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Most regulatory elements, especially enhancer sequences, are cell population-
specific. One could even argue that a distinct set of regulatory elements is what
defines a cell population. However, discovering which non-coding regions of the
DNA are essential in which context, and as a result, which genes are expressed, is
a difficult task. Some computational models tackle this problem by predicting
gene expression directly from the genomic sequence. These models are
currently limited to predicting bulk measurements and mainly make tissue-
specific predictions. Here, we present a model that leverages single-cell RNA-
sequencing data to predict gene expression. We show that cell population-
specific models outperform tissue-specific models, especially when the
expression profile of a cell population and the corresponding tissue are
dissimilar. Further, we show that our model can prioritize GWAS variants and
learn motifs of transcription factor binding sites. We envision that our model can
be useful for delineating cell population-specific regulatory elements.
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1 Introduction

In multicellular organisms, every cell has the same DNA apart from somatic mutations.
Yet its function and the related proteins and genes expressed vary enormously. This is
among others caused by transcriptional and epigenetic regulation. Proteins that bind the
DNA sequence around the transcription start site (TSS) control whether a gene is
transcribed in a cell (Vaquerizas et al., 2009; Lambert et al., 2018). Which transcription
factors, and thus which DNA binding motifs, are essential differ per cell population
(Vaquerizas et al., 2009; Lambert et al., 2018; Nott et al., 2019; Janssens et al., 2022). As such,
mutations in regulatory regions might affect specific tissues or cell populations differently.
Improving our understanding of these regulatory mechanisms will help us relate genomic
functions to a phenotype.

For example, while promoter sequences are identical across the four major human brain
cell populations (neurons, oligodendrocytes, astrocytes, and microglia), almost all enhancer
sequences, the regions in the DNA where a transcription factor binds, are cell population-
specific (Nott et al., 2019). These population-specific regulatory elements are discovered by
combining single-cell measurements of different data types, including chromatin
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accessibility, ChIP-seq, and DNA methylation. Bakken et al.
(2021), for instance, identified differentially methylated and
differentially accessible regions across neuronal cell
populations in the human brain, albeit with little overlap. This
emphasizes the complexity of transcriptional regulation and the
need for more measurements to fully resolve these mechanisms at
the cell population-specific level.

An alternative approach would be to train a computational
model that directly predicts gene expression from the genomic
sequence around the TSS. This way, we can learn which
regulatory elements are important for transcriptional
regulation in different contexts. Several computational
methods have been developed for this task (Kelley et al., 2016;
Kelley et al., 2018; Zhou et al., 2018; Agarwal and Shendure, 2020;
Zhang et al., 2020; Avsec et al., 2021a; Avsec et al., 2021b). These
methods have in common that they one-hot encode the DNA
sequence and input this to either a convolutional neural network
(CNN) or transformer. ExPecto, Xpresso, and ExpResNet predict
expression measurements from bulk RNA-sequencing, while
Basset, Basenji, BPNet, and the Enformer model predict
regulatory signals, such as cap analysis gene expression
(CAGE) reads or TF binding from CHIP-nexus.

A promising application of thesemodels is to prioritize variants that
have been identified using genome-wide association studies (GWAS)
(Kelley et al., 2016; Wesolowska-Andersen et al., 2020). Using GWAS
many potential disease-associating variants have been identified
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014; Wightman et al., 2021; Yao et al., 2021). Within
each locus, however, it is often challenging to pinpoint which variant is
causal and which gene is affected by the variant.

These current computational gene prediction models, however,
are designed for predicting bulk gene expression data. This means
that they are either tissue-specific or could be applied to FACS-
sorted cells (Wesolowska-Andersen et al., 2020). Since
transcriptional regulation is even more context-specific, the
resolution of current methods is not sufficient for heterogeneous
tissues where single-cell RNA-sequencing (scRNA-seq) has revealed
hundreds of cell populations (Tasic et al., 2016; Tasic et al., 2018;
Bakken et al., 2021). To increase the resolution, the models would
ideally be trained on scRNA-seq data.

Here, we present scXpresso, a deep learning model that uses a
CNN to learn cell population-specific expression in scRNA-seq data
from genomic sequences. Since single-cell and bulk data have
different characteristics and distributions, we explored whether
this type of model is suitable for single-cell data. We show that
1) cell population-specific models outperform tissue-specific models
on several tissues from the Tabula Muris, 2) increasing the
resolution improves the predictions for human brain cell
populations, and 3) in silico saturation mutagenesis of the input
sequence can be used to prioritize GWAS variants.

2 Materials and methods

2.1 Architecture of scXpresso

scXpresso is a one-dimensional convolutional neural network
(CNN) adapted from the (bulk gene expression-based) Xpresso

model (Agarwal and Shendure, 2020) (Figure 1A; Supplementary
Figure S1). The input to the CNN is four channels with the one-hot
encoded sequence around the transcription start site (TSS) (7 kb
upstream and 3.5 kb downstream). Every channel represents one of
the four nucleotides (A, C, T, G). For some positions, the exact
nucleotide is not known [e.g., any nucleic acid (N) or a purine
nucleotide (R)]. The exact coding scheme for such positions is
shown in Supplementary Table S1. The CNN consists of two
convolutional layers. The output of the convolutional layers is
flattened and concatenated with the half-life time features.
Together, this is subsequently fed into a fully connected (FC)
layer(s). The output of the FC layers is the aggregated expression
per tissue or for each cell population.

