward
edges with the same start and end vertex are placed adjacent to
each other, respectively.

• The contact point of an edge at a vertex depends on the vertical
orientation of the edge and is independent of the edge
direction. Up-edges are placed at the upper part, straight-
edges are placed in the middle, and down-edges are placed at
the lower part of a vertex, respectively (Figure 5A).

• Between two adjacent edges, the same amount of free space
“FS” is used as placeholder.

• Every vertical line of an edge has a unique horizontal position
in the layout to avoid additional intersections (Figure 5D).

To determine the vertex-edge connection points and the
horizontal positions of the vertical lines of an edge, four steps
are performed:

FIGURE 4
Let e be the edge between the two vertices u and v, where the
direction of e is disregarded. The y-position of v is below the
y-position of u, therefore the vertical orientation of e regarding u is
downward, while the vertical orientation of e regarding v
is upward.

Frontiers in Bioinformatics frontiersin.org09

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

1. Preprocessing
2. Calculating relative edge-vertex connection coordinates
3. Horizontal edge layering in the inter layer space
4. Determining the space parameter

The first step is a preparation step where the left and the right
sides of every vertex are processed consecutively. During the

second step, the relative coordinates of the edge-vertex
connections are calculated. During the third step, the
horizontal positions of the vertical lines of the edges in the
inter layer space are determined. During the fourth step, the
two space parameters needed vertex height and needed inter layer
space, which are necessary for the final drawing (Section 2.3.7),
are calculated. A detailed description of the algorithms and a

FIGURE 5
The blue boxes represent the vertices, whereby every vertex consists of three areas: the up-, the straight-, and the down-space. The dotted line in
the straight-edge space of (A) illustrates the vertical center of the vertex. The gray boxes represent the edge positions. “FS” is the abbreviation for free
space and represents the amount of free space between two edges. “BS” stands for border space and represents the amount of free space between the
border of a vertex and the vertical line of an edge. (A) A detailed view of placing edges at the right border of a vertex is shown. (B) The final edge layout
between two layers created by our approach is shown. One of the vertices is shown in (A) in detail. (C) The detailed view of the down-space of two
opposite vertices from (B) is shown. To avoid (partial) overlaps, first the down-edges from the left vertex and afterwards the down-edges from the right
vertex are placed. The space used for the down-edges of the left vertex is blocked and can not be used at the right vertex. (D) The detailed view of the
horizontal layering of the vertical lines of all edges from (B) in the inter layer space is shown. Every vertical line of an edge has a unique horizontal position
in the layout to avoid additional intersections.

Frontiers in Bioinformatics frontiersin.org10

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

complexity analysis are provided in the Supplementary Section
S7. With the chosen orthogonal layout, additional edge
intersections are avoided and a compact edge packing that still
supports readability was produced.

2.3.7 Final drawing
In this final step, the gMSA graph is drawn. First, every vertex

v ∈ V of the graph is drawn depending on the relative x- and
y-coordinate. Then, the relative coordinates of every edge e ∈ E
(represented by ϵ) are converted into the final coordinates. Two
examples are shown in Figure 6.

The vertices are drawn as rectangles. Blue vertices represent single
alignment blocks and the orange vertices represent merged alignment
blocks. Every vertex has the same height, which is at least the needed
vertex height, which was calculated before (Section 2.3.6). Thewidth of

a vertex depends on the length of the included alignment block(s) and
is between pre-defined limits. The vertices are positioned on a grid,
with the block-set position reflecting the vertical position and the layer
affiliation reflecting the horizontal position. Therefore, the final
vertical position of a vertex depends on the vertical position of its
block-set. The vertical free space between two vertically adjacent
vertices is always the same. The final horizontal position of a
vertex depends on the assigned layer. Since the vertices in a layer
can be of different width, the vertices of a layer are vertically aligned
with their horizontal midpoint. Consequently, the width of the widest
vertex in the graph defines the needed width for every layer. The
horizontal free space between two layers, where the edges are located,
is always the same and is at least the needed inter layer space, which
was calculated before (Section 2.3.6).With this information all vertices
can be drawn.

