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In the past, several methods have been developed for predicting the single-label
subcellular localization of messenger RNA (mRNA). However, only limited
methods are designed to predict the multi-label subcellular localization of
mRNA. Furthermore, the existing methods are slow and cannot be
implemented at a transcriptome scale. In this study, a fast and reliable method
has been developed for predicting the multi-label subcellular localization of
mRNA that can be implemented at a genome scale. Machine learning-based
methods have been developed using mRNA sequence composition, where the
XGBoost-based classifier achieved an average area under the receiver operator
characteristic (AUROC) of 0.709 (0.668–0.732). In addition to alignment-free
methods, we developed alignment-based methods using motif search
techniques. Finally, a hybrid technique that combines the XGBoost model and
the motif-based approach has been developed, achieving an average AUROC of
0.742 (0.708–0.816). Our method—MRSLpred—outperforms the existing state-
of-the-art classifier in terms of performance and computation efficiency. A
publicly accessible webserver and a standalone tool have been developed to
facilitate researchers (webserver: https://webs.iiitd.edu.in/raghava/mrslpred/).

KEYWORDS

subcellular localization, multi-label, motif search, messenger RNA, machine learning

1 Introduction

Messenger RNA (mRNA) is a single-stranded RNA, a transcription product that leads
to protein synthesis via translation. It carries the cell’s genetic information from the nucleus
to the cytoplasm. In the cytoplasm, mRNA is localized to different parts of the cell, resulting
in an asymmetric distribution of proteins within the cell (Wang et al., 2021). It plays an
important role in several developmental processes, such as neuronal maturation, embryonic
patterning, cell migration, cell fate determination, cell adaptation to stress, and the
development of body axes in Drosophila melanogaster (Ephrussi et al., 1991; Katz et al.,
2012; Medioni et al., 2012; Liu et al., 2019; Tian et al., 2020). Identifying the cellular location
of mRNA provides valuable information about the amount of protein synthesis and the
location, which correlates with its function (Holt and Bullock, 2009; Tang et al., 2021).
Transporting mRNA over a protein has significant advantages, such as transportation cost
reduction by the expression of mRNA to generate different types of localized proteins, rapid
response to external stimuli, segregation of transcripts to specific organelles or
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compartments, and prevention of ectopic action of proteins during
localization (Kloc et al., 2002; Di Liegro et al., 2014; Tang et al., 2021;
Wang et al., 2021). Therefore, knowing the subcellular localization
of mRNA is important to understand various biological processes
(Tang et al., 2021).

In the past, numerous experimental techniques have been
established to identify the location of mRNA in a cell. In vitro
visualization can be performed using classical in situ hybridization,
MS2-system-based techniques, and RNA (Fagerberg et al., 2014;
Wang et al., 2021; Zhang et al., 2021). These experimental
techniques are highly sensitive and accurate, capable of
detecting subcellular localization with high precision. Despite
their accuracy, these techniques cannot be implemented
routinely at the genome level due to their cost. Experimental
techniques are laborious, have limited applications to specific
tissues, are expensive processes, and often require sophisticated
instrumentation (Savulescu et al., 2021). Advanced sequencing
techniques generate a large amount of information about
transcripts. To overcome these challenges, researchers have
developed a wide range of in silico methods for predicting the
location of mRNA in a cell (Savulescu et al., 2021). Most of these in
silicomethods are knowledge-based, deriving rules or models from
experimental data to predict the location of an mRNA sequence.
One can obtain experimental data from major repositories such as
RNALocate (Zhang et al., 2017; Cui et al., 2022), lncATLAS (Mas-
Ponte et al., 2017), and lncSLdb (Wen et al., 2018).

