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1 Introduction

Chemical and enzymatic probing has a long history as an experimental source of
information on RNA secondary structures. In recent years such protocols were interfaced
with high-throughput sequencing methods to provide access to transcriptome-wide
structural information (Kubote et al., 2015; Carlson et al., 2018). Despite the
indisputable usefulness of structure probing, it is important to remember that any
probing method provides a signal that encodes information on RNA structures, but
remains far from directly measuring or unambiguously determining a structure.

An extensive body of empirical evidence of RNA structures has been integrated into the
“standard model” for RNA secondary structure prediction. It defines an RNA secondary
structure as a collection of Watson-Crick and GU base pairs such that i) each base has at
most one pairing partner, ii) base pairs do not cross, i.e., if (i, j) is a pair, then there is no pair
(k, l) with i < k < j and l < i or l > j, and iii) every base pair spans at least three unpaired
positions (Lorenz et al., 2011). Every structure of this type is associated with an energy that
can be computed as the sum of its loops (facets of its unique planar embedding), which
correspond to stacked base pairs, hairpin loops, interior loops, and multi-branched loops.
The energy contribution of each loop depends on its sequence, but is independent of its
external context. Comprehensive tables of sequence-dependent loop energy contributions
have been inferred (mostly) from melting experiments on small, specifically designed RNA
molecules (Andronescu et al., 2014). Collected in the standard energy model (Turner and
Mathews, 2010), they are used in exact dynamic programming algorithms that predict the
ground state structure or the base pairing probabilities in the Boltzmann ensemble of
secondary structures for arbitrary RNA sequences. We note in passing that Stochastic
Context Free Grammars (SCFGs) use in essence the same model(s) for the structures (Rivas
et al., 2012) and may serve as an alternative to the thermodynamic approach. Usually,
SCFGs are parametrized using learning approaches from known structures, see, e.g., (Do
et al., 2006). For the purpose of the present contribution, it is only important that there is a
“universal” model that predicts (a reasonable approximation of) the secondary structure
taking an arbitrary RNA sequence as input.

Empirical evidence, e.g., from probing experiments can be included in the universal
structure prediction methods as a hard constraint forbidding structures that contradict the
empirical evidence or as an additional energy term (soft constraint), favoring those
structures that conform better to the empirical data over others, see, e.g., (Lorenz et al.,
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2016c; Lorenz et al., 2016a). Since unambiguous experimental
evidence that a base is paired or unpaired is difficult to obtain,
we consider here only soft constraints that better reflect the
probabilistic nature of the available evidence. This amounts to
the inclusions of pseudo-energy terms that award a “bonus” to
all secondary structures that exhibit a specific feature whose
presence is supported by the external evidence.

2 Pseudo-energies from probing data

Most current methods for large-scale chemical probing use deep
sequencing methods as read-out. The raw signal thus is a number of
reads associated with each sequence position i. The probingmethods
most frequently employed at present detect unpaired positions. In
SHAPE, RNA forms an adduct at conformationally flexible 2′-
hydroxyl positions (Deigan et al., 2009), where flexibility serves
as a proxy for unpairedness. Similarly, DMS treatment leads to a
methylation of N1 of adenine and N3 of cytosine in unpaired bases.
In inline probing and related protocols using heavy metal ions as
catalysts, the RNA is cleaved preferentially at unpaired positions.
Both cleavage and bulky adducts (which lead to termination of
reverse transcription) translate to read-ends in subsequent high-
throughput sequencing.

Other chemically introduced modifications, in particular at the
2′-hydroxyl position of the ribose of structurally unconstrained
positions, lead to misincorporations during cDNA synthesis,
because reverse transcriptases incorporate non-templated
nucleotides (Smola and Weeks, 2018). In the SHAPE-MaP
approach, the nature of the misincorporated base can be
identified as a base replacement in the resulting sequence
alignments (mutational profiling). However, the efficiency of the
ribose modification depends on the reactivity of the 2′-hydroxyl
group, which itself is affected by the nature of the individual base
(Wilkinson et al., 2009; Busan et al., 2019). Hence, the number of
reads that is used as a proxy for signal reliability can vary to a certain
extent. PORE-cupine, the combination of such structure-dependent
nucleotide modifications with the Nanopore sequencing technology
allows for an elegant direct read-out of these signals in individual
RNA molecules, enabling single molecule structure analysis (Aw
et al., 2021).