FIGURE 6
Two examples of the drawing of a gMSA graph generated with our workflow. The settings used for the graph in (A) are shown in Table 1 and for the
graph in (B) in Table 2. The blue vertices represent single alignment blocks and the orange vertices represent merged alignment blocks. The width of a
vertex depends on the length of the included alignment block(s) and is between pre-defined limits. The colored edges represent the different sequences,
whereby the red edges represent the guide sequence and the other colors the comparative sequences. The directional glyphs (colored arrows)
within the vertices indicate the reading direction for the individual sub-sequences aligned. Since there are no aligned sub-sequences for the
supergenome, there are also no directional glyphs. The start and end glyphs (triangular flag) illustrate for each contig which vertex is the first one or the
last one, respectively.

Frontiers in Bioinformatics frontiersin.org11

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

Having fixed the final coordinates of the vertices, the relative
coordinates of the edges (Section 2.3.6) can be transformed into final
coordinates and drawn. Each edge is drawn individually, including
the individual edges in a bundled edge. This makes it easier to follow
the route of the individual vertex sequences from S, if each vertex
sequence (contig) is assigned an individual color.

Additionally, the directional glyphs (colored arrows) within the
nodes indicate the reading direction for the individual sub-
sequences aligned. The color codes the affiliation to the contig, a
glyph pointing to the right (reading direction in the graph) means a
positive direction of the aligned sub-sequence, and a glyph pointing
to the left means a negative direction. For merged vertices, it is
possible that a glyph pointing in both directions indicates that there
are subsequences in both directions in the contained
alignment blocks.

The start and end glyphs (triangular flag) illustrate for each
contig which vertex is the first or last, respectively. The color codes
the affiliation to the contig, a glyph pointing to the right (reading
direction in the graph) means that the sequence begins here, and a
glyph pointing to the left indicates the end of a sequence.

The final result is a heuristically generated drawing of the input
gMSA graph where all requirements (Section 2.2) are fulfilled. A
complexity analysis of this step is discussed in the
Supplementary Section S8.

3 Results

In this section we discuss two examples of a gMSA graph layout
that were created with our new framework. The examples are sub-
graphs of the data set described in the Supplementary Section S9.
With the graph layout generated, the similarities and the differences
between the guide sequence and the comparative sequences are
visually highlighted. Therefore, all requirements of Section 2.2
are fulfilled.

3.1 Example 1

In the first example, four comparative sequences are compared
with a guide sequence. The genome order chosen as well as the
coloring assigned to the sequences and the selected range are
presented in Table 1.

The red edges represent the guide sequence (GS) which traverses
the alignment blocks v0{ - v3, v6 − v8, v10, v13 − v18, v20, v21} thereby

fulfilling the Requirements 1–3. The comparative sequences are
ordered in the genome order (Requirement 4) with the following
colors: green, purple, pink, and brown. The Requirements 5–7 are
fulfilled for the comparative sequences, and the orthogonal edge
layout supports the readability of the edges.

The green edges represent the first comparative sequence (CS1)
having the highest priority for the comparative analysis. All vertices
of the GS are traversed. All edges of the CS1 point against the reading
direction of the GS and follow the reverse order of the vertices of the
GS. In addition, the green directional glyphs (CS1) always point
against those of the GS. This may indicate that the reversed strand of
the DNA was sequenced and the actual order corresponds to the one
of the GS. The difference to the GS are three potential insertions,
since the vertices v4, v5, and v9 and v11 are traversed by the CS1 and
not by the GS.

The purple edges represent the second comparative sequence
(CS2). The edges and the directional glyphs of the (purple) are
pointing in the same direction as the ones of the CS1; all against
the general reading direction, which may indicate the sequencing
of the reversed strand of DNA. Unlike the CS1, some vertices (v21,
v18, v17, v15, v13, v8, v6, v3, v1) are not traversed by the CS2,
indicating potential deletions compared to the GS. Additionally,
there are potential inserts in the CS2, namely, v18 and v19
connected to v20.

