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Multiplexed imaging approaches are getting increasingly adopted for imaging of
large tissue areas, yielding big imaging datasets both in terms of the number of
samples and the size of image data per sample. The processing and analysis of
these datasets is complex owing to frequent technical artifacts and
heterogeneous profiles from a high number of stained targets To streamline
the analysis of multiplexed images, automated pipelines making use of state-of-
the-art algorithms have been developed. In these pipelines, the output quality of
one processing step is typically dependent on the output of the previous step and
errors from each step, even when they appear minor, can propagate and
confound the results. Thus, rigorous quality control (QC) at each of these
different steps of the image processing pipeline is of paramount importance
both for the proper analysis and interpretation of the analysis results and for
ensuring the reusability of the data. Ideally, QC should become an integral and
easily retrievable part of the imaging datasets and the analysis process. Yet,
limitations of the currently available frameworks make integration of interactive
QC difficult for large multiplexed imaging data. Given the increasing size and
complexity of multiplexed imaging datasets, we present the different challenges
for integratingQC in image analysis pipelines as well as suggest possible solutions
that build on top of recent advances in bioimage analysis.
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1 Introduction

With the advancements in multiplexed imaging and spatial omics technologies,
researchers now have access to large imaging datasets made up of many channels (in
direct or combinatorial fashion) for visualization of many different proteins, RNA, or DNA
targets in situ (Hickey et al., 2022; Moffitt et al., 2022). In their current state, these
technologies enable distinguishing cell types and provide insights into tissue architecture
and cellular function in healthy tissues and under disease conditions. For this, several large
consortia such as the Human BioMolecular Atlas Program (HuBMAP) and Human Tumor
Atlas Network (HTAN) have been commissioned to create atlases by integrating data from
highly multiplexed imaging technologies with single-cell genomics and transcriptomics
data (HuBMAP consortium, 2019; Rajewsky et al., 2020; Rozenblatt-Rosen et al., 2020).
These techniques are also starting to be applied to cohorts of clinical cancer samples to
reveal new insights about disease prognosis and treatment response (Schürch et al., 2020;
Wang et al., 2021; Lin et al., 2023).

While providing unprecedented potential to study the state of cells within their spatial
context, the scale and dimensionality of the imaging data make analysis complex and time-
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consuming (Alexandrov et al., 2023). To this end, multiple semi-
automated end-to-end workflows have been established such as
MCMICRO, Steinbock, and Mplexable (Schapiro et al., 2021;
Windhager et al., 2021; Eng et al., 2022). These workflows
encompass essential processing steps such as illumination
correction, stitching and registration, intensity projection,
segmentation, feature extraction, and cell type annotation. Each
of these steps can be prone to introduce errors that might affect the
downstream analysis. For example, despite large improvements in
supervised deep learning instance segmentation methods for
nucleus and cell segmentation in diverse settings and without
fine-tuning of models (such as Greenwald et al., 2022; Pachitariu
and Stringer, 2022), segmentation instances can still incorrectly
merge or separate objects to be segmented, particularly in dense
tissue areas. Hickey et al. showed that segmentation noise in areas
like this can negatively affect cell type annotation (Hickey et al.,
2021). This is particularly the case for tissues on which the model
was not trained or when cells are shaped differently from what the
model has learned. While incorrect cell type annotations can
potentially be noticed, altered cell counts can be more difficult to
detect, leading to wrong interpretations. Thus, while the scale of the
imaging data calls for the use of these semi-automated high-
throughput workflows, the complexity of the imaging data
necessitates robust quality control (QC) measures to ensure
accurate and reliable analysis outcomes that can be reproduced
in alignment with the principles of FAIR (findable, accessible,
interoperable, reusable) data (Wilkinson et al., 2016).

For researchers, implementing QC allows for identifying
required adjustments in experimental protocols at the early stage
of the project and increases the trustworthiness of the analysis
outcome. Importantly, standardized storage of QC data also
enables effective querying of spatial atlases [such as WebAtlas (Li
et al., 2023)] and public image repositories (Williams et al., 2017;
Hartley et al., 2022). With QC metrics stored in a queryable manner
for each dataset, researchers can rapidly access appropriate datasets
without the need for visually inspecting raw data and their analysis
outcome to decide upon data reuse, thus facilitating benchmarking
efforts and allowing for easier training of large-scale models.