High throughput probing experiments require two distinct
normalization steps since the observed, position-wise signal
depends i) on the abundance of the probed RNA, i.e., the
expression level, and ii) on the secondary structure.
Normalization for expression levels requires annotated
transcripts. While it would be desirable in principle to have
RNA-seq data for the same sample to estimate expression levels,
and possibly to refine the annotation, it is possible to use the probing
signal itself. A reasonable normalized signal S can be obtained, e.g.,
by dividing the counts by the mean (adjusted to drop outliers) or the
median of the read counts over a given annotation item. Much more
elaborate statistical models have been developed to estimate
reactivities from high-throughput sequencing data, taking into
account both RT stops and misincorporations (Strobel et al.,
2018; Yu et al., 2018).

The normalized signal then needs to be related to a probability
or pseudo-energy contribution for the feature under consideration.

Reactivities are often directly converted to pseudo-energies using
simple empirical formulas (Strobel et al., 2018). A more principled
approach proposed by Zarringhalam et al. (2012) is to first estimate
the probability p(S) of the features as a function of the observed
signal strength and then to convert p(S) to a pseudo-energy via

E S( ) � −RT ln
p S( )

1 − p S( ) (1)

Here p(S) will in general be a monotonic function of the normalized
signal. Typically, p(S) will be sigmoidal to limit the impact of
outliers. We note in passing that the conventional conversion of
SHAPE reactivities to pseudo-energies (Low and Weeks, 2010), E =
m ln(S + 1) + b, is a particular case of Eq. 1 using the sigmoidal
function p(S) = 1/[1 + (b/RT)(S + 1)m/RT] with empirical fitting
parameters b and m. The pseudo-energy terms are included as
additional position-dependent contributions in the thermodynamic
RNA folding algorithms, see e.g., (Lorenz et al., 2016c; Lorenz
et al., 2016b).

The advantage of Eq. 1 is not only a more direct interpretation as
a log-odds ratio. It is also readily extended to aggregating evidence
from different sources, e.g., from different probing experiments.
This is used in practice, e.g., in the Led-Seq approach (Kolberg et al.,
2023). There, each lead-induced cleavage at single-stranded
positions is assayed both via the 2′,3′-cyclophosphate end and
the 5′-OH end and modeled via a two-dimensional sigmoidal fit
p(S1, S2). Of course, it is also possible to stratify the signal for
instance by the identity of the cleaved di-nucleotide. The function
p(S) can be estimated by comparing the observed signal S with the

FIGURE 1
Normalized intensities S obtained from probing experiments [in
this example from a Led-Seq cP library (Kolberg et al., 2023)] can be
converted to probabilities of a structural feature (here the probability
of a sequence position to be unpaired) by relating the empirical
signal in a bin [S, S + ΔS] to the frequency of the feature of interest
(here the frequency of observing an unpaired position) in a reference
set. Here we compare a manually curated set of 32 reference
secondary structures from Escherichia coli (▽) to secondary
structures predicted from the thermodynamic model using the
ViennaRNA software (•) of all sequences with valid probing
information from the same study (Kolberg et al., 2023). A smooth
function p(S) is then obtained by fitting a sigmoidal curve to the
empirical data.
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frequency of the assayed feature in a set of reference structures.
Typically, a collection of well-known structures is used for this
purpose. It should be kept in mind, however, that few RNA
structures are perfectly known at present. Recent advance in
Cryo-EM methods, however, may alleviate this bottleneck (Ma
et al., 2022). Moreover, RNA structures can change with
temperature (Narberhaus et al., 2006; Marz et al., 2010), salt
concentration (Yao et al., 2023) and with the presence of binding
partners such as proteins or other RNAs (Sutandy et al., 2018). In
practice, therefore, the calibration of the function p(S) will have to be
performed from imperfect data.

Figure 1 shows that the thermodynamic model for RNA folding
is surprisingly accurate in predicting the distinction of paired versus
unpaired nucleotides. Predicted structures can therefore serve as an
alternative to reference structures when estimating p(S). The
difference in accuracy between a manually curated reference set
and predictions from the standard energy model translates to a
lower saturation value in terms of p(S) for the thermodynamic
predictions. Importantly, the curve for the curated reference data
also saturates at a value well below the theoretical upper bound of
p(S) = 1 for S→∞. While possible errors in the reference data may
contribute to this effect, it is most likely dominated by the fact that
probing methods assay chemical properties that are only correlated
with structural features such as the unpairedness of a nucleotide
instead of directly measuring them.

Moreover, several RNA molecules are known to contain high
affinity binding sites for metal ions (Pyle, 2002) that can lead to
disproportionately high cleavage results (Ciesiolka et al., 1994).
Nevertheless, such prominent cleavage sites are highly
informative in structural analysis based on metal cleavage
(Behlen et al., 1990; Kolberg et al., 2023). Another point to
consider is the fact that temperature can have a dramatic impact
on the probing result. Here, lead-dependent probing can be applied
to a wide range of temperatures, allowing for structural investigation
in psychro-as well as thermophilic organisms (Kolberg et al., 2023).
Other approaches depending on more temperature-sensitive
reagents might be limited in this aspect, and the corresponding
half-lives at increased temperatures must be considered (Smola and
Weeks, 2018; Busan et al., 2019).