Comparing scXpresso to Xpresso, there are three main
differences: 1) we designed scXpresso as a multitask model so
that it predicts the expression of multiple cell populations
simultaneously. 2) We decreased the number of half-life time
features from eight to five; the three features we removed (5′
UTR, ORF, and 3′ UTR GC content) correlated less with half-life
time, so we removed them to make the model less complex
(Sharova et al., 2009; Spies et al., 2013; Agarwal and Shendure,
2020). Furthermore, removing these three half-life time features
from the original Xpresso model did not lower its performance
(Supplementary Table S2). 3) For the multitask model, there is
only one FC layer. For the other models, which we use to make
tissue-specific predictions as a comparison, we used two
FC layers.

2.2 Training scXpresso

We split the genes into a train, validation, and test dataset
and evaluated using 20-fold cross-validation. These sets are the
same across all experiments (i.e., one train, validation, and test
set for mouse genes and one for human genes) such that the
results of different models can be compared. We update the
weights of scXpresso using the Adam optimizer based on the
mean square error loss on the training set. The initial learning
rate is set to 0.0005 and if the loss on the validation set is not
improved from 5 epochs, the learning rate is reduced by a factor
of 10. We train the model for 40 epochs and the model with the
lowest loss on the validation set is used for evaluation on the
test dataset. Since there is always some stochasticity when
training a CNN, we always train 5 models and average the
predictions. We used the following software packages for
training the model: Pytorch (version 1.9.0) (Paszke et al.,
2019), CUDA (version 11.1), cuDNN (version 8.0.5.39), and
Python (version 3.6.8).

2.3 Datasets

2.3.1 Tabula Muris
The single-cell Tabula Muris data (Schaum et al., 2018) for the

five different tissues (gland, spleen, lung, limb muscle, and bone
marrow) and two different protocols (10X and FACS-based Smart-
seq2) were downloaded from: https://figshare.com/projects/Tabula_
Muris_Transcriptomic_characterization_of_20_organs_and_tissues_
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from_Mus_musculus_at_single_cell_resolution/27733. To extract
input features, we downloaded the reference genome (MM10-
PLUS) that was used during the alignment from: https://s3.
console.aws.amazon.com/s3/object/czb-tabula-muris-senis?region=
us-west-2&prefix=reference-genome/MM10-PLUS.tgz.

The four bulk datasets (spleen, lung, limb muscle, and bone
marrow) from the Tabula Muris were downloaded from https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040 (Schaum
et al., 2019). For the bulk data, we used the same reference genome as
for the single-cell data.

2.3.2 Human motor cortex data
The human motor cortex data from the Allen Institute (Bakken

et al., 2021) was downloaded from the Cytosplore Comparison
Viewer. We downloaded the reference genome (version
GRCh38.p2) and corresponding GTF file with information about
the location of transcription start sites of the genes here: https://
www.gencodegenes.org/human/release_22.html.

2.4 Aggregated expression values

First, we normalized the count matrices. For the single-cell
datasets, we performed library size normalization in the same

way as The Tabula Muris Consortium: i.e., counts per million
for the smart-seq2 data and counts per ten thousand for the
10X data (Schaum et al., 2018). For the bulk Tabula Muris data,
we performed TPM normalization. For the single-cell
datasets, we used the annotations defined by the authors to
aggregate the expression values per tissue or per cell
population using log10(mean(x)) (without pseudocount) into
pseudobulk values. The advantage of not adding a
pseudocount is that the distribution looks more like a
normal distribution, which makes it easier to train the
models (Supplementary Figure S2). A limitation, however, is
that we could not calculate the exact value for genes that were
not expressed in any of the cells. For these genes, we replaced
the pseudobulk values with −4 in the Tabula Muris and −5 in
the motor cortex dataset, since this extrapolated well
(Supplementary Figure S2). For the bulk data, we
aggregated over the samples instead of the cells. Here, we
set the genes that are not expressed in any of the samples to −4.
We standardized the expression values before running the
model such that the average expression of all genes in each
cell population or tissue is zero and the standard deviation is
one. Before analyzing the results and comparing the
predictions across cell populations, we undid the z-score
normalization but kept the log normalization.

FIGURE 1
Schematic overview of scXpresso and performance on Tabula Muris datasets. (A)We one-hot encode the DNA sequence around the transcription
start site (TSS) and input this to a one-dimensional convolutional neural network (CNN). The output of the CNN is flattened and concatenatedwith the five
half-life time features. The fully connected layers output the cell population’s specific gene expression levels simultaneously (Supplementary Figure S1,
see Methods). (B) Schematic overview of the experiment. (C,D) Performance of scXpressot,b [tissue-specific (t) model on bulk (b) data] and
scXpressot,pb [tissue-specificmodel on pseudobulk (pb) data], respectively. Every dot is the performance (Pearson correlation) across one fold of the 20-
fold CV. (E) Performance of scXpressocp,pb [cell population-specific (cp) model on pseudobulk data] summarized per tissue. Every dot represents the
model’s performance on a cell population in that tissue (median Pearson correlation across the 20 folds). (F) Performance of scXpressocp,pb on the
different lung cell populations. The grey line indicates themedian performance across all cell populations. Every dot is the performance across one fold of
the 20-fold CV.
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2.5 Input features

2.5.1 Sequence around the transcription start site
Before extracting the sequences around the transcription

start site, we removed genes that are transgenes, ERCC spike-
ins, genes without a coding region, and genes on the Y
chromosome. This resulted in 20,467 mouse genes and
18,138 human genes. Some genes had multiple transcripts.

