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Background: Understanding how cells and tissues respond to stress factors and
perturbations during disease processes is crucial for developing effective
prevention, diagnosis, and treatment strategies. Single-cell RNA sequencing
(scRNA-seq) enables high-resolution identification of cells and exploration of
cell heterogeneity, shedding light on cell differentiation/maturation and
functional differences. Recent advancements in multimodal sequencing
technologies have focused on improving access to cell-specific subgroups for
functional genomics analysis. To facilitate the functional annotation of cell
groups and characterization of molecular mechanisms underlying cell
trajectories, we introduce the Pathways, Annotated Gene Lists, and Gene
Signatures Electronic Repository for Single-Cell Functional Genomics Analysis
(PAGER-scFGA).

Results: We have developed PAGER-scFGA, which integrates cell functional
annotations and gene-set enrichment analysis into popular single-cell analysis
pipelines such as Scanpy. Using differentially expressed genes (DEGs) from
pairwise cell clusters, PAGER-scFGA infers cell functions through the
enrichment of potential cell-marker genesets. Moreover, PAGER-scFGA
provides pathways, annotated gene lists, and gene signatures (PAGs) enriched
in specific cell subsets with tissue compositions and continuous transitions along
cell trajectories. Additionally, PAGER-scFGA enables the construction of a gene
subcellular map based on DEGs and allows examination of the gene functional
compartments (GFCs) underlying cell maturation/differentiation. In a real-world
case study of mouse natural killer (mNK) cells, PAGER-scFGA revealed two major
stages of natural killer (NK) cells and three trajectories from the precursor stage to
NK T-like mature stage within blood, spleen, and bone marrow tissues. As the
trajectories progress to later stages, the DEGs exhibit greater divergence and
variability. However, the DEGs in different trajectories still interact within a
network during NK cell maturation. Notably, PAGER-scFGA unveiled cell
cytotoxicity, exocytosis, and the response to interleukin (IL) signaling pathways
and associated network models during the progression from precursor NK cells
to mature NK cells.
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Conclusion: PAGER-scFGA enables in-depth exploration of functional insights and
presents a comprehensive knowledge map of gene networks and GFCs, which can
be utilized for future studies and hypothesis generation. It is expected to become an
indispensable tool for inferring cell functions and detectingmolecular mechanisms
within cell trajectories in single-cell studies. The web app (accessible at https://au-
singlecell.streamlit.app/) is publicly available.
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Introduction

Single-cell analysis methods provide unprecedented
opportunities to unravel the cell, providing a high-resolution
identification of cells. This is crucial for investigating molecular
events in complex diseases, such as those affecting the immune
system (Griffiths et al., 2018; Ginhoux et al., 2022; Xu et al., 2022),
neurological disorders (Mathys et al., 2019; Arenas, 2022), and
cancers (Patel et al., 2014; Le et al., 2020). The conventional
single-cell sequence analysis framework followed by the four
major procedures, tissue dissociation, single-cell RNA sequencing,
bioinformatics analysis and experimental validation to yield insights
into the associations between the genotype and phenotype (Chavkin
and Hirschi, 2020). However, the cell type annotation and functional
genomics analysis are ad hoc procedures in this analysis framework.
Moreover, the lack of in-depth functional genomics technology with
systems biology impedes the potential biological interpretation of
the results.

Functional genomics analysis serves as a pivotal tool for
unraveling the intricate interplay of genes, proteins, and small
molecules, orchestrating specific functions in response to both
extrinsic and intrinsic factors, such as small molecules or secreted
proteins. Functional genomics has witnessed notable success in
advancing disease diagnosis (Zhang and Chen, 2010; Drier et al.,
2013; Livshits et al., 2015; Bock and Ortea, 2020; Pian et al., 2021),
cancer subtyping (Zhang and Chen, 2013; Mallavarapu et al., 2020;
Lafferty et al., 2021), and personalized medicine (Chen et al., 2007;
Hamburg and Collins, 2010; Raghavan et al., 2017). To gain a
profound understanding of the molecular mechanisms
underpinning diseases or contributing to various disorders,
comprehensive functional genome analysis has emerged,
encompassing genomics, epigenomics, proteomics, and
interactomics. In order to describe gene and protein functions
under specific biological conditions or treatments, the integration
of geneset, network, and pathway analysis (GNPA) has proven
instrumental (Yue et al., 2015; Yue et al., 2018; Yue et al., 2022).
Pathway analysis, particularly topology-based approaches leveraging
the knowledge about gene and protein interactions within pathways,
has been developed to unveil mechanistic changes through pathway-
level scoring and pathway significance assessment. To aid in
functional inference for new single-cell datasets, the CellMarker
database (Zhang et al., 2019; Hu et al., 2023) has been introduced,
providing valuable cell-type-specific gene signatures. In conjunction
with single-cell analysis methods, the field of functional genomics
opens up an exciting realm of opportunities for exploring cellular-
level mechanisms and expanding our knowledge.

In this work, we develop PAGER-scFGA, a comprehensive tool
featuring cell-type functional inference and network-based analysis
through cell trajectories. PAGER-scFGA facilitates the functional
annotation of cell groups, unravels the functional changes within the
pathways and pathway-pathway cross-talk network in each
trajectory, and characterizes up/downregulated gene functional
compartments (GFC) underlying cell maturation and
differentiation. In our mNK cell study, we enhance the current
understanding of NK cells from the cell subtype and the cell stage in
maturation/differentiation. To facilitate the usage of our data for the
wide research community, an interactive portal has been developed
to analyze and visualize our mNK cells. We envision PAGER-scFGA
to be a powerful tool in the study of single-cell functional genomics
analysis in complex diseases.