Over the years, a multitude of methods have been developed for
predicting subcellular localization, with the majority relying on
machine learning techniques. Examples include RNATracker
(Yan et al., 2019), iLoc-mRNA (Zhang et al., 2021), DM3Loc
(Wang et al., 2021), mRNALocater (Tang et al., 2021), and
mRNALoc (Garg et al., 2020). In most of these methods, datasets
have been derived from the popular RNALocate database. One
major limitation of these tools is their tendency to predict or
assign a single label for a given mRNA. However, in reality, most
mRNAs traverse throughout the cell and can be found at multiple
locations within it. Lin et al. developed a method named DM3Loc
(Wang et al., 2021), specifically designed to predict multiple labels or
locations for a given mRNA. This method, referred to as a multi-
label subcellular localization prediction method, is based on a deep
learning framework. DM3Loc generates features by converting
mRNA sequences into one-hot encoded vectors. These vectors
serve as input to a CNN classifier, and a multi-head self-
attention mechanism is used to enhance its ability to identify
sequence regions relevant to localization. Currently, DM3Loc
stands as a state-of-the-art multi-label classifier for predicting the
subcellular localization of mRNA sequences. Despite its advanced
capabilities, DM3Loc has limitations of its own, such as heavy
requirements for computational resources and time.

In this study, a novel multi-label classifier is proposed for
predicting the subcellular localization of mRNA. This method,
named MRSLpred, is based on machine learning and uses the
composition features of mRNA sequences for prediction.
Importantly, MRSLpred can be implemented at a genome scale
as its computational resource requirements are minimal. This
proposed method aims to complement existing approaches and
address some of the limitations associated with current methods.

2 Materials and methods

2.1 Dataset collection

The pre-processed dataset was obtained from DM3Loc (Wang
et al., 2021), where they have used both experimentally validated and
database-curated mRNA sequences of Homo sapiens from
RNALocate database v2 (Cui et al., 2022). RNALocate is a
database dedicated to providing high-confidence RNA subcellular
localization information sourced from the literature, other
databases, and RNA-seq datasets. A majority of the mRNAs were
localized in more than one subcellular compartment, which is
generally the case with most mRNAs in a real-world scenario. In
order to ensure that the dataset is non-redundant, CD-HIT was run
at a threshold of 80% similarity. Our dataset contains a total of
17,277 non-exclusive human mRNAs spread across six subcellular
compartments: the ribosome, cytosol, endoplasmic reticulum (ER),
membrane, nucleus, and exosome. The dataset is graphically
represented in Figure 1. The number of mRNAs with localization
at different compartments is 11,923 for the nucleus, 17,156 for the
exosome, 2,338 for the cytosol, 5,210 for the ribosome, 3,232 for the
membrane, and 1976 for the ER. The distribution of location labels is
depicted in Figure 2.

2.2 Feature generation—composition-based
features for machine learning models

In order to train our model, we are required to generate features
or descriptors corresponding to each mRNA. For the
aforementioned purpose, we used the tool ‘Nfeature’ (Mathur
et al., 2021) [https://doi.org/10.1101/2021.12.14.472723], which
can generate hundreds of features for a single mRNA sequence.
These are the two feature classes which were used for training
the models:

1. Composition of DNA/RNA for k-mer (CDK): k-mers of length
3 were generated using Nfeature, and the frequency of each
k-mer was used as a feature for training the ML model. It was
calculated using the following formula:

CDKi � Ni

L − i + 1
,

whereNi represents the number of occurrences of the k-mer i in the
mRNA sequence and L represents the length of the mRNA. For
example, if ‘ATG’ is a 3-mer, the program will count all the instances
of this 3-mer in the input sequence and divide it by the length of the
input sequence minus 2.

2. Reverse complement of DNA for k-mers (RDK): k-mers of
length 4 were generated using Nfeature, and the frequency of
the reverse complement of this k-mer will be used as a feature.
The formula used for calculating the RDK is similar to the one
used for the CDK. However, in this case, instead of counting
the occurrence of the k-mer in the input sequence directly, first,
the reverse complement of the sequence is generated, and then,
the 4-mer frequency in that sequence is calculated.
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Both these features were combined together to obtain a vector of
200 features for each mRNA.

