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Long-read sequencing technologies offer new opportunities to generate high-
confidence phasedwhole-genome sequencing data for robust pharmacogenetic
annotation. Here, we describe a new user-friendly R package, ursaPGx, designed
to accept multi-sample phased whole-genome sequencing data VCF input files
and output star allele annotations for pharmacogenes annotated in PharmVar.
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1 Introduction

Pharmacogenomics (PGx) benefits medication management (Gharani et al., 2013;
Dunnenberger et al., 2015; Relling and Evans, 2015; Zhang et al., 2015; Bush et al.,
2016; Relling et al., 2017; Bank et al., 2018); however, pharmacogenetic annotation is
often quite complex (Supplementary Figure S1). Functional PGx annotation and
corresponding clinical PGx recommendations rely on star (*) allele annotation (Caudle
et al., 2014; Kalman et al., 2016); star alleles are often defined by more than one genetic
variant (Gaedigk et al., 2018; Gaedigk et al., 2020; Gaedigk et al., 2021); when the star allele-
defining variants are heterozygous, phased haplotype information is needed to resolve the
annotation. In addition, annotations may change over time as new variants are
characterized and incorporated into clinical PGx recommendations. Many resources
and off-the-shelf tools are available to support researchers and clinicians interested in
PGx annotation. Several tools are well-suited for the PGx annotation of unphased data (e.g.,
StellarPGx and Stargazer (Lee et al., 2019; Twesigomwe et al., 2021)), and tools such as
PharmCAT, while not computationally streamlined for multi-sample annotation, go a step
further to incorporate clinical recommendations into the software output (Sangkuhl
et al., 2020).

New long-read sequencing technologies offer opportunities to generate high-confidence
phased whole-genome sequencing (WGS) data for robust PGx annotation. Here, we
describe ursaPGx, an R package designed to complement existing tools that leverages
phased whole-genome sequencing data for PGx annotation. ursaPGx is designed to run on a
typical laptop using multi-sample, phased, WGS VCF files and provides an output table of
star allele annotations for selected pharmacogenes annotated in PharmVar.
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2 Materials and methods

2.1 Samples

Phased multi-sample VCF files were downloaded for each of the
star allele containing chromosomes from the 1000 Genomes Project.
These VCF files were generated by the New York Genome Center for
3,202 1000 Genomes Project samples by aligning the 30×WGS reads
to GRCh38 and performing SNV and INDEL variant calling, as
described in Byrska-Bishop et al. (2022).

2.2 Benchmark data

The accuracy of the star allele calling algorithm of ursaPGx was
benchmarked against the next-generation sequencing consensus
calls generated by the Genetic Reference and Testing Material
Coordination Program (GeT-RM) for CYP2C8, CYP2C9, and
CYP2C19, which combined the output of Astrolabe (Twist et al.,
2016), Stargazer (Lee et al., 2019), and Aldy (Numanagic et al., 2018)
across investigator groups to generate a uniform diplotype call for
each of the 137 samples included in their study (Gaedigk et al.,
2022), of which 87 also have 30× WGS data (Byrska-Bishop et al.,
2022). CYP2D6 calls generated by ursaPGx’s implementation of
Cyrius were benchmarked against calls generated by Chen
et al. (2021).

2.3 Implementation and algorithm
description

Users may choose any phased WGS VCF file of interest for use
as input to ursaPGx. ursaPGx assigns phased diplotype calls from
single-sample or multi-sample indexed VCF files using publicly
available star allele definitions from PharmVar (Gaedigk et al., 2018;
Gaedigk et al., 2020; Gaedigk et al., 2021). An overview of the
annotation algorithm is shown in Figure 1. First, for a given
pharmacogene, star allele-defining positions are used to extract
genotype data for all samples in the VCF. Next, the extracted
positions are checked against each PharmVar haplotype
definition to determine ‘callable’ alleles. In this context, a callable
allele is defined as a haplotype definition where all allele-defining
variants are present in the sample VCF. Downstream analysis is then
limited to the set of callable alleles. The set of callable alleles is then
used to generate a genomic position by a haplotype definition
reference matrix. The cells of the reference matrix contain the
nucleotide which defines the given haplotype for each of the
positions present in the sample VCF. Positions that are not part
of a given haplotype definition are filled with the reference
nucleotide for the position. Using this reference matrix allows
ursaPGx to disambiguate star allele definitions such as
CYP2C19*2 and CYP2C19*35, which share the same core allele
definitions (CYP2C19*2, non-reference alleles for rs4244285,
rs12769205, and rs3758581; CYP2C19*35, non-reference alleles
for rs12769205 and rs3758581) and, therefore, must be
distinguished using a SNV unique to CYP2C19*2 (rs4244285).
After constructing the reference matrix, genotype calls are
converted to their nucleotide representation and split into

haplotype strings for each sample. For each sample, each
haplotype string is checked for exact matches against all columns
of the reference matrix. All exact matches to the reference for each
sample haplotype string are reported for each sample. If no exact
matches occur, then the haplotype call for that sample is reported as
ambiguous (*Amb). Haplotype calls for each sample are then
combined to form a single diplotype call for the given
pharmacogene for each sample included in the VCF.