The distribution of errors in thermodynamic secondary
structure predictions could in principle be determined empirically
by comparison with curated reference data. This opens the
possibility to devise estimates for p(S) that compensate for the
imperfections of thermodynamic predictions. We are not aware,
however, that such a method has become available.

3 Pseudo-energies from phylogenetic
conservation

Evolutionary conservation of structures leads to mutual
constraints at spatial contacts. Given a multiple sequence
alignment, this effect can be quantified as covariation or mutual
information between alignment columns. In MIfold (Freyhult
et al., 2005), consensus secondary structures are predicted with
reasonable accuracy directly from the mutual information of
alignment columns. The thermodynamic model can also be
readily extended to multiple sequence alignments by averaging

energy contributions for stacking and loops over the rows
(Hofacker et al., 2002; Bernhart et al., 2008). In practice, the
RNAalifold program also uses covariance-based pseudo-
energies. Both MIfold and RNAalifold are based on the
assumption that there is a global consensus structure that is
present in each of the aligned sequences in essence without
variations. This is not always the case, however.

In many cases evolutionary conserved secondary structures are
only local elements in often much larger RNA molecules. This is
most obvious for features such as Selenocystein Insertion (SECIS)
elements or structured Internal Ribosomoal Entry Sites (IRES) on
protein-coding mRNAs. Conserved structures in long non-coding
RNAs also seem to be local in general. In such cases, consensus
methods typically predict large unstructured regions. For any
particular RNA molecule, these regions will typically form
secondary structures, which, however, are not conserved across
the aligned sequences. von Löhneysen et al. (2023) therefore
proposed to convert predicted consensus structures into pseudo-
energies. In the setting of the RNAalifold approach this is most
directly achieved by using Γij � min 0,−RT ln[p°ij/(1 − p°ij)]{ } as
pseudo-energy, where p°ij is the probability of i and j being paired in
the alignment according to the averaged energy model. The values of
Γij are truncated at 0 since the absence of conserved base pairs does
not imply that the two positions are excluded from base pairing in
particular sequences. The statistical significance of covarying
alignment columns can be tested using Rscape (Rivas et al., 2017).

Not surprisingly, the beneficial effect of conservation-derived
pseudo-energies on the accuracy of the structure prediction depends
strongly on the quality of the multiple sequence alignment (von
Löhneysen et al., 2023). In addition, the phylogenetic distribution of
the input sequences may play a role. Some consensus structure
prediction methods such as pfold (Knudsen and Hein, 2003)
explicitly require a phylogenetic tree. Alternatively, the sequences
(rows) in an alignment may be given weights depending on the
similarity to the other aligned sequences (Vingron and Sibbald,
1993); this is used, e.g., in RNAalifold (Bernhart et al., 2008).
Both explicit and implicit phylogenetic information incurs the
danger, however, that the effect of alignment errors are
aggravated. Misaligned sequences can be expected to have larger
distances from other members of the alignments. As a consequence
they appear less redundant and thus contribute with higher weight.

4 External evidence versus energy-
based prediction

In Figure 2 we compare the accuracy of RNA secondary
structures generated by using different combinations of evidence.
For the sake of this exposition, we only analyzed a limited data set.
While this cannot replace a thorough benchmarking, it shows the
salient trends, and illustrates some basic facts.

In order to assess the structural information contained in the
probing signals alone, we exclusively used the position-wise pseudo-
energies as energy model. The contribution for potential base pair (i,
j) is set to Eij = −(Ei + Ej), where Ei and Ej is the pseudo-energy for
positions i and j to be unpaired. Since this “energy model” scores the
base pairs and unpaired positions independently of each other, the
optimal secondary structure can be computed using Nussinov’s
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circular matching algorithm (Nussinov and Jacobson, 1980) in the
same manner as for the calculation of maximum expected accuracy
structures (Lu et al., 2009). For both SHAPE-MaP and Led-Seq data,
the predicted structures are rather inaccurate. In particular, the
probing data alone yield structures that are systematically worse
than the un-aided energy-based predictions. We note that the
SHAPE-MaP and Led-Seq data in Figure 2 are not directly
comparable since they were retrieved from unrelated
experiments. In SHAPE-MaP, Led-Seq, and DMS probing,
structural signals are only obtained for unpaired nucleotides,
while base-paired regions are inert. The protocol commonly
employed for SHAPE data is to interpret low signals as a double-
stranded segment in the RNA structure. Here, the misinterpretation
of unreacted but single-stranded regions is possible, resulting in
misleading structural models. Therefore Kolberg et al. (2023),
instead interprets strong signals as unpaired regions, reducing the
danger of misreading the lack of signal.