2.3 Alignment-based methods—motif
search using MERCI

Motifs are known to play a significant role in the localization of
mRNA within the cell. We used the MERCI tool (Vens et al., 2011) to

identify the presence of conserved motifs in the training dataset. For
each location, the dataset was split into a positive and a negative dataset
based on the localization in that location. Both the positive and negative
datasets are then provided as inputs to MERCI (Vens et al., 2011), and
then, the tool identifies motifs that can discriminate between positive
and negative samples for that location. We acquired six sets of motifs
specific to each location, and this information was used to modify the
prediction probabilities for each location. For instance, in case a motif
specific to ribosome sequences is found within a query sequence, the

FIGURE 1
Pie chart indicating the data distribution in all the datasets.

FIGURE 2
Upset plot depicting all the possible combinations of subcellular locations.
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probability (provided by the ML model) that the query sequence
belongs to the ribosome is updated to 1. So, the presence of motifs
will practically override the prediction made by the ML model, and
those sequences that do not contain any motifs remain unaffected.

2.4 Alignment-free methods—machine
learning and deep learning models

The location label of each mRNA was generated using one-hot
encoding by converting locations into 0 or 1 s; i.e., if an mRNA is
only present in the ribosome and the nucleus, it will have a label like
[1,0,0,0,1,0]. Initially, a CNN model was trained using one-hot
encoded mRNA sequences. One-hot encoding was performed by
converting every mRNA sequence into a 2000 × 4 matrix, where the
columns represent the four nucleotides (A, T, C, and G) and the
rows represent the sequence information. For sequences greater
than 2000 base pairs (bp), 1,000 bp were taken from the 5′-end, and
the remaining 1,000 bp were taken from the 3′-end. Sequences that
have less than 2000 bp were used as they are, and the remaining
matrix was filled with zeros for all the remaining positions.

Composition-based features defined above were used to train
various machine learning models. Model training was conducted on
Python using standard machine learning libraries such as scikit-learn
and XGBoost (Chen and Guestrin, 2016). A number of machine
learning approaches were used to construct prediction models such as
logistic regression, decision tree, random forest classifier, MLP
classifier, AdaBoost classifier, Gaussian Naïve Bayes, quadratic
discriminant analysis, gradient boosting classifier, and eXtreme
Gradient Boosting (XGBoost) classifier. The scikit-learn Python
library was used to implement these classification approaches.

Training of the models was conducted using ML classifiers
combined with a multioutput classifier. The specialty of this
model is that it takes CDK and RDK as features and predicts all
the possible locations of the mRNA in one single step.

2.5 Five-fold cross validation

To ensure the propermodelfitting, we usedfive-fold cross-validation
to train and validate the models. The entire dataset was split in an 80:
20 ratio, where 80% of the data were used for training and 20% data were
used for validation. The training data were further split into five parts,
and five-fold cross-validation was performed on the same. In each
iteration, a different fold was used for validation, and the remaining
four folds were used for validation. The training performance is
calculated by taking the average over five iterations. The splitting of
data was performed in a stratified manner, ensuring that all the locations
were equally distributed within each of the folds. Once the training was
conducted, the model was validated using the 20% validation dataset.

2.6 Performance metrics

Evaluation of the model performance was carried out using
standard performance metrics. The performance metrics used were
sensitivity, specificity, accuracy, Matthews’ correlation coefficient, F1-
score, and area under the receiver operator characteristic (AUROC).

Out of these metrics, only the AUROC is threshold-independent,
whereas all the remainingmetrics are dependent on the threshold cut-
off. The cut-off for the probabilities was determined by balancing out
the sensitivity and specificity as follows:

Sensitivity � TP

TP + FN
,

Specificity � TN

TN + FP
,

Accuracy � TP + TN

TP + TN + FN + FP
,

F1 − score � TP

TP + 0.5 × FN + FP( )( ),

MCC � TP × TN( ) − FP × FN( )
��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√ ,

where TP is true positive, FP is false positive, FN is false negative,
and TN is true negative.

3 Results

In this study, we used a total of 17,277 mRNA sequences with
non-exclusive locations for training our model. The primary objective
is to develop amodel that can accurately predict multiple locations for
a single mRNA, mimicking a practical scenario within the cell. So, we
developed a multi-label classifier to predict the subcellular localization
of mRNA. The outline of the study is shown in Figure 3.