We downloaded a list with canonical transcripts for each gene
from biomart and we used the transcript and transcription start
site belonging to the canonical transcript. If the canonical
transcript was not defined, we used the transcript that had the
longest coding region. After having defined the transcription
start site for each gene, we used seqkit (Shen et al., 2016)
to extract sequences from the FASTA file containing the
reference genome.

FIGURE 2
Comparison of the three scXpresso models for making cell population-specific predictions. (A) Schematic overview of the experiment. (B) Boxplot
showing the performances of scXpressot,b [tissue-specific (t) model on bulk (b) data], scXpressot,pb [tissue-specific model on pseudobulk (pb) data], and
scXpressocp,pb [cell population-specific (cp) on pseudobulk (pb) data] on the cell population-specific task. Every point in the boxplot is the performance of
a model on one cell population in that tissue (median Pearson correlation across the 20 folds). (C) Similarity between a cell population and
corresponding tissue (Pearson correlation between the true pseudobulk expression values) vs. the increase in performance (Δcp,t, median Pearson
correlation of scXpressocp,pb–scXpressot,pb). Every dot is a different cell population and the colors represent the different tissues. (D–F) Comparing the
predictions made by the lung tissue model (lung-model) and the B cell population model (B cell-model). Genes where the lung-model predicts a too-
high value are plotted in orange. (D,E) True expression of the B cells vs. predicted expression by the (D) lung-model and (E) B cell-model. (F) True
expression of the lung cells vs. predicted expression of the lung model.
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2.5.2 Half-life time features
For every gene, we extracted five half-life time features: 5′ UTR

length, 3′UTR length, ORF length, intron length, and exon junction
density ( #exons

lengthORF*1000). We obtained these features by first filtering
the GTF files for the canonical or longest transcript. The 5′ UTR
length is the length of the sequence from the start of the first exon to
the start codon. The 3′ UTR length is the length of the sequence
from the last coding sequence to the end of the last exon. The ORF
length is the sum of the length of the coding sequences. The intron
length is the length of the transcript minus the length of the ORF, 5′
UTR, and 3′ UTR. All features are log-normalized using
log10 (x + 0.1) and afterwards z-scaled.

2.6 Evaluating the predictions

For every gene in the test dataset, we averaged the predictions of
the five models we trained. We evaluated the performance for every
cell population by calculating the Pearson correlation between the
true and predicted expression of the genes in the test set. To evaluate
the increase in performance between the tissue-specific (t)
pseudobulk (pb) and cell population-specific (cp) pseudobulk (pb)
model on the Tabula Muris datasets, we calculate: Δcp,t �
medianPearson correlation (scEPcp,pb) − medianPearson correlation

(scEPt,pb). On the motor cortex dataset, we also evaluated the

performance of each gene by calculating the Pearson correlation

between the true and predicted expression per cell population.

2.7 In silico saturation mutagenesis

For CACNA1I, we mutated all positions in silico, which
means we tested all possible substitutions at every position.
We undid the z-score normalization and calculated the
difference between the original (wild-type) prediction and the
mutated prediction. The prediction models used during these
experiments were the models where CACNA1I itself was
originally in the test set. For every position, we only plotted
one predicted difference in expression in Figure 4E. This is the
substitution that was predicted to have the largest absolute effect.
We downloaded the locations of the candidate cis-regulatory
elements that fall within the input region for CACNA1I from
screen registry v3 (release date 2021) (ENCODE Project
Consortium et al., 2020). When plotting the difference
between two cell populations, we ignored the positions where
one is positive and the other predicts a negative effect. This rarely
happened and if it was the case, the predicted effect was
very small.

For the 2,000 highly variable genes, selected using scanpy (Wolf
et al., 2018), we applied ISM similar as described for CACNA1I. For

FIGURE 3
Comparing the predictions of scXpresso across cell populations and tissues. (A) Schematic overview of the experiment. (B) Performance (Pearson
correlation) of three different types of models on different cell populations (rows) in different tissues (columns). Every dot is themedian correlation of one
model across the 20 folds. Since there are no T cells and macrophages defined in the Marrow and Lung dataset, these boxes are missing. (C) Pearson
correlation of different models when predicting the expression of B cells in different tissues. The rows indicate on which tissue scXpressocp,pb is
trained, and the columns indicate for which tissue the expression of the B cells is predicted. (D) Pearson correlation of different scXpressocp,pb when
predicting the expression of B cells in the limb muscle. Again the rows indicate which model is used.
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FIGURE 4
Performance of scXpresso on the human motor cortex. (A) Schematic overview of the experiment. We train a tissue- (t), class- (c), and subclass-
specific (sc)model (scXpressot, scXpressoc, scXpressosc, respectively) to predict the subclass-specific expression levels. (B)Boxplots showing the Pearson
correlation between the true and predicted values. Every point in the boxplot is the performance on a fold (n = 20). (C) Scatterplot showing the relation
between the variance of a gene across the pseudobulk values of the subclasses and the Pearson correlation between the true and predicted values
across the subclasses. Every dot is a gene. (D) True and predicted expression for CACNA1I. Every dot is the expression in a subclass. Dots are colored
according to their class. (E)Mutation profile for CACNA1I for the Sst Chodl subclass. For every position, we calculated the difference in expression for all
three possible substitutions and visualized the substitution with the highest absolute predicted effect. Mutations that are predicted to increase or
decrease the expression are plotted in blue and orange, respectively. The grey rectangle highlights the region around the TSS. The grey boxes indicate the
positions of candidate cis-Regulatory Elements (cCREs) derived fromENCODE data (ENCODE Project Consortium et al., 2020). (F,G) Predicted effect, the
predicted difference between the reference and alternative allele, of the three substitutions for (F) rs7288455 on CACNA1I expression, and (G)