However, integrating the generation and storage of QC data into
image analysis workflows is challenging, particularly in the absence
of tailored software tools and established standard metrics.
Therefore, most researchers end up relying on a time-consuming
and subjective QC evaluation by manual visual assessment of images
using common image viewers such as Fiji, napari, QuPath, Vitessce
and Imaris (Schindelin et al., 2012; Bankhead et al., 2017; Keller
et al., 2021; Ahlers et al., 2023).

Here, we reflect on the concept of QC in multiplexed image
analysis, provide a perspective on its challenges with respect to
integration in automated workflows, and discuss potential ways to
tackle these challenges.

2 What constitutes rigorous QC?

Rather than giving a literal definition, we describe rigorous QC
by its implications. Rigorous QC should primarily lead to a reliable
analysis outcome, where the underlying limitations of the data are
transparent and accessible as part of the final data. Hence, a reliable

analysis outcome does not necessitate perfect image quality and
flawless processing and analysis of the data, but the interpretation of
the analysis results should be done with a very well-argued level of
certainty that could be derived from the QC process. For example,
what percentage of the cells in the tissue section passed the QC
criteria and were included in a particular analysis? Was this number
enough to be representative of the tissue?). If metrics such as the
number of undersegmented or accurately annotated cells can be
estimated for the regions of interest, it would be possible to assess the
level of certainty regarding the spatial statistics extracted from the
data by making the limitations of the dataset and the analysis clear.

Currently, most of the researchers perform QC by general visual
inspection of the images and/or evaluating the resulting single-cell
level data generated by the image analysis pipeline. However,
performing QC only based on the final outcome of the whole
pipeline may not be sufficient since errors in the various pipeline
steps can propagate without necessarily becoming apparent in the
final analysis results. For example, if there are tissue artifacts that
primarily affect certain anatomical structures heterogeneously
present in the sample, such as focus deformations or partial loss
of cells from the more fragile lumenal parts of an intestinal section,
which would cause segmentation or annotation errors, these might
lead to wrong conclusions about the distribution of cell types due to
technical biases and errors accumulated during processing. Hence, a
rigorous QC involves inspection, evaluation, and storage of traceable
information for various steps of the image analysis workflow,
including identification and documentation of artifacts such as
areas with folded tissue, tissue loss, focusing errors, and other
elements that need to be excluded from the analysis (see Figure 1
for an example pipeline with errors and possibilities of QC steps).
Having QC at various steps in the pipeline ensures that errors do not
go undetected and are not propagated or snowballed into
unsupported conclusions. As a simple example, stitching issues in
critical areas can lead to hybrid cells or segmentation errors (like a
tumor cell and immune cell segmented as one cell), whichmight lead
to errors in cell type annotation, and potentially wrong
interpretations of the data. Similarly, insufficient background
removal can lead to errors while gating to assign cell type states.

Ideally, the QC readouts would be fully automated, though
metrics and tools to enable that are currently absent for many of
the processing steps including artifact detection and segmentation.
Therefore, it is necessary to store the researcher’s manual
assessments in the form of annotations, so that they are taken
into account for calculation of the QC metrics. As such, a more
transparent QC readout can be established while allowing for a
certain degree of subjectivity and manual annotation.

To ensure that the full context of the data is understood and the
data is reusable, it is also imperative that the experimental metadata
is stored in an easily accessible and queriable manner accompanying
the images to ensure that the data can be re-analyzed. For example,
the measured intensity levels in the image data are dependent on the
way the images were acquired. Making sure that this information is
properly stored can be particularly important for investigating batch
effects between samples. Hence, we should consider metadata
recording also as an integral part of QC, and store the
information along with the imaging data and QC data of the
processing during both the research and data deposition phase.
Ideally, viewing configurations that were used to visualize the
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outcomes of the various processing steps of the processing and
analysis pipeline would also be included to reduce the interobserver
variability due to different image viewer settings for manual
inspection and visualization.