3.1 Alignment-based method—the motif
search module

Nucleotide motifs are known to affect mRNA localization, and in
this study, we tried to implement this ideology. Discriminatorymotifs for
each location were identified using the training dataset, and the presence
of these motifs was then used to assign location labels to each mRNA in
the validation dataset. The motifs that are unique to the positive dataset
for each location are searched in the validation dataset, and if any one of
these motifs is found within the sequence, then the label for that mRNA
in that location is assigned as 1 or 0. The number of hits for motifs in
each individual location was as follows—ribosome: 33, cytosol: 25,
endoplasmic reticulum: 66, membrane: 29, nucleus: 96, and exosome:
1,655. The top 10 motifs found in each location are provided in Table 1.
A large number of motifs were predominantly identified in the mRNA
sequences that were assigned to exosomes and nucleus. This may be
possibly due to the relatively high number of sequences assigned to the
exosome location. This can be seen in Table 2, where the number of
unique motifs identified by MERCI in each location is provided, as well
as the total number of hits for these motifs found in the training dataset.

3.2 Performance of alignment-free
methods—the machine learning model
using composition-based features

Different composition-based features were used to train the
ML model, and we achieved maximum average AUROCs of
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0.705 and 0.691 and average MCCs of 0.213 and 0.195,
respectively, in the cases of CDK and RDK. Upon the
combination of these two features, the model performance
further improved, giving an AUROC in the range of 0.709 and
an MCC of 0.216.

Training of models was conducted using standard python
packages—decision tree, random forest classifier, MLP classifier,
AdaBoost classifier, Gaussian Naïve Bayes, quadratic
discriminant analysis, gradient boosting classifier, and
eXtreme Gradient Boosting classifier. The results for all the
models are shown in Supplementary Table S1. Initially,
composition-based features were used for training the models,
and the XGBoost classifier had the best performance among all
the ML models. The hyperparameters for the XGBoost model
that reported the best performance were as follows:
MultiOutputClassifier [XGBClassifier (n_estimators = 1,000,
learning_rate = 0.01, random_state = 1, max_delta_step = 1,
and n_jobs = −1)]. The metrics for the best performing model are
shown in Table 3.

3.3 Final model—the XGBoost +
motif module

The best performance was obtained by combining the
alignment-free XGBoost model with the motif module. Once the
ML model makes the prediction, the presence of these motifs was
then used to tweak the prediction. If any motif is found in the query
sequences, the prediction probability from theMLmodel is switched
to 1. For instance, if a motif unique to the ribosome is found within a
query sequence, and the prediction probability for that location by
the ML model is 0.4, then in the final model, it will be assigned a
probability of 1. Furthermore, if no motifs were found for the same
query sequence, then the prediction probability assigned by the ML
model remains unchanged.

Significant performance improvement was observed upon
implementing this module. The performance metrics for the ML
+ motif module are provided in Table 4. The area under the receiver
operator characteristic curve for each of the individual locations is
shown in Figure 4.

FIGURE 3
Outline of the methodology followed by MRSLpred.
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TABLE 1 Sequence of top 10 motifs exclusively found in each subcellular location; all these motifs were discovered in the training dataset using MERCI
software.

Ribosome motif
(hits)

Cytosol motif (hits) ER motif (hits) Membrane motif
(hits)

Nucleus motif
(hits)

Exosome
motif (hits)

ATTTGAAGACCAa (5b) CTGCCACCACGCCCAGCT
AATTTTTT (4)

CAGGGGAATGCA (3) ATAGCAGTTTCT (3) CTAAGAGAGT (15) AATTTGTA
(339)

GGTGTGGATGAG (4) CCTGCCACCACGCCCAGC
TAATTTTTT (4)

GTGGTGATCCAGC (3) ATCAGATCAGAA (3) GTGGATTTAAA (13) GCTGCAAA
(316)

CAAAGGAATGAG (3) CGCCCAGCTAATTTTTA (4) CCACCTTCGAGA (3) TAAGAAAAAAACT (3) AGTGCTGGGATTACA
GGCGTGAGCCAC
CAC (11)

TGGATTTA
(313)

GCCAACAAAGAA (3) AGACAGGGTCTCACTCTG
TCACC (3)