(Continued )
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every position we then calculated the average maximum absolute
predicted effect:

ymax i( ) � 1
2000

∑
g∈HVG

max
alt∈ A,C,G,T{ },alt≠ref

∣∣∣∣∣ypred,g,ref i( ) − ypred,g,alt i( )
∣∣∣∣∣

where i indicates the genomic position, HVG is the list of highly
variable genes, ref indicates the reference allele, and alt indicates the
alternative allele.

2.8 Comparison to other models

2.8.1 Enformer
Enformer uses the DNA sequence to predict reads for

5,313 human tracks which include CAGE, DNAse, CHIP, and
ATAC-seq (Avsec et al., 2021a). Here, we only looked at the
effect of a variant on the CAGE tracks that are related to the
brain (77 tracks in total, see Supplementary Table S3). Enformer
predicts the effect of variants on 128 bp bins. When predicting the
effect of a variant on the CAGE reads, we looked at the effect on the
bin containing the TSS.

2.8.2 ExPecto
ExPecto predicts gene expression for 218 tissues and cell lines

(Zhou et al., 2018). Here, we only focused on 27 outputs that are
related to the brain (Supplementary Table S4). We used the ExPecto
web server to predict the effect of the variants (https://hb.
flatironinstitute.org/expecto/?tabId=3). ExPecto is trained using
Hg19 instead of Hg39. We used the R-package
SNPlocs.Hsapiens.dbSNP155.GRCh37 (v 0.99.23) to lift-over the
variants. Using ExPecto we could not predict the effect of all
variants, since for some variants there was no location in
Hg19 found, some were too far away from a TSS, and some were
linked to a different gene than we were interested in (see
Supplementary Table S5 for an explanation per variant).

2.8.3 Xpresso
We trained the Xpresso model on bulk RNA-seq data from the

precentral gyrus (Agarwal and Shendure, 2020). The data from two
individuals were downloaded from the Allen Human Brain Atlas:
https://human.brain-map.org/static/download (H0351.2001,
H0351.2002). We used the normalized matrices. Labels were
created as described in the Xpresso paper: we took the median
expression across the 6 precentral gyrus samples, log-normalized the
output using log10 (x + 0.1), and z-score normalized the expression.
Similar to scXpresso, we trained the model using 20-fold cross-
validation. Per fold, we trained 10 runs and used the model with the
lowest MSE on the validation data [as described in Agarwal and
Shendure (2020)]. Afterwards, we predicted the effect of the
variants. We could not predict the effect of all variants, since

some genes were not measured in the bulk RNA-seq data and
for some genes, there were no Xpresso input features defined (see
Supplementary Table S5 for an explanation per variant).

3 Results

3.1 Predicting cell population-specific gene
expression using scXpresso

Here, we present scXpresso, a multitask convolutional neural
network (CNN) to predict cell population-specific gene expression
using genomic sequences only (Figure 1A; Supplementary Figure
S1). We developed scXpresso by adapting the Xpresso model
(Agarwal and Shendure, 2020), which was originally designed for
bulk data, to single-cell data. Similar to Xpresso, we use two types of
input to the model: 1) the DNA sequence around the transcription
start site (TSS) (7 kb upstream—3.5 kb downstream) to model
transcription, and 2) five half-life time features (5′ UTR length,
3′ UTR length, ORF length, intron length, and exon junction
density) to model mRNA degradation. We input the one-hot
encoded DNA sequence into a CNN. The output of the CNN is
concatenated with the half-life time features and fed to a fully
connected network (see Methods). Since our model is a
multitask CNN, the desired output of the fully connected
network is the gene expression for every cell population. We
predict expression per cell population instead of per cell to
achieve more stable predictions with less noise as single-cell data
is known to be quite sparse. To obtain one expression value per cell
population, we aggregate the single-cell expression into pseudobulk
measurements (see Methods).

Since single-cell and bulk data have different characteristics, we
tested whether scXpresso performs equally well on single-cell and
bulk data. We used scRNA-seq data from five different tissues (limb
muscle, spleen, gland, marrow, and lung) from the Tabula Muris
(Schaum et al., 2018) (Supplementary Table S6). Here, we used cells
isolated via FACS that were sequenced using the Smart-seq2
protocol. Using the annotations defined by the authors, we
aggregate the values per cell population and per tissue into
pseudobulk values. For four tissues (limb muscle, spleen, marrow,
and lung), there are also bulk RNA-sequencing datasets available
(Supplementary Table S7).We compared the pseudobulk to the bulk
expression per tissue and noticed that these are indeed correlated
(rmuscle = 0.69, rspleen = 0.71, rmarrow = 0.50, rlung = 0.67)
(Supplementary Figure S3).