Taken together, to enhance the transparency,
reproducibility and utility of multiplexed imaging or
imaging-based spatial omics data, we advocate for increasing

the ease and standardization of the QC process which covers
manual and automated inspection of the data and
documentation of the steps, associated metrics and results
throughout various processing steps and image analysis
workflow, including the storage of experimental metadata
and the QC information along with the data and analysis
results in an easily accessible manner.

FIGURE 1
A schematic of an example data processing pipeline for multiplexed protein imaging by immunofluorescence. For each step potential error types
and quality control possibilities are exemplified. Calculation of a QCmetric would typically require prior annotation of the data. Image data for the artifact
removal and segmentation example taken from Human Tumor Atlas Network (Rozenblatt-Rosen et al., 2020).
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3 Current QC efforts

Perhaps the largest QC effort for imaging data
with >500 contributors is Quality Assessment and
Reproducibility for Instruments & Images in Light Microscopy
(QUAREP-LiMi) (Boehm et al., 2021), which entails multiple
working groups dealing with quality assessment of: various
features of the microscopy setup; imaging data provenance and
QC metadata; image quality, image visualization, and analysis.
Notable contributions include guidelines for accurate reporting of
common fluorescence light microscopy modalities as well as the
Micro-Meta App for extraction and collection of relevant
microscope instrument data.

On the practical side, CellProfiler offered one of the early
opportunities to incorporate QC in image analysis workflows
(Bray et al., 2012) by introducing a threshold on the QC metrics
for focal blurring and image saturation to exclude problematic
images from analysis. More recently, the AstroPath platform, an
end-to-end pathology workflow, incorporated multiplexed
immunofluorescence assay development and protocols for the
acquisition of the images and a single-marker phenotyping
approach aimed at improving the quality of generated data
(Berry et al., 2021), by performing a systematic analysis of
potential sources of error and providing a pipeline to ensure that
optimal experimental settings are applied (e.g., fields of view should
have at least 20% overlap when performing a whole slide scan to
allow for proper stitching).

With respect to multiplexing-specific metadata, the Minimum
Information about Highly Multiplexed Tissue Imaging (MITI)
standard has been developed (Schapiro et al., 2022) to serve the
need for data and metadata standards for highly multiplexed
imaging that are conformant with FAIR standards. The field
names in MITI are harmonized with efforts such as QUAREP-
LiMi, the Resource Identification Initiative, and antibody
standardization effort by the Human Protein Atlas in addition to
being compliant with Recommended Metadata for Biological
Images initiative (REMBI) (Bandrowski et al., 2016; Edfors et al.,
2018; Boehm et al., 2021; Sarkans et al., 2021). Importantly, this
standard includes clinical, biospecimen, cell, and cell state metadata
topics as well critical information for multiplexed imaging data such
as channel metadata (e.g., antibody name, cycle number,
fluorophore etc.).

Yet, while these efforts provide a metadata standard and tools to
extract and collect the metadata, they are not broadly incorporated
in highly multiplexed imaging data generation and analysis
workflows, and the QC data is not integrated in the data
processing steps. This makes it challenging for the individual
researcher to implement the standards when generating and
using the data.

Recent efforts aim to address this by directly integrating multiple
QC steps into image analysis workflows. For example, CyLinter is an
open-source QC software written in Python using the interactive,
multidimensional viewer, napari (Baker et al., 2023a; Ahlers et al.,
2023) and can also be run as part of the MCMICRO pipeline
(Schapiro et al., 2021). It provides a QC workflow via modules
to: i) positively or negatively select regions of interest, ii) filter out
out-of-focus and counterstain-oversaturated cell nuclei, iii) remove
those cells that have shifted or become detached from the slide and

iv) define channel intensity cutoffs to exclude cells with abnormal
intensities and rescale channel intensities of remaining cells.
However, the individual modules require interaction of the user
with the whole channel images individually, and as a result, the
implementation is not efficient when scaled up for a high number of
channels and samples. Also, manual cutoffs such as gating on cell
area or intensity are not always stored in a standardized format,
making the data stored not easily accessible for non-computational
researchers.