CYP2D6 star allele calling in ursaPGx is performed with a
modified version of the Illumina CYP2D6 star allele caller Cyrius,
designed to function in R. The CYP2D6 haplotype calling algorithm
implemented in Cyrius is fully described in Chen et al. (2021). In
brief, Cyrius uses WGS BAM files to estimate the total number of
copies of CYP2D6 and CYP2D7, determines the number of complete
CYP2D6 and hybrid genes, and uses these to estimate SVs impacting
the CYP2D6 annotation. Cyrius then performs small variant calling
for star allele-defining positions and derives an estimate of their copy
number, and then matches these calls and SVs against star allele
definitions from PharmVar (7/15/2020) to produce final diplotype
calls for each sample.

2.4 Software and requirements

ursaPGx is a freely available and open source package
implemented in the R programming language (R Core Team,
2020) and utilizes the VariantAnnotation package (Obenchain
et al., 2014) from the Bioconductor project to provide a
consistent interface with existing R packages for the analysis of
genetic variant data. Star allele definitions in VCF format are
downloaded from PharmVar (current version 5.2.13) and parsed
into R objects. All package code and analysis scripts are hosted on
GitHub (https://github.com/coriell-research/ursaPGx).

ursaPGx is designed to run on a personal laptop. Star allele
calling for all 3,202 1000 Genomes Project samples for all
12 pharmacogenes takes ~45 s on a 3.7 GHz 6-Core Intel Core
i5 iMac device. Cyrius CYP2D6 calling implemented in ursaPGx
takes ~4 s per sample BAM.

3 Results

CYP2C8, CYP2C9, and CYP2C19 concordance was assessed for
samples with matching IDs from the 30× WGS data in the GeT-RM
benchmarking datasets (87/137) (Gaedigk et al., 2022). CYP2D6
concordance was tested against diplotype calls from Chen et al.
(2021) to ensure accuracy of the Cyrius implementation within
ursaPGx. Diplotype calls produced by ursaPGx were found to be
highly consistent with those generated by GeT-RM for all three
benchmarked pharmacogenes (Table 1, Supplementary Table S1).
For the 87 samples with matching IDs between the 1000 Genomes
Project 30× WGS data and the GeT-RM NGS consensus
benchmarking data, CYP2C8 was found to be perfectly
concordant (Gaedigk et al., 2022). For CYP2C19, one subject
sample (NA19122) was reported as *2|*Amb, according to
ursaPGx whereas the GeT-RM consensus call for this sample was
reported as *2/*35 (Gaedigk et al., 2022). In the phased 30× WGS
dataset, one haplotype was an exact match for CYP2C19*2 but the
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FIGURE 1
ursaPGx pipeline overview and example annotation. The figure illustrates the main steps of the ursaPGx annotation pipeline along with a toy
annotation example for four samples and a hypothetical pharmacogene gene. ursaPGx takes phased VCF files as input and, along with PharmVar allele
definitions, extracts haplotype data from each sample and performs exact matching against each definition. The final reported output is a diplotype call
for each sample. For any haplotype that is not found to have an exact match to a known allele definition, “ambiguous” (*Amb) is assigned.
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other haplotype had no exact match to any PharmVar definition
(Gaedigk et al., 2022). Assuming accurate phasing of the input 30×
WGS dataset, ursaPGx reports the inexact match as ambiguous for
this sample.

For CYP2C9, three samples were found to be discordant between
ursaPGx and GeT-RM reported consensus calls (Gaedigk et al.,
2022). Two of the subject samples with discordant CYP2C9 calls,
NA19143 and NA19213, were annotated as *1/*6 by GeT-RM,
whereas ursaPGx assigned these samples as *1|*1 (Gaedigk et al.,
2022). Because the CYP2C9*6 defining variant (rs9332131) is not
present in the phased 30× WGS dataset, CYP2C9*6 is not included
as a callable allele by ursaPGx and is, thus, not reported for these
samples. One subject sample, HG01190, was assigned as *61|*1 by
ursaPGx, whereas GeT-RM reported the diplotype as *2/*61
(Gaedigk et al., 2022). However, this sample was found to be
inconsistently annotated across laboratories in the GeT-RM
benchmarking data with a minority subset of three of the
annotation approaches assigning *1/*61 (Gaedigk et al., 2022).
Additionally, in the 30× WGS dataset, rs1799853 and
rs202201137 are both heterozygous, and the non-reference allele
for rs1799853 (CYP2C9*2) is on the same phased chromosome as
the rs202201137 non-reference allele (presence of both non-
reference alleles on the same haplotype defines the *61 variant
according to PharmVar). Given the phase information from the
30×WGS dataset, *61|*1 is the diplotype that is most consistent with
the observed data for this sample.