Next, we trained three different models: 1) a tissue-specific (t)
model on the bulk (b) values (scXpressot,b), 2) a tissue-specific
model on the pseudobulk (pb) values (scXpressot,pb), 3) a cell
population-specific (cp) model on the pseudobulk values
(scXpressocp,pb) (Figure 1B). The cell population-specific model
is, in contrast to the tissue-specific models, a multitask model

FIGURE 4 (Continued)

rs10866912 onMROH6 expression. Every dot is one subclass and the dots are colored according to the class. (H) Sequence logo and the consensus
sequence for the INSM1 transcription factor motif together with the sequence of the reference genome (bottom line).

Frontiers in Bioinformatics frontiersin.org07

Michielsen et al. 10.3389/fbinf.2024.1347276

https://paperpile.com/c/DAeuZP/hGyp
https://hb.flatironinstitute.org/expecto/?tabId=3
https://hb.flatironinstitute.org/expecto/?tabId=3
https://human.brain-map.org/static/download
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1347276


that predicts the expression of all cell populations in a tissue
simultaneously. We evaluated the performance of the models by
calculating the Pearson correlation between the true and predicted
expression values. In general, the tissue-specific models trained on
pseudobulk reach higher performance than the models trained on
bulk (Figures 1C, D). Even though the bulk and pseudobulk values
are correlated, the pseudobulk distributions are bimodal compared
to the normally distributed bulk data (Supplementary Figures S3,
S4). This turns the problem more into a classification problem (is a
gene low or high expressed), which might be easier to learn. On
average, predicting cell population-specific expression is more
difficult than predicting tissue-specific expression (Figures 1D, E):
scXpressocp,pb performs slightly worse than scXpressot,pb (median
correlation of 0.71 vs. 0.75), but still better than scXpressot,b (0.58).

One of the adaptations to Xpresso is that scXpressocp,pb is a
multitask model. This slightly increases the performance compared
to a single-task model (Supplementary Figure S5) but mainly makes
the model computationally more efficient. The marrow-FACS
dataset, for instance, contains 22 cell populations. Since the
single-task and multitask models need the same training time
(approximately 30–60 min), this gives a 22x speed up.

The Tabula Muris scRNA-seq datasets were generated using two
different protocols: 10X Genomics, a droplet-based method, and
FACS-based Smart-seq2, a plate-based method. When comparing
scXpressot,pb and scXpressocp,pb trained on the two different
protocols, e.g., lung-droplet vs. lung-FACS, we conclude that they
perform equally well (Figures 1D, E; Supplementary Figures S6, S7).
Depending on the tissue and cell population, one performs slightly
higher than the other, but there are no significant differences. This is
as expected since the pseudobulk values of both protocols are highly
correlated (Pearson correlation > 0.85) (Supplementary Figure S8).
Hence, the protocol used to create the single-cell dataset does not
influence the results.

For scXpressocp,pb, we tested how the two types of input features,
DNA sequence and half-life time, influence the performance. We
tested different lengths of the input sequence and whether one of the
two features was enough to predict expression (Supplementary
Figure S9). A range of different sequence lengths results in the
same performance (3.5-3.5, 7-3.5, and 10-5 kb upstream-
downstream). A longer sequence gives more information but also
adds more noise. Since the model also becomes more complex, more
parameters have to be learned and it takes more time andmemory to
train the model. Therefore, we decided to use 7 kb upstream and
3.5 kb downstream for further experiments. We also observed that
adding the half-life time features results in higher performance,
suggesting that these features are not easily captured from DNA
sequences alone.

For the cell population-specific models, the performance varies
considerably across different populations (Figure 1E). Comparing
the populations in the lung dataset, for instance, the performance of
the endothelial cells is very high compared to leukocytes (Figure 1F;
Supplementary Figure S10). In general, the performance of
scXpresso increases when more genes and cells are measured in a
population (Figure 1F; Supplementary Figure S11). The leukocyte
population is small (35 cells) and fewer genes are non-zero
compared to other cell populations in the lung (8,678 out of
20,467 vs. 12,715 on average). The ciliated cell population, on the
other hand, is also small (25 cells), but this model reaches a higher

performance. In this cell population, however, more genes were
non-zero (11,717) compared to the leukocyte population. Hence, to
train the model, we need a good representation of the cell population
that includes enough expressed genes.

In all previous experiments, we evaluated scXpresso using 20-
fold cross-validation with the genes randomly divided over the folds.
The results could be positively biased if genes from the same
chromosome are in different folds. Therefore, we also evaluated
the models using cross-chromosomal cross-validation. This slightly
reduces the models’ performance, but the difference is not
significant (lowest p-value = 0.11 for myeloid cells, two-sample
Wilcoxon rank sum test) (Supplementary Figure S12).