A major visual QC effort for imaging-based spatial omics data is
TissUUmaps3 (Behanova et al., 2023; Pielawski et al., 2023), which is
a browser-based tool for fast GPU-accelerated visualization and
exploration of large-scale image data using plugins. It includes image
converters for a range of image formats to be converted to a
pyramidal format that stores the image at multiple resolutions
which can be loaded depending on the zoom level and hence
provide a memory-efficient, fast image visualization capability.
The StainV&QC plugin enables rapid assessment of intensity
normalization by checking proper alignment of the low-
dimensional representation of intensity-based features, extracted
after segmentation. If the low-dimensional representation of these
features align for two samples, the stainings of the two samples are
comparable. The ClassV&QC plugin makes it possible to investigate
mismatches between cell classification approaches. In the test case,
the expert cell classification annotation was compared to the output
of a fully convolutional neural network. In case of a mismatch the
user can click on cell annotation overlayed on top of an image
representing the cell classification of both classification approaches
to view patches of the cell in individual channels. The user can
subsequently choose which classification is correct. Lastly, the
InteractionV&QC plugin allows quick visualization of cellular
interactions. With these plugins TissUUmaps3 offers a great
visual QC capability. Although they currently do not support
extraction of quantitative QC results as the acceptable quality
may be defined subjectively and may differ depending on the use
case (Behanova et al., 2023), enabling the extraction of such
measures could foster transparency about current quality and
initiate a discussion on what should be defined as acceptable
quality for output of processing.

While these efforts provide valuable standards and tools to lead
the way for rigorous QC and data organization, there are still several
challenges to integrating these readily into semi-automated image
analysis pipelines and making image data truly FAIR.

4Challenges and potential solutions for
integrating interpretable QC in image
processing pipelines

Challenges for integrating QC in image analysis pipelines and
FAIR image data deposition revolve primarily around data format
and storage, standardization, automation and scalability.

4.1 Image data formats and frameworks

Current QC efforts use a variety of complementary formats.
Commonly, the popular TIFF format is used for storing images, with
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the associated segmentation masks stored as separate unlinked TIFF
files and annotations stored in separate csv or tsv files. This does not
allow for storing QC data in a manner in which the image and
associated analysis data are linked. A unified interoperable format
allowing storage of image data and associated analysis data would
provide the means of interacting with the data in an integrated
manner. This makes it easier for different researchers to interact
with the data.

In order to provide a specification for a unified way of storing the
data, Moore et al. started the development of OME’s next-
generation file format (OME-NGFF) (Moore et al., 2021). This is
a specification to which the broader bioimage analysis community
contributes. It supports a wide range of image data and has a flexible,
comprehensive metadata structure. The specification allows for
chunking binary pixel image data into smaller parts that are
stored in smaller files which supports multi-resolution
performance, parallelization, and rapid access when storing image
data in the cloud. Furthermore, it allows for associated image
analysis data such as segmentation masks to be stored with the
image data in a standardized manner. Hence, OME-NGFF offers
great potential for integrating QC. Currently, it has an
implementation, OME-Zarr, using the Zarr file storage format for
chunked, compressed N-dimensional arrays (Miles et al., 2020;
Moore et al., 2023). It is based on an open-source specification.

Software frameworks that aim to provide technology agnostic
APIs for spatial omics image data are crucial for all the relevant data
elements to be kept together in an accessible manner. Many
existing frameworks offer great starting points (Palla et al., 2022;
Righelli et al., 2022; Couto et al, 2023; Marconato et al., 2023;
Moses et al., 2023) but lack certain requirements for
comprehensive handling of spatial omics data, such as
representation of annotation elements like polygons, support
for large images and facilitation of data transformation to a
common coordinate framework. For example, emObject is a
framework that provides the ability to link annotation tables
to segmentation masks (Baker et al., 2023b). However, it does not
yet provide the ability to store transformation matrices which
would allow transformations to different coordinate spaces to be
applied on-the-fly as specified in the OME-NGFF specification.
Giotto Suite, a framework embedded in the R ecosystem was also
recently released and represents spatial omics data efficiently and
in a technology-agnostic manner (Chen et al., 2023). It includes
tools to process, analyze, and visualize spatial omics data at
different scales and resolutions, though also currently does not
build on top of the OME-NGFF community specification.