Since Cyrius has already been shown to produce highly accurate
CYP2D6 star allele calls (Chen et al., 2021), we benchmarked
ursaPGx’s implementation of Cyrius against the 2,504 Phase
3 1000 Genomes Project sample data (Genomes Project et al.,
2015) analyzed in the Cyrius publication in order to ensure that
changes made to Cyrius, which were needed to port the software
package to R, were consistent with the original Cyrius
implementation (Supplementary Table S2). Of the 2,504 samples,
2,502 samples were found to be exact matches with the Cyrius
reported results (Chen et al., 2021). For the two discordant samples,
NA18611 and HG02490, ursaPGx reported diplotype calls for these
samples (*10/*2 and *2/*33, respectively), whereas the Cyrius
benchmark did not assign a diplotype for these samples (Chen
et al., 2021). This discrepancy is likely due to differences in BAM file
input and downstream processing used in the 1000 Genomes Project
NYGC 30× WGS data versus the WGS dataset used in the Cyrius
publication (Chen et al., 2021).

4 Discussion

Here, we describe a new pharmacogenetic annotation tool,
ursaPGx, that is designed to complement existing tools by
leveraging multi-sample phased WGS data and PharmVar
annotations. ursaPGx is implemented as an efficient and user-
friendly R package that provides a simple interface for assigning
star allele diplotypes to samples for PharmVar-annotated genes
including CYP2D6, by integrating the Cyrius CYP2D6 star allele
caller (Chen et al., 2021). Indeed, we recently employed ursaPGx to
annotate a large and diverse whole-genome sequencing dataset
(Gharani et al., 2024). This analysis served as an illustrative use
case of the new tool and provided examples of the utility of

pharmacogenetic annotation in a large and diverse collection of
biospecimens.

Being implemented as an R package, ursaPGx offers easy
dependency management and simple installation instructions.
Because of its simple API, it is relatively easy for users with little
computational skill to generate star allele calls. However, since
ursaPGx also inherits much of its functionality from existing
Bioconductor classes and methods, more advanced users can
inspect and manipulate every step of the star allele calling
pipeline when needed. ursaPGx has also been designed to be
compatible with future updates to the PharmVar database. Allele
definitions are extracted directly from PharmVar database VCF
definition files, ensuring future versions of the package can use the
most up-to-date versions of the PharmVar allele definitions.

Our benchmarking analysis demonstrated high concordance,
100%, 97% and 99%, respectively, for the three overlapping
pharmacogenes, CYP2C8, CYP2C9, and CYP2C19 included in the
most recent GeT-RM report (Gaedigk et al., 2022). Two of the
discordant samples for CYP2C9 result from a star allele-defining
variant (*6) that is present in the GeT-RM dataset but not occurring
in the 30× WGS 1000 Genomes Project dataset used to benchmark
ursaPGx (Gaedigk et al., 2022). The third discordant CYP2C9
sample (HG01190) results presumably from differences in
phasing and variant calling results (Gaedigk et al., 2022). Finally,
as detailed in the Methods section above, when no perfect match to
any PharmVar defined haplotype occurs, the ursaPGx output will be
“*Amb,” and this implementation approach explains the single
discordant CYP2C19 sample, NA19122.

As with any annotation approach, ursaPGx includes several
limitations. First and foremost, any error or missing variants in the
input VCF file will propagate into errors in annotation. Similarly,
any errors or uncertainty in phase will propagate into annotation
errors, particularly when heterozygotes are phased incorrectly. In
addition, our annotation approach is limited to the pharmacogenes
annotated in PharmVar (Gaedigk et al., 2018; Gaedigk et al., 2020;
Gaedigk et al., 2021) and requires already phased input data. This
annotation choice is specifically designed to take advantage of
increasingly common long-read WGS datasets, such as the data
being generated by the Human Pangenome Reference Consortium
(Liao et al., 2023).

Data availability statement

Publicly available datasets were analyzed in this study. These
data can be found at: NYGC WGS data (VCF files): https://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_

TABLE 1 Concordance of ursaPGx diplotype calls with benchmarking
datasets.

Gene Concordance Benchmarking data

CYP2C8 1.00 (87/87) GeT-RM (Gaedigk et al., 2022)

CYP2C9 0.97 (84/87) GeT-RM (Gaedigk et al., 2022)

CYP2C19 0.99 (86/87) GeT-RM (Gaedigk et al., 2022)

CYP2D6 0.99 (2502/2504) Cyrius (Chen et al., 2021)
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high_coverage/working/20220422_3202_phased_SNV_INDEL_
SV/). The version we used for the current study was last modified on
2022-11-14 08:33. All package code and analysis scripts are hosted
on GitHub: https://github.com/coriell-research/ursaPGx.
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