The pink edges represent the third comparative sequence
(CS3). As with the CS1 and the CS2, there are also potential
insertions and deletions compared to the GS. In this case the
edges all point in the general reading direction and the order of
the vertices shared by the GS and the CS3 follows the order of the
GS. The directional glyphs always point in the same direction in
the shared vertices.

The brown edges represent the fourth comparative sequence
(CS4) and show a different pattern than the other comparative
sequences. This is the artificial common coordinate system
(supergenome) (Gärtner et al., 2018). There are regions where
the CS4 and the GS are linear to each other: {v1 − v3} or
{v15 − v18, v20, v21}, but there are also very erratic areas where the
CS4 differs strongly from the GS: e.g., {v6, v8, v9, v7, v10} or
{v21, v19, v0, v12, v14}.

3.2 Example 2

In the second example, a longer nucleotide interval of over
106 kb was selected as the GS. The genome order chosen as well as

TABLE 1 Settings used for the graph layout of Figure 6. The nucleotide
range 7744–9984was used for the GS. The order in the table represents the
genome order (GS: guide sequence, CS: comparative sequence).

Sequence Genome Contig Color

GS SenAgo NC_011148 red

CS1 SenHei NC_011083 green

CS2 SenNew NC_011080 purple

CS3 SenAgo NC_011149 pink

CS4 supergenome brown

TABLE 2 Settings used for the graph layout of Figure 6 (B). The nucleotide
range 4,515,228–4,621,763 was used for the GS (over 106 kb). The order in
the table represents the genome order (GS: guide sequence, CS:
comparative sequence).

Sequence Genome Contig Color

GS SenAgo NC_011149 red

CS1 SenHei NC_011083 green

CS2 SenNew NC_011080 purple

CS3 SenDub NC_011205 pink

CS4 supergenome brown

Frontiers in Bioinformatics frontiersin.org12

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

the coloring assigned to the sequences and the selected range are
presented in Table 2.

The comparative sequences CS2, CS3, and CS4 are mostly co-
linear to the GS. All three sequences visit the same vertices in the
selected area in the same order and have the same directional
glyphs. With the exception of four insertions (v5, v8, v11, v15),
where v11 and v15 are merged vertices with 2 and 11 alignment
blocks, respectively, the order of the vertices corresponds
to the GS.

However, the green sequence (CS1) is similar to the GS in
some parts (it traverses all of its vertices), but it differs from the
GS in terms of the order of the vertices. The CS1 starts at vertex
v10, recognizable by the green start glyph. The sequence then
proceeds in the opposite vertex order compared to the other
sequences (GS, CS2, CS3, and CS4) from v10 to v4 (with the
insertions of the other CS). The green directional glyphs of
CS1 are in this section also always opposite to the glyphs of
the other sequences. This is followed by an insertion, which only
exists in CS1, with 3667 alignment blocks. Finally, the first three
vertices of the GS followed by the last four vertices of the GS are
traversed colinearly to the GS.

All these findings allow the domain users to confirm, to reject, or
to purpose hypotheses regarding the comparative analysis
of genomes.

4 Discussion and summary

For layouting gMSA graphs, we presented a complete
framework together with the respective algorithms for each of
the steps of the framework. Our framework is based on the
Sugiyama framework, and we used or adapted existing
algorithms, where possible, and developed new algorithms, where
needed, within this framework. The layout obtained meets the
design requirements derived from the task of visually comparing
genome-wide Multiple-Sequence-Alignment (gMSA) graphs. It
supports analysts in gaining insights into the closeness and
distance of species based on these gMSAs. In addition, artificial
common coordinate reference systems, such as the supergenome of
Gärtner et al. (Gärtner et al., 2018), can be visualized. As a further
possible application, this visualization can be used to visually
evaluate the quality of sequence assembling or such artificial
reference systems. It could also be tested to visualize pangenomes
with this graph layout.