Including either probing data or conservation information
substantially improves the structure prediction. This shows that
the experimental evidence from probing can be meaningfully
accessed only in conjunction with a universal folding model, in
our example the thermodynamic model. We also observe that the
inclusion of phylogenetic information yields substantially better
structural models than the probing data. This is probably a
consequence of the fact that probing data offer only position
specific constraints, while phylogenetic methods introduce
specific base pairs and thus restrict the search space quite
drastically.

5 Discussion

The main purpose of this short opinion piece is to highlight the
fundamental importance of the loop-based thermodynamic energy
model (or one of its SCFG-based variants) for RNA secondary
structure determination. Although chemical and enzymatic probing
methods provide invaluable additional structural information, they
cannot unambiguously determine RNA structures on their own.
This begs the question to what extent probing data can identify

pseudoknotted structures and whether this can be achieved without
a reasonably accurate pseudoknot-aware thermodynamic
folding algorithm.

Tb-seq exploits the fact that Tb3+ causes backbone cleavage in
regions where the compression of the phosphate backbone causes
sharp, stable turns in the RNA structure. Since such regions are
typically associated with stable tertiary interactions, Tb-seq provides
key information beyond secondary structures (Patel et al., 2023),
even though its signal yields a position-dependent profile just like
other probing methods. The interpretation of Tb-seq data at present
also requires a good structural model to start with.

The information obtainable from crosslinking approaches such
as SPLASH, RIC-seq, PARIS, LIGR-seq and others [reviewed, e.g.,
by Zhang et al. (2022)] goes beyond position-wise base pairing
propensities and provides direct evidence on interacting RNA
regions, see, e.g., (Schäfer and Voß, 2021). It seems fair to say,
however, that the problem of deriving detailed secondary structure
models from such data has not yet been solved in a satisfactory
manner. Comparative sequence analysis provides an attractive
alternative since it yields direct evidence on specific base pairs.
This information can then be included into folding algorithms in the
same way as probing data, namely, be adding a pseudo-energy Eij to
the base pair (i, j). Wherever comparative data on a conserved
structural consensus is applicable and available, furthermore, these
tend to have a larger beneficial impact on prediction accuracy than
probing data. We believe that this is due to the fact that the specific
consensus base pairs are much more informative than the position-
wise status of being paired or unpaired. It appears, furthermore, that
very little is gained by combining conservation and probing
information in cases where the entire RNA structure is well-
conserved over a long evolutionary time scale. On the other
hand, probing data are invaluable in the much more frequent
scenario that only certain functional elements of an RNA are
well-conserved. In this setting we expect that the combination of
probing and conservation data is particularly useful.

The energy-directed model also seems to be sufficient at least in
principle to gauge the conversion of (normalized) probing signals to
pseudo-energies. This alleviates the need to build large collections of
manually curated reference structures, whichwould be hard to obtain in

FIGURE 2
Structural information in probing data and comparative analysis of RNA structures. Position-wise probing information alone yield less accurate
structures. Combining probing or conservation data (phyl.) with the energy model improves predictions considerably. Left: SHAPE-Map data of
12 ncRNAs from Escherichia coli (Mustoe et al., 2018) downloaded from RASP (Li et al., 2020), Right: Led-Seq data of 24 ncRNAs from Escherichia coli
(Kolberg et al., 2023). Probing data were converted to pseudo-energies as described by Kolberg et al. (2023) for probing data and by von Löhneysen
et al. (2023) for phylogenetic information. MCC, Matthews correlation coefficient.
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many cases, in particular when analyzing transcriptomes of non-model
organism. Less naïve methods than the simple fitting procedure of
Figure 1, however, will need to be developed for this purpose.

Despite these limitations of probing data and the superiority of
comparative information, where it is available, probing is
indispensable in many situations. For example, structural changes
caused by binding partners or chemical modifications are difficult,
and usually impossible, to capture by conservation data, even though
it is possible in some cases to identify conserved alternative folds,
see, e.g., (Meyer, 2017). Similarly, probing data are key whenever
phylogenetic evidence does not exist, as is the case for RNAs
designed in synthetic biology applications (Domin et al., 2017)
and in evolutionary novelties appearing in loci with accelerated
evolution (Beniaminov et al., 2008).
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