Another recent effort, SpatialData framework, builds upon the
OME-NGFF specification and extends it, and supports representation
of image datasets using elements that are common between many
image analysis pipelines, namely, images, labels, points, shapes
polygons and tables (Marconato et al., 2023). It can also store
coordinate transformations along with the data. This, for example,
facilitates the alignment of images across imaging rounds without
duplicating the image data. Furthermore, it allows spatially querying
the data in coordinate systems, offers a plugin for viewing the data in
napari and a library for plotting, and provides an interface to the deep
learning framework Pytorch. The framework is actively being
improved to provide additional processing and analysis capabilities
and reduce the required time for analysis.

Frameworks as described above can provide the means for
integrating QC in semi-automated workflows by providing spatial
biology data abstractions required to represent this type of data.

4.2 Standardization and metadata

Another primary challenge for integrating QC into image
analysis pipelines is the lack of standardized approaches to
perform QC. Typically, researchers examine their data to a
certain extent, but their annotations and assessments of quality
are usually not stored in a standardized manner.

To enable amore standardized approach toQC, it would be ideal to
add and store the relevant annotations in a standardized manner. For
this, a QC vocabulary or ontology describing the QC metrics for the
processing steps (i.e., which measure is used to determine the accuracy
of a certain processing steps and in how it is applied) is required and
ideally implemented. The vocabulary should describe the quantitative
QC metrics for the processing steps and be implemented in a variety of
programming languages to be interoperable. Otherwise, it becomes
challenging to transparently report the process of QC and allow the data
to be queried. Providing a clear and comprehensive account of howQC
has been performed and its outcomes is essential for building trust in the
image analysis outcome. It also allows researchers to easily revisit or
query their own data, particularly when the number of samples and
channels increases.

The same requirements also apply to experimental metadata.
Currently, OME-NGFF does not have a specification for storing
experimental metadata. A shared challenge is how to author a
vocabulary or schema which can be exported in various formats
and for which validators can be easily created in multiple
programming languages.

A potential solution for this is provided by LinkML, which
enables authoring data schemas in a simple format, YAML (Solbrig
et al., 2023). The LinkML framework makes it possible to translate
these schemas into other frameworks such as JSON-LD and SQL
(the former commonly used to store metadata and the latter for
relational databases). Furthermore, Python or Java classes can be
generated from the schema letting software implementations in
these languages to easily ingest and validate the data. By providing
an interface to multiple frameworks it potentially facilitates rapid
development of implementations for example the OME-NGFF
specification in various programming languages.

4.3 Semi-automation and scalability

Current QC efforts often rely on extensive visual inspection and
manual assessments which may be subjective and time-consuming,
especially when dealing with large datasets and numerous image
channels as in highly multiplexed imaging.

The development of the previously described formats and
accompanying application programming interfaces (APIs) would
lead to more scalable strategies to integrate QC (as exemplified in
Figure 2). Researchers would be able to annotate their data using
standardized vocabularies and store their annotations alongside the
image data. As interacting with large imaging data such as whole slide
scans is not efficient, it is expected that a sampling strategy where the
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researcher would mostly interact with crops of images for visual
inspection or determining the quality of the output of a particular
processing step would be needed and could be facilitated through an
interactive API and viewer. When random crops are used for this
process, how many crops are required to estimate the quality of a
particular processing step would depend on the heterogeneity of the
sample and the data. For example, segmentation quality can differ in
dense versus sparse cell regions. Hence, ideally, pre-defined measures
such as intensity distributions and sharpness could be automatically
calculated per image tile or chunk to potentially flag potentially
problematic areas for inspection by the researcher, to ensure
potential artifacts are inspected and heterogeneity of the sample is
well-represented. Other features calculated based on the results of
processing steps, such as cell density after segmentation, could also
be used to pre-classify the crops to ensure regions with different
properties are sampled adequately for visual inspection.

Scalability of QC can be further increased by reducing the
annotation burden of the researcher. While certain QC metrics
demand extensive user annotation, like those requiring ground
truth segmentation, others necessitate less interaction with the
data. For example, a qualitative assessment of the segmentation
(e.g., assigning classes, for example, incorrectly and correctly
segmented) reduces the burden of manual annotation as it may be
quicker than performing a detailed ground truth segmentation. The
burden could be further reduced when such an annotation strategy is
combined with the pre-classified crop sampling strategy described
above. By adopting this strategy, summary statistics representing the

overall quality of a processing step can be computed; for example, the
percentage of correctly segmented cells after segmentation. This
requires a calculation of the estimated number of required
annotations to represent the data. While in this case the
quantitative QC depends on subjective qualitative annotations of
the researcher, the approach minimizes the amount of required
interaction with the images, allows revisiting annotations by other
researchers and may be more informative for the data user.