CCACAGTAGAAT (3) TATTATTTATAAA (3) GTGCTGGGATTACAG
GCGTGAGCCACC
AC (11)

GAAGTTGA
(304)

CATTGGATACT (3) TCTTGTCGCCCAGGCTGG
AGTGCAG (3)

AACCCCTTCGTG (3) GTCCAGAAAATG (2) CATTTTATGCA (11) ATGAACTT
(298)

CAGACAGGGCG (2) GTGATCTCGGCTT (3) GCACCCTGGACGA (2) ACTGGCTGGATT (2) CTGTTGAAGCA (9) AATTGTAT
(279)

CCAGCCTGGCCAACC
(2)

GGCGTGATCTCGGCTT (3) ACCAGCCTGGACAAC
ATAGTG (2)

GCAATTGAACC (2) GCATTTTGTAT (8) ACAGGAAC
(275)

GTCATTTGTTCT (2) GCGTGATCTCGGCTT (3) GGCAAGGATGCTG (2) AAATCTGGATGC (2) CCCCTCCCCCCG (6) TTTCAACT
(274)

TTTTAAACCTTTTT (2) CTTGTCGCCCAGGCTGGA
GTGCAG (3)

GCTGTGGCTGCTGCTG
(2)

AGATGAAAATGAAG
(2)

ATGTAAATTGT (6) AATTACAG
(263)

GCTATATTTCC (1) CTCTTGTCGCCCAGGCTG
GAGTGCAG (3)

ATTGCTTCATCTG (2) CATTTTACAGGC (2) TTGAAGCCAGGA (6) TGCAGTCT
(249)

aSequence of a motif.
bNumber of hits found in the dataset.

TABLE 2 Number of location-specific unique motifs found in the training dataset and the number of sequences in the training dataset containing these
motifs (coverage).

Subcellular location Number of unique motifs Total number of sequences containing these motifs

Ribosome 16 32

Cytosol 32 25

ER 104 65

Membrane 14 29

Nucleus 13 95

Exosome 10 1,655

TABLE 3 Performance of the native XGBoost multi-label classifier on CDK3+RDK4 features.

Location Sensitivity Specificity Accuracy MCC F1-score AUROC

Ribosome 0.654 0.675 0.668 0.306 0.545 0.721

Cytosol 0.648 0.649 0.649 0.208 0.334 0.703

ER 0.641 0.607 0.611 0.16 0.274 0.668

Membrane 0.67 0.669 0.669 0.27 0.431 0.732

Nucleus 0.668 0.658 0.665 0.304 0.733 0.728

Exosome 0.546 0.731 0.548 0.048 0.706 0.706

Average 0.638 0.665 0.635 0.216 0.504 0.71
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TABLE 4 Performance of the XGBoost multi-label classifier combined with the motif module (final model).

Location Sensitivity Specificity Accuracy MCC F1-score AUROC

Ribosome 0.664 0.664 0.664 0.304 0.545 0.728

Cytosol 0.65 0.65 0.65 0.211 0.335 0.708

ER 0.657 0.656 0.656 0.205 0.304 0.727

Membrane 0.675 0.676 0.676 0.28 0.437 0.736

Nucleus 0.671 0.671 0.671 0.319 0.738 0.736

Exosome 0.696 0.692 0.696 0.073 0.82 0.816

Average 0.669 0.668 0.669 0.232 0.53 0.742

FIGURE 4
AUROC for the final model in each individual location. The AUROC is calculated on the validation dataset, and the yellow dotted line represents the
AUROC for a random prediction (AUROC = 0.5).
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3.4 Comparison of MRSLpred with
existing tools

Currently, DM3Loc is the only tool that performs multi-label
classification out of the box and is developed on the latest version of
RNALocate (version 2). We also used the same non-redundant
dataset that is used in DM3Loc. However, the dataset splitting is
performed differently, maintaining a similar proportion of
subcellular locations in each split. The performance of both
DM3Loc and MRSLpred was evaluated on the validation dataset,
and it was observed that DM3Loc performs better than MRSLpred
in terms of AUROC and MCC. However, the better performance of
DM3Loc can be attributed to the bias in favor of DM3Loc as some of
the sequences in the validation dataset are present within the

training dataset used in DM3Loc. This leads to an overreported
result when evaluating DM3Loc on our validation result.