One limiting factor is the runtime of the framework. With
large graphs, the time complexities, which are sometimes
quadratic or even cubic for the individual steps, can result in
a long runtime. Also, with a strong fragmentation of the
subsequences of the alignments and strong dissimilarities
between the orders, the graph can be very inflated and it can
be difficult to follow the orders due to many long edges. However,
this is usually due to poor alignment quality. The choice of the
order of the comparative sequences has a strong influence on the
graph layout. Whether a phylogenetic hierarchy or a graph-based
similarity metric leads to better results for such an order has not
yet been tested but would be exciting to investigate.

We have implemented a prototype of the described
framework. The created graph layout can be used as a

starting visualization for an exhaustive analysis of gMSAs.
For a more precise analysis, further visualizations such as
local MSA visualizations and visualizations of associated
annotation data must of course be integrated into connected
views. Our next step is therefore to expand the prototype into a
visualization system with such functionalities. The final
drawing could also be customized according to specific
tasks. For example, the aligned sequences could be displayed
directly in the vertices or additional information, such as
the alignment quality, could be encoded using the vertex
color. The layout created can be strongly influenced
by changing the drawing parameters. In the Supplementary
Figure S7, you can see a clearer encoding of the
alignment block length by greatly increasing the maximum
vertex width.

Data availability statement

The source code for this project is available in this repository:
https://github.com/jeremias-schebera/gMSA-Graph-Browser—Source-
Code.git. An executable prototype is available under the following DOI:
https://doi.org/10.5281/zenodo.10284921. Docker Compose is required
to execute the prototype. Both the source code and the prototype are
open source under the MIT license.

Author contributions

JS: Conceptualization, Data curation, Investigation,
Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. DZ:
Conceptualization, Methodology, Software, Writing–original
draft, Writing–review and editing. DW: Conceptualization,
Investigation, Methodology, Project administration, Supervision,
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The authors
acknowledge the financial support by the Federal Ministry of
Education and Research of Germany and by Sächsische
Staatsministerium für Wissenschaft, Kultur und Tourismus in the
programme Center of Excellence for AI-research “Center for
Scalable Data Analytics and Artificial Intelligence Dresden/
Leipzig”, project identification number: ScaDS.AI.

Acknowledgments

In particular, we would like to thank Yves Annanias for the
constructive and helpful discussion. We would also like to thank
Peter Stadler for critically reading the manuscript. The authors
acknowledge support from the German Research Foundation
(DFG) and Universität Leipzig within the program of Open
Access Publishing.

Frontiers in Bioinformatics frontiersin.org13

Schebera et al. 10.3389/fbinf.2024.1358374

https://github.com/jeremias-schebera/gMSA-Graph-Browser---Source-Code.git
https://github.com/jeremias-schebera/gMSA-Graph-Browser---Source-Code.git
https://doi.org/10.5281/zenodo.10284921
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbinf.2024.1358374/
full#supplementary-material

References

Albers, D., Dewey, C., and Gleicher, M. (2011). Sequence Surveyor: Leveraging
overview for Scalable Genomic Alignment Visualization. IEEE Trans. Vis. Comput.
Graph. 17, 2392–2401. doi:10.1109/TVCG.2011.232

Bachmaier, C., Brandenburg, F. J., Brunner, W., and Hübner, F. (2010). “A Global k-Level
Crossing Reduction Algorithm,” in WALCOM: Algorithms and Computation. Editors
M. S. Rahman and S. Fujita (Berlin, Heidelberg: Springer Berlin Heidelberg), 70–81.

Berger, B., and Shor, P. W. (1990). “Approximation alogorithms for the maximum
acyclic subgraph problem,” in Proceedings of the First Annual ACM-SIAM Symposium
on Discrete Algorithms (USA: Society for Industrial and Applied Mathematics),
236–243. SODA ’90.

Beyer, W., Novak, A. M., Hickey, G., Chan, J., Tan, V., Paten, B., et al. (2019).
Sequence tube maps: making graph genomes intuitive to commuters. Bioinformatics 35,
5318–5320. doi:10.1093/bioinformatics/btz597

Blom, J., Kreis, J., Spänig, S., Juhre, T., Bertelli, C., Ernst, C., et al. (2016). EDGAR 2.0:
an enhanced software platform for comparative gene content analyses. Nucleic Acids
Res. 44, W22–W28. doi:10.1093/nar/gkw255

Brandes, U., and Köpf, B. (2002). “Fast and simple horizontal coordinate assignment,”
in Graph Drawing. Editors P. Mutzel, M. Jünger, and S. Leipert (Berlin, Heidelberg:
Springer Berlin Heidelberg), 31–44.