As the dimensionality of the data increases, composite images
become uninformative and visual inspection becomes difficult,
necessitating a multichannel view with synchronized cameras in
which all individual channels or subgroups of channels are displayed
in their own respective view boxes. This allows quick general inspection
and annotation of all channels. Although there are many viewers for
visualization, QuPath is one of the only open-source viewers to provide
this full functionality (Bankhead et al., 2017). Preset viewer
configurations (i.e., configurations indicating what channels are
grouped in multichannel view and what contrast limits are applied
for optimal visual representations) that can be created in a pipeline to
allow for readily visualizing specific crops of the data with customized
settingswould be a very useful addition to such viewers. Combination of
automated QC measures, with the option to perform efficient manual
annotation/validation by visual inspection using predefined view
configurations would be instrumental to make QC efforts more
scalable. This also increases the efficiency of viewing the data
interactively or a narrative web viewer, such as Minerva story, after
analysis has been completed (Hoffer et al., 2020).

FIGURE 2
A schematic of an example strategy for implementingmore scalable QC in an image analysis pipeline. From left to right, (A) a framework provides an
interface to the image data and associated analysis data which is used to either (B) calculate automatedmeasurements with subsequent outlier detection,
usemachine learningmethods for automated detection or allow the researcher to perform visual inspection ormanual annotation using whole images or
semi-randomor pre-classified crops. This is used to (C) automatically create a viewer configuration that can be used to readily view and annotate the
data. These view configurations can be altered by the researcher. (E) Subsequently, the interface provides the possibility to optionally calculate
appropriate QC measures based on annotations and store both the result and the annotations together with the image data and metadata.
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5 Discussion

Despite many ongoing efforts, the current landscape of QC in
multiplexed imaging data analysis presents significant challenges for
integration of QC into semi-automated pipelines, primarily due to a
lack of standardization of storage formats and QCmetrics, and APIs
and viewers that seamlessly interface with the data. The absence of a
standardized format for data storage also exacerbates the difficulty in
revisiting and querying image- and associated data. Advancements
in this field could be greatly accelerated by adopting a unified format
that abstracts spatial omics data, coupled with APIs and viewers that
allow efficient interaction with the data. Furthermore, the
development of a standard QC vocabulary is needed to establish
APIs that can uniformly execute and record QC processes. On the
practical side, to reduce the burden of labor-intensive visual
inspection and annotation, there is a pressing need for pipelines
capable of generating viewer configurations dynamically. Such
configurations would enable image viewers to display and
annotate entire images or selected sections in a multichannel
view as needed, thereby streamlining the analysis workflow.

Integrating QC in the analysis pipelines is important to
minimize the risk of generating inaccurate conclusions from the
data. With the increasing availability of automated commercial
platforms, researchers often lack access to raw data or the results
of individual processing steps. Small, undetected errors in the
pipeline can lead to error propagation and misinterpretation of
the spatial context (for example, off-target stainings in spatial
transcriptomics data - Hartman and Satija, 2024). Integrating QC
into image analysis pipelines and standardizing the storage of the
resulting data would facilitate a transparent evaluation of data
quality, preventing the ingestion of low-quality data by
algorithms and machine learning models. Making QC measures
readily available alongside image data would also diminish the effort
required to use repositories for reliable reference data or to access
large datasets of pre-assessed quality for training future machine
learning models, potentially reducing the reliance on labor-intensive
visual inspection and annotation. This approach would significantly
contribute to the reliability and effectiveness of spatial omics
analysis, fostering advancements in the field.

We believe that the frameworksmentioned above, with their unique
and overlapping capabilities, are instrumental in starting to integrate QC
into semi-automated workflows and can represent significant
advancements to improve the transparency and utility of theQCprocess.

We hope that the attention towards including QC measures will
not only facilitate the development of automated QC processes, but
also lead to longer data lifetimes and improve the usefulness of the
data and image data repositories.
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