3.2 Cell population-specific models
outperform tissue-specific models

Now that we know that all models are well-trained, we predicted
cell population-specific expression using the three different models
to see whether increasing the resolution of the models increases the
performance (Figure 2A). Since scXpressot,b and scXpressot,pb were
trained using tissue-specific expression values, these models predict
the same value for every cell population. On all datasets,
scXpressocp,pb outperforms the tissue-specific models, which
shows the benefit of training the models on a higher resolution
(Figure 2B; Supplementary Figure S13A). Especially in more
heterogeneous tissues, where the gene expression of cell
populations is weakly correlated to the corresponding tissue, we
see a large improvement (Figure 2C; Supplementary Figure S13B).
For the lung-FACS dataset, for instance, the performance increases
the most for immune cell populations (Δcp,t for B cells: 0.11, NK
cells: 0.11, T cells: 0.09; see Methods) and the least for lung-specific
populations (Δcp,t for stromal cells: 0.01, endothelial cells: 0.03,
epithelial cells: 0.05). In the B cells in the lung, 4,081 genes are not
expressed in any of the cells and thus have a log-normalized
expression of −4, but for which the tissue-specific model predicts
a positive log-normalized expression value (Figure 2D). In contrast,
the model trained on B cells predicts a lower expression for these
genes (Figure 2E). Almost all these genes, however, are expressed in
the lung (in the non-B cells), the lung-model learned this correctly
too (Figure 2F).

Some of the Tabula Muris datasets contain similar cell
populations. For instance, B cells, macrophages, and T cells are
measured in four, three, and three tissues, respectively. We
hypothesized that if our models are cell population-specific, they
should accurately predict the expression of a cell population in one
tissue with a model trained on the same cell population but from
another tissue [even though a cell’s tissue will slightly change the
expression for (some) genes]. To test this, we predicted the
expression for common cell populations using three different
types of models: 1) scXpressocp,pb trained on the same cell
population, but from a different tissue, 2) scXpressocp,pb trained
on a different cell population, but from the same tissue, 3)
scXpressot,pb trained on the same tissue (Figure 3A). For
example, we predict the expression of B-cells in the limb muscle,
using 1) a model trained on B-cells in the lung, 2) a model trained on
endothelial cells in the limb muscle, and 3) a model trained on the
limb muscle. Again, the cell population-specific models outperform
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the tissue-specific models, even though they predict either a different
dataset or a different cell population than they were trained
on (Figure 3B; Supplementary Figures S14, S15). This indicates
that if you want to train a model for a cell population from a specific
tissue where no single-cell data is available, you are better off
using a model trained on a similar cell population from a
different tissue than relying on a tissue-specific model. Whether
a model trained on a different cell population and the same
tissue performs better than a model trained on the same cell
population but a different tissue, differs per tissue and cell
population. For example, when predicting the expression of
B cells in the limb muscle, the models trained on B cells in the
marrow and lung even outperform the model trained on B cells in
the limb muscle itself (Figure 3C). But, the models trained on
different cell populations within the limb muscle perform
variably when predicting B cells (Figure 3D). The models trained
on immune populations, e.g., T cells or macrophages, perform
similarly, but the muscle-specific populations perform worse.
This difference between the B cell and the endothelial, mesenchymal
stem cell, and skeletal muscle satellite cell models might seem
small but is significant across the 20 folds [p-value = 9.5e-07
for all three populations, one-sided Wilcoxon rank sum test
(Mann and Whitney, 1947; Demšar, 2006)]. Even though the
differences are small, this indicates that our models indeed
learn cell population-specific features.

3.3 scXpresso learns expression patterns
across human brain cell populations

Next, we applied scXpresso to a human brain dataset of the
motor cortex (Bakken et al., 2021). This dataset is annotated at
different resolutions including a class (GABAergic, glutamatergic,
and non-neuronal) and subclass (20 subclasses) level. Again, we
trained models of different resolutions: a tissue- (t), class- (c), and
subclass-specific (sc) model (scXpressot, scXpressoc, and
scXpressosc, respectively). We used the trained models to predict
the subclass-specific expression values (Figure 4A). Since scXpressot
was trained on the tissue-specific pseudobulk expression, it predicts
the same expression for all subclasses. The class-specific model, on
the contrary, is a multitask model. Here, we use the predictions of
the parent class to predict the expression of each subclass
(i.e., subclasses belonging to the same parent class are predicted
to have the same expression) (Supplementary Figure S16). Similar to
the Tabula Muris, we observed that increasing the resolution
increases the performance: scXpressosc outperforms scXpressoc
which outperforms scXpressot, (Figure 4B). For some subclasses,
e.g., L2/3 IT, the performance barely improves when comparing
scXpressosc with scXpressoc, which happens when the true
expression values of the subclass and corresponding class are
strongly correlated, similar as for the Tabula Muris case
(Supplementary Figure S17).

Since genes with variable expression across subclasses are often
interesting to study, we tested whether scXpressosc can learn the
correct pattern for a gene across the subclasses. For every gene, we
calculate the Pearson correlation between the true and predicted
expression across the subclasses. If the expression of a gene
shows some variance across the subclasses, scXpressosc predicts

the pattern correctly (Figure 4C). An example is CACNA1I, a
gene coding for a subtype of voltage-gated calcium channel that
has been associated with schizophrenia (Li et al., 2017; Pardiñas
et al., 2018; Ikeda et al., 2019; Lam et al., 2019; Yao et al., 2021).
Here scXpressosc correctly learns that the expression in
neuronal populations is higher than in non-neuronal (r =
0.90) (Figure 4D).