Bryan, C., Guterman, G., Ma, K., Lewin, H., Larkin, D., Kim, J., et al. (2017). Synteny
explorer: An interactive visualization application for teaching genome evolution. IEEE
Trans. Vis. Comput. Graph. 23, 711–720. doi:10.1109/tvcg.2016.2598789

Carver, T., Harris, S. R., Otto, T. D., Berriman, M., Parkhill, J., and McQuillan, J. A.
(2012). BamView: visualizing and interpretation of next-generation sequencing read
alignments. Briefings Bioinforma. 14, 203–212. doi:10.1093/bib/bbr073

Consortium, TCPG (2016). Computational pan-genomics: status, promises and
challenges. Briefings Bioinforma. 19, 118–135. doi:10.1093/bib/bbw089

Demetrescu, C., and Finocchi, I. (2003). Combinatorial algorithms for feedback problems
in directed graphs. Inf. Process. Lett. 86, 129–136. doi:10.1016/S0020-0190(02)00491-X

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1999). Graph Drawing:
Algorithms for the Visualization of Graphs. 1st edn. Upper Saddle River, NJ, USA:
Prentice Hall PTR.

Duncan, C. A., and Goodrich, M. T. (2013). “Planar Orthogonal and Polyline
Drawing Algorithms,” in Handbook on Graph Drawing and Visualization. Editor
R. Tamassia (Chapman and Hall/CRC), 223–245. chap. 7.

Eades, P., Lin, X., and Smyth, W. (1993). A fast and effective heuristic for the feedback
arc set problem. Inf. Process. Lett. 47, 319–323. doi:10.1016/0020-0190(93)90079-o

Gansner, E. R., Koutsofios, E., North, S. C., and Vo, K. (1993). A technique for
drawing directed graphs. IEEE Trans. Softw. Eng. 19, 214–230. doi:10.1109/32.221135

Gärtner, F., Höner, C., Müller, L., and Stadler, P. F. (2018). Coordinate systems for
supergenomes. Algorithms Mol. Biol. 13, 15. doi:10.1186/s13015-018-0133-4

Genomes Project ConsortiumAuton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P.,
Kang, H. M., et al. (2015). A global reference for human genetic variation. Nature 526,
68–74. doi:10.1038/nature15393nature15393

Gerighausen, D., Hausdorf, A., Zänker, S., and Zeckzer, D. (2017). “idotter - an
interactive dot plot viewer,” in 25th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision 2017.

Goodwin, S., McPherson, J. D., and McCombie, W. R. (2016). Coming of age: ten
years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351. doi:10.
1038/nrg.2016.49

Haug-Baltzell, A., Stephens, S. A., Davey, S., Scheidegger, C. E., and Lyons, E. (2017).
SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics
33, 2197–2198. doi:10.1093/bioinformatics/btx144

Healy, P., and Nikolov, S. N. (2013). “Hierarchical Drawing Algorithms,” in
Handbook on Graph Drawing and Visualization. Editor R. Tamassia (Chapman and
Hall/CRC), 409–453. chap. 13.

Hickey, G., Monlong, J., Ebler, J., Novak, A. M., Eizenga, J. M., Gao, Y., et al. (2023).
Pangenome graph construction from genome alignments with minigraph-cactus. Nat.
Biotechnol. 42, 663–673. doi:10.1038/s41587-023-01793-w

Jänicke, S., Büchler, M., and Scheuermann, G. (2014a). “Improving the layout for text
variant graphs,” inWorkshop VisLR: Visualization as Added Value in the Development,
Use and Evaluation of Language Resources.

Jänicke, S., Geaaner, A., Büchler, M., and Scheuermann, G. (2014b). “Visualizations
for text re-use,” in 2014 International Conference on Information Visualization Theory
and Applications (IVAPP), 59–70.