Both MRSLpred and DM3Loc have been designed as multi-label
classifiers where more than one location can be assigned to a single
sequence. On the other hand, other existing methods perform
multiclass classification, assigning only one location to a single
sequence, and comparing MRSLpred/DM3Loc with these tools
would be unfair to them. However, for the sake of comparison,
we evaluated the performance of all these tools on the validation
dataset used in MRSLpred. The detailed comparison of MRSLpred
with DM3Loc and all other tools which do not support multi-label
classification is provided in Table 5.

Another significant advantage of MRSLpred is that it is
computationally very efficient and consumes very less time. A

TABLE 5 Benchmarking of MRSLpred with existing prediction tools on the validation dataset used in MRSLpred.

Location Sens Spec Prec Acc MCC F1-score AUROC

MRSLpred

Ribosome 0.664 0.664 0.463 0.664 0.304 0.545 0.728

Cytosol 0.650 0.650 0.226 0.650 0.211 0.335 0.708

ER 0.657 0.656 0.198 0.656 0.205 0.304 0.727

Membrane 0.675 0.676 0.323 0.676 0.280 0.437 0.736

Nucleus 0.671 0.671 0.821 0.671 0.319 0.738 0.736

Exosome 0.696 0.692 0.997 0.696 0.073 0.820 0.816

DM3Loc

Location Sens Spec Prec Acc MCC F1-score AUROC

Ribosome 0.699 0.785 0.587 0.759 0.464 0.638 0.821

Cytosol 0.518 0.876 0.396 0.827 0.353 0.449 0.795

ER 0.351 0.934 0.409 0.868 0.305 0.378 0.789

Membrane 0.638 0.795 0.416 0.765 0.373 0.504 0.806

Nucleus 0.755 0.766 0.878 0.758 0.490 0.812 0.841

Exosome 0.785 0.885 0.999 0.786 0.140 0.879 0.894

mRNALoc

Location Sens Spec Prec Acc MCC F1-score AUROC

Cytosol 0.426 0.503 0.119 0.492 −0.049 0.186 0.464

Nucleus 0.244 0.647 0.612 0.367 −0.112 0.349 0.446

ER 0.172 0.756 0.084 0.690 −0.053 0.113 0.464

iLoc-mRNA

Location Sens Spec Prec Acc MCC F1-score AUROC

Ribosome 0.088 0.778 0.147 0.569 −0.160 0.110 0.433

Cytosol 0.119 0.809 0.089 0.716 −0.063 0.102 0.464

ER 0.535 0.865 0.339 0.827 0.331 0.415 0.700

Nucleus 0.152 0.754 0.580 0.338 −0.113 0.241 0.453

Exosome 0.180 0.692 0.987 0.184 −0.029 0.305 0.436

Sens, sensitivity; Spec, specificity; Acc, sccuracy; MCC, Matthews correlation coefficient; AUROC, area under the receiver operator characteristic curve.
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time comparison between both the methods was performed on an
iMac (21.5-inch, Late 2015model, 2.8 GHzQuad-Core Intel Core i5,
8 GB DDR3 RAM, and Intel Iris Pro Graphics 6,200–536 MB). The
detailed comparison of MRSLpred and DM3Loc based on the time
taken to generate predictions is provided in Table 6.

4 Discussion

mRNA localization is a relevant biological process that controls
the concentration of mRNA at different locations. This, in turn,
exerts control on the level of protein translation at various locations
within the cell (Kindler et al., 2005). Understanding mRNA
subcellular localization will provide a better perspective on how
protein synthesis is regulated at the mRNA level. Spatial localization
of mRNA is also gathering massive interest in the field of
development biology. The majority of developmental processes
rely on cellular polarity generated by mRNA localization to
undergo differentiation (Lécuyer et al., 2007; Claußen et al.,
2015). A lot of research work is focused on understanding these
spatial processes, which, when perturbed, can lead to major
developmental disorders.