3.4 In silico saturation mutagenesis reveals
the most interesting GWAS variants

Since scXpresso can predict expression from the DNA sequence,
we expect that it can also predict how the expression changes when
the sequence is mutated. Therefore, we applied in silico saturation
mutagenesis (ISM) to the sequence of CACNA1I and evaluated the
predicted change in gene expression (Zhou and Troyanskaya, 2015;
Kelley et al., 2016; Kelley et al., 2018; Avsec et al., 2021a). When
comparing scXpressosc predictions for the Sst Chodl subclass across
all possible mutations, we find mutations in the region around the
TSS to affect the expression of the CACNA1l gene the most
(Figure 4E). When applying ISM to the 2,000 highly variable
genes in the data, the maximum absolute predicted effect is
highest around the TSS as well (Supplementary Figure S18).
Note, that we did not use the TSS location as input to the model,
consequently, the model correctly identified that this is the most
important region for transcriptional regulation. No other regions
within our input window were found that affect the expression
that strongly.

Besides visualizing the mutation pattern for one subclass, we can
also visualize how ISM affects two subclasses differently. As an
example, we compared the scXpressosc predictions for the Sst Chodl
subclass and the L2/3 IT subclass (Supplementary Figure S19). These
predictions show that the Sst Chodl subclass is more sensitive to
mutations than the L2/3 IT class for CACNA1I, which might be
explained by the fact that CACNA1I is also higher expressed in Sst
Chodl cells.

In addition, ISM can be used to prioritize variants of interest for
diseases. CACNA1I is linked to 18 Schizophrenia-associated variants
according to the NHGRI-EBI Catalog (Buniello et al., 2019). Two of
these variants, rs7288455 and rs5757730, fall within our input region
(7 kb upstream and 3.5 kb downstream of the CACNA1l TSS).
Mutating the reference A allele with the C or G variant at the
position of rs7288455 increases the predicted expression for all cell
populations (Figure 4F). The disease-associated variant, the A allele,
is expected to decrease the expression (Buniello et al., 2019; Yao
et al., 2021), which is in line with our predictions, although it is not
known whether this is subclass-related. Our model suggests that the
expression of CACNA1I increases the most in the Sst Chodl subclass.
Interestingly, for the Sst Chodl subclass, this mutation results in one
of the largest differences in CACNA1l expression amongst all other
induced mutations (top 1% mutations with the strongest effect)
(Supplementary Figure S20). For the other variant, rs5757730, which
lies in an intronic region, we see no difference in expression
(Supplementary Figure S21). Further supporting our predictions,
rs7288455, but not rs5757730, overlaps with an ENCODE candidate
cis-regulatory element. These results show that scXpresso can be
used to prioritize GWAS hits.
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In total, there are 3,971 GWAS variants associated with
Schizophrenia in the NHGRI-EBI Catalog (Buniello et al., 2019).
We focused on those genes that have two or more variants in the
input region (20 genes, 49 variants) (Supplementary Table S5). For
these variants, we predicted the effect of all possible substitutions to
prioritize the likely causal variants (Supplementary Figure S22). For
most genes, scXpresso predicts a profound effect for only one of the
variants. For instance, when substituting “A” with “C” for the HLA-
B variant rs2507989, the predicted expression of HLA-B decreases,
while none of the mutations at the other variant positions of HLA-B,
i.e., rs139099016 and rs1131275, are predicted to affect the
expression. Noteworthy, rs1131275 is classified as a missense
variant and thus not expected to alter transcription (Buniello
et al., 2019). For some genes, however, all variants seem to barely
affect the expression.

Next, we checked if we could interpret the model predictions by
characterizing the genomic sequences identified by scXpresso to
have a strong effect on gene expression. For the MROH-6 variant
rs10866912, two substitutions are predicted to create an opposite
effect. Substituting the reference “T” with a “C” is predicted to
decrease the expression while mutating with a “G” is predicted to
increase the expression (Figure 4G). This variant is part of a binding
site for the transcription factor INSM1, a transcriptional repressor
(Castro-Mondragon et al., 2022) (Figure 4H). When substituting the
“T” with a “C”, the sequence of the reference genome becomes more
similar to the consensus motif, while substituting with a “G” makes
the two sequences more dissimilar. This supports the predictions
from scXpresso.