Krumsiek, J., Arnold, R., and Rattei, T. (2007). Gepard: a rapid and sensitive tool for
creating dotplots on genome scale. Bioinformatics 23, 1026–1028. doi:10.1093/
bioinformatics/btm039

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al.
(2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19,
1639–1645. doi:10.1101/gr.092759.109

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The
Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. doi:10.
1093/bioinformatics/btp352

Liao, W. W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., et al. (2023). A
draft human pangenome reference. Nature 617, 312–324. doi:10.1038/s41586-023-
05896-x

Meyer, M., Munzner, T., and Pfister, H. (2009). Mizbee: Amultiscale synteny browser.
IEEE Trans. Vis. Comput. Graph. 15, 897–904. doi:10.1109/tvcg.2009.167

Nusrat, S., Harbig, T., and Gehlenborg, N. (2019). Tasks, techniques, and tools for
genomic data visualization. Comput. Graph. Forum 38, 781–805. doi:10.1111/cgf.13727

Schmidt, D., and Colomb, R. (2009). A data structure for representing multi-version
texts online. Int. J. Human-Computer Stud. 67, 497–514. doi:10.1016/j.ijhcs.2009.02.001

Sinha, A., and Meller, J. (2007). Cinteny: Flexible analysis and visualization of synteny
and genome rearrangements in multiple organisms. BMC Bioinforma. 8, 82. doi:10.
1186/1471-2105-8-82

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods for Visual Understanding of
Hierarchical System Structures. IEEE Transaction Syst. Man, Cybern. 11, 109–125.
doi:10.1109/tsmc.1981.4308636

Wang, L., and Jiang, T. (1994). On the Complexity of Multiple Sequence Alignment.
J. Comput. Biol. 1, 337–348. doi:10.1089/cmb.1994.1.337

Yachdav, G., Wilzbach, S., Rauscher, B., Sheridan, R., Sillitoe, I., Procter, J., et al.
(2016). MSAViewer: interactive JavaScript visualization of multiple sequence
alignments. Bioinformatics 32, 3501–3503. doi:10.1093/bioinformatics/btw474

Frontiers in Bioinformatics frontiersin.org14

Schebera et al. 10.3389/fbinf.2024.1358374

https://www.frontiersin.org/articles/10.3389/fbinf.2024.1358374/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1358374/full#supplementary-material
https://doi.org/10.1109/TVCG.2011.232
https://doi.org/10.1093/bioinformatics/btz597
https://doi.org/10.1093/nar/gkw255
https://doi.org/10.1109/tvcg.2016.2598789
https://doi.org/10.1093/bib/bbr073
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1016/S0020-0190(02)00491-X
https://doi.org/10.1016/0020-0190(93)90079-o
https://doi.org/10.1109/32.221135
https://doi.org/10.1186/s13015-018-0133-4
https://doi.org/10.1038/nature15393nature15393
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1093/bioinformatics/btx144
https://doi.org/10.1038/s41587-023-01793-w
https://doi.org/10.1093/bioinformatics/btm039
https://doi.org/10.1093/bioinformatics/btm039
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1109/tvcg.2009.167
https://doi.org/10.1111/cgf.13727
https://doi.org/10.1016/j.ijhcs.2009.02.001
https://doi.org/10.1186/1471-2105-8-82
https://doi.org/10.1186/1471-2105-8-82
https://doi.org/10.1109/tsmc.1981.4308636
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1093/bioinformatics/btw474
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1358374

	A layout framework for genome-wide multiple sequence alignment graphs
	1 Introduction
	2 Methods
	2.1 Data definition
	2.2 Design requirements
	2.3 Framework
	2.3.1 Cycle removal
	2.3.2 Layer assignment
	2.3.3 Vertex ordering
	2.3.4 Assignment of the orthogonal coordinate
	2.3.5 Preparing the graph to be drawn
	2.3.6 Edge routing
	2.3.7 Final drawing

	3 Results
	3.1 Example 1
	3.2 Example 2

	4 Discussion and summary
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