However, in vitro investigation of mRNA localization is a costly
business and labor-intensive at the same time. Computational
techniques can provide a viable solution to this problem, as they
are swift, inexpensive, and reliable. Modern machine learning and
deep learning techniques manage to perform well on biological data
and are pretty accurate.

Many tools have already been developed for mRNA
subcellular localization prediction. DM3Loc (Wang et al.,
2021) is a popular tool that deploys a multi-head self-
attention mechanism with a CNN model. DM3Loc uses a one-
hot encoding vector as a feature for the CNN model and achieves
an AUROC in the range of 0.698–0.773 (average: 0.742) and an
MCC in the range of 0.074–0.386 (average: 0.270) on their own
validation dataset. However, the performance of DM3Loc on our
validation dataset painted a different picture. It only achieved an
AUROC in the range of 0.557–0.776 (average: 0.704) and an
MCC in the range of 0–0.353 (average: 0.081). As of now, only
DM3Loc performs multi-label classification, whereas all the other
tools are multiclass classifiers. Due to its complex architecture,

DM3Loc requires very intensive computational power that
includes a dedicated graphics card. For many sequences, one-
hot encoding mRNA sequences is a herculean task, as most of the
time, the RAM crashes due to the increasing size of the vector.

MRSLpred achieves an AUROC between 0.708 and 0.816
(average: 0.742) and an MCC between 0.073 and 0.319 (average:
0.232) on the validation dataset. MRSLpred uses a much simpler
approach, combining an XGBoost model with a motif-based module
and using compositional features for the model. Due to this, the
method is extremely fast and computationally inexpensive while
achieving comparable performance with the more complex
method—DM3Loc. The time taken by MRSLpred for predicting
the location of 500 mRNA sequences is less than 1 min, whereas for
the same dataset, DM3Loc takes approximately 32 min.

Sequence-based classification has its drawbacks as it tends to
lose structural information, which is also known to play an essential
role in subcellular location. However, in order to use structure-based
features for prediction, more computational power may be required.
Furthermore, the dataset used in this study had an inherent class
imbalance, which makes the model biased to classes represented in
larger numbers (the nucleus and exosome). In the future version of
our tool, we expect to obtain a more balanced dataset where all
locations have equal representation.

It is worth mentioning that we could have achieved better
performance with deep learning methods. We tried to implement
a CNN classifier based on one-hot encoded sequences, but the
maximum average AUROC achieved for all the locations was
0.584 on the validation dataset. The CNN classifier performed
very well on the training dataset (average AUROC = 0.837) but
failed miserably on the validation dataset.

5 Conclusion

In this tool, we managed to develop a multi-label subcellular
localization prediction tool that can accurately identify all the
possible subcellular locations that an mRNA could move to. Our
final model was based on an XGBoost multi-label classifier that also
deploys a motif module to improve our prediction. We managed to
achieve an AUROC of 0.708–0.816 (average: 0.742) and an MCC of
0.073–0.319 (average: 0.232). Due to the simpler architecture of our

TABLE 6 Comparison of MRSLpred with DM3Loc based on the time taken for similar datasets.

Number of nucleotides Real time User time System time

DM3Loc 20 0m47.609 s 1m13.874 s 0m2.402 s

50 2m2.065 s 2m48.248 s 0m3.526 s

100 3m28.185 s 5m28.421 s 0m6.338 s

500 13m57.518 s 28m2.371 s 0m42.828 s

Number of nucleotides Real time User time System time

MRSLpred 20 0m13.659 s 0m3.999 s 0m0.950 s

50 0m22.970 s 0m5.101 s 0m1.020 s

100 0m24.121 s 0m6.965 s 0m0.971 s

500 0m19.649s 0m20.237s 0m0.783s
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tool, it is extremely fast, and the standalone can be run on very
minimal computational power. We believe that this will prove to be
a valuable tool for biologists who work with mRNA localization.
MRSLpred is available online at https://webs.iiitd.edu.in/raghava/
mrslpred/, and its standalone can be downloaded from https://webs.
iiitd.edu.in/raghava/mrslpred/standalone.php. The standalone is
also available on GitHub and is accessible at https://github.com/
raghavagps/mrslpred.
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