We compared our scXpresso predictions for these
Schizophrenia variants to the predictions of Enformer, ExPecto,
and Xpresso. For Enformer and ExPecto we used their pre-trained
models which predict the expression for 5,313 and 218 tissues/cell
lines, respectively. Here, we only focused on the predictions related
to the healthy brain (77 tracks for Enformer, 27 for ExPecto). For
Xpresso, there were no pre-trained models for the brain available, so
we trained the Xpresso model ourselves using bulk RNA-seq
samples from the precentral gyrus, which is the region
containing the motor cortex (see Methods). The expression
values of the precentral gyrus are correlated to the pseudobulk
expression values of the motor cortex (Supplementary Figure S23A,
r = 0.68). Similar to scXpresso, we used a 20-fold cross-validation to
train the Xpresso model. The model is well-trained and reached a
similar median correlation on the precentral gyrus as the scXpresso
models on the motor cortex subclasses (Figure 4B, S23B-C, r = 0.69).
Supplementary Figure S24 shows the predictions for all models for
the variants related to Schizophrenia. Using Xpresso and ExPecto we
could not predict the effect of all variants, since some genes were
missing from the data and some variants were lost during
conversion from Hg38 to Hg19 (Supplementary Table S5) (see
Methods). It is challenging to compare the predictions of the
different methods since all models are trained on different brain
regions or cell lines. Enformer usually predicts the same effect for the
three different possible nucleotide mutations, e.g., for rs1131275 it
predicts that all three substitutions decrease the expression. This
variant, however, is classified as a missense variant, so we do not
expect it to alter transcription (Buniello et al., 2019). For rs7288455,
the variant close to CACNA1I, both scXpresso and Xpresso predict a
similar effect, while Enformer and ExPecto predict only a very

minimal effect. For rs10866912, the variant close to MROH-6, we
showed that scXpresso could learn the TF binding site of INSM1
while all the other models miss this pattern. These results overall
illustrate the benefit of training prediction models on
single-cell data.

4 Discussion

We presented scXpresso, a model to predict cell population-
specific gene expression using the genomic sequence. We showed
that scXpresso outperforms tissue-specific bulk and pseudobulk
models especially when the expression profile of a cell population
is dissimilar to that of the corresponding tissue. All scXpresso
models reach a Pearson correlation of approximately
0.7 regardless of the cell population or tissue trained on.
Additionally, the model learned the importance of the region
around the TSS, transcription factor binding motifs (such as for
INSM1), and the expression pattern of genes across different cell
populations. Together, our findings show the potential of using
single-cell data for predicting gene expression from sequence
information in complex heterogeneous tissues.

We showed that it is possible to prioritize GWAS variants using
scXpresso. Considering the expression of CACNA1I, we noticed that
one variant, which overlaps with an ENCODE cis-regulatory
element, is predicted to have a large effect, while another variant
was predicted to have a negligible effect. The latter could be because
the variant might affect splicing (which our model does not
differentiate), the variant could be in a linkage disequilibrium
block with other (associating) variants, or the variant could affect
a more distant gene.

Comparing the predicted effects for mutations by scXpresso to
other sequence-to-expression prediction models quantitatively is
difficult as the true effect of these variants on specific brain regions
and/or cell populations is unknown. We have shown that for a
previously identified variant close to CACNA1I gene, both Xpresso
and scXpresso predict an increase in expression, while ExPecto and
Enformer predict a marginal effect. Note that, ExPecto and
Enformer are not trained on specific brain regions, or cell
population-specific data, but contain bigger structures such as the
frontal cortex or frontal lobe. Hence, these models miss the cell
population-specific effect of this variant. Training these models on
cell population-specific scRNA data could be an
interesting next step.

Using our model, it is not possible to test trans-effects of variants
as our model uses a limited genomic sequence region as input.
Consequently, we could only test two variants related to
Schizophrenia for CACNA1I, out of the 18 variants associated
with CACNA1I (Buniello et al., 2019). Ideally, we would increase
the length of the input sequence, however, it is not easy to learn long-
range interactions using CNNs. The Enformer model, which uses a
200 kb sequence as input, tackles this problem by combining
transformers and CNNs (Avsec et al., 2021a). Unfortunately, the
Enformer model predicts CAGE reads instead of expression values,
so we cannot trivially extend it or use it for single-cell data. An
alternative approach might be to use their well-trained model to get
an embedding for every input sequence and use this embedding to
predict cell population-specific expressions.
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We input the DNA sequence and five half-life time features to
scXpresso. However, certain transcript features, which are related to
the half-life time features, can predict zeros in the scRNA-seq data
(Lipnitskaya et al., 2022). Whether the observed zeros in scRNA-seq
data are technical artifacts or biologically informative is an ongoing
debate. We believe that the zeros are biologically informative since
binarized data can be used for downstream analysis, resulting in
comparable results to those obtained using scRNA-seq counts
(Bouland et al., 2023). Furthermore, we would like to highlight
that the performance of the cell population-specific pseudobulk
models when trained on sequence-only information is also not
much lower as compared to both sequence and half-life time
features (Supplementary Figure S9). This observation supports
our conclusion that the half-life time features are not biasing the
models towards scRNA-seq artifacts.

Two future enhancements that we envision that could improve
the performance of our model are related to the half-life time features
and the output of the model. Currently, we extract five features from
themRNA sequence to approximate the half-life time. Recently, a new
model, Saluki, was developed that could predict mRNA degradation
rates directly from the sequence of the gene (Agarwal and Kelley,
2022). Replacing the currently used features with those predicted by
the Saluki model, or combining these features, might improve the cell
population-specific predictions. A second potential improvement
relates to the current output of scXpresso, which is the pseudobulk
expression for every cell population, i.e., the average gene expression
across all cells from that population. However, this ignores the
variance within the population. It might be more beneficial to
predict the distribution of gene expression across each population,
instead of just one aggregated value.

In summary, we have shown the potential of predicting cell
population-specific gene expression from genomic sequences by
leveraging the resolution of single-cell data, opening the way for
many new developments in this area.
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