Materials and methods

Single-cell collection and sequencing for
mouse samples

Single cells were obtained from mouse bone marrow, blood, and
spleen tissues. The isolation of mouse natural killer (mNK) cells was
carried out using the CITE-seq (Cellular Indexing of
Transcriptomes and Epitopes by Sequencing) method, which
involved the utilization of antibodies targeting CD11b, CD27, NK
1.1, TCRb, and CD122. This process was performed using three 10x
Genomics single-cell lines, each incorporating three distinct
hashtags (antibodies) to differentiate the tissue sources.

Single-cell RNA-seq data processing

The mouse single-cell samples were processed using Cell Ranger
v4.0.0, and read alignment was performed with the GRCm38 mouse
genome. We conducted filtering to remove low-quality cells and
genes based on two criteria: (1) cells with expressed gene (counts
larger than 0) less than 200, and (2) expressed genes less than three
cells. Since all the samples were processed using the same 10x
Genomics platform, there was no need for batch effect correction.

PAGER-scFGA framework

The PAGER-scFGA framework has been harnessed to create a
publicly accessible web application tailored for the analysis of mouse
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natural killer cells, known as the PAGER-scFGA app. The app’s Git
repository is found at https://github.com/zongyue1010/au-
singlecell. This interactive platform is composed of five major
sections, seamlessly integrating the Scanpy library, the Streamlit
library, and the PAGER functional genomics analysis API.

We employed single-cell data from mNK cell samples to
showcase the capabilities of the scFGA app (Figure 1). The
application is designed as follows:

1. Visualization of Single-Cell Maps: The first section allows users
to view single-cell maps through t-SNE or UMAP plots, with
tissue types color-coded and cluster annotations numbered.
The tool enables users to refine their exploration by filtering
clusters; they can deselect specific cluster numbers to
regenerate plots. This action triggers dynamic updates to
both the selected and reference cluster/clusters. Moreover,
users can delve deeper into the analysis of differentially
expressed genes (DEG) in Section 3 by selecting specific
clusters and reference cluster/clusters.

2. Marker Expression Visualization: In the second section, users
can explore marker expression in the t-SNE/UMAP plot and
assess the expression differences of selected genes across
various clusters.

3. DEG Extraction: The third section empowers users to select a
cluster and a reference cluster (or all remaining clusters) to
extract DEGs using Wilcoxon rank-sum (Mann-Whitney-U)

test as recommended by the paper (Soneson and Robinson,
2018) in default. The scFGA app considers user-defined cutoffs
for scores underlying the computation of the p-value for each
gene for each group, log fold changes, and adjusted p-value,
generating a table of genes meeting these criteria.

4. PAGER Analysis: In the fourth section, the scFGA app
performs PAGER analysis and presents all enriched PAGs
based on user-defined parameters, including data source,
overlap, similarity score, and -log2-based FDR cutoff. Users
can further refine the results by adjusting the PAG size range.
Resulting P values were adjusted for multiple testing for each
factor using the Benjamini–Hochberg procedure (Benjamini
and Hochberg, 2018). The tables depicting m-type and r-type
PAG-to-PAG relationships among the filtered PAGs in the
PAGER database are generated or updated accordingly.

5. Gene Network Generation: In the fifth section, users can select
a specific PAG ID to generate a gene network. This section
provides three downloadable tables, including detailed
information about PAG gene members, DEG results from
section three alongside mapped mouse genes to human
homologs (utilizing 1-to-1 best homologs from NCBI
Homologene build 68), and the genes shared between DEGs
and PAG gene members. The scFGA app offers an interactive
network featuring weighted genes based on network topology
(RP-score) (Yue et al., 2019; Yue et al., 2021), with colored
nodes representing expression levels. The gene network was

FIGURE 1
The overview of the PAGER-scFGA framework. The preprocessing of the single cells with the CITE-seqwith the antibody-tagged barcodes (left) and
the interactive single-cell analysis using the PAGER-scFGA (right). We applied the CITE-seq data from mouse natural killer cells. We performed a cell
ranger to generate the feature barcode matrix and run quality control using the standard cutoffs, with the minimum genes set to 200 and the minimum
cells set to 3. The interactive single-cell analysis consists of five major sections.
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constructed by extracting Protein-Protein Interactions from
the HAPPI two database (Chen et al., 2017), with a stringent
quality threshold of no less than three stars (confidence
score ≥0.45). Additionally, we incorporated the generation
of the network using Protein-Protein Interactions from the
STRING database (Szklarczyk et al., 2023), employing a
stringent quality threshold of no less than 0.7.

Links for downloading tables are conveniently provided below
each of them.

The cell type functional inference based on
the enrichment analysis of DEGs in the
cell clusters

To perform cell type inference through enrichment analysis,
we incorporated cell type gene signatures from the CellMarker
database (Zhang et al., 2019; Hu et al., 2023), which provided us
with access to 534 distinctive gene signature sets. Leveraging these
sets, we applied enrichment analysis to the cell cluster-specific
DEGs, identifying the most significantly enriched cell type gene
signature set. This set was then utilized for functional inference,
facilitated through the PAGER API, with the data source specified
as “CellMarker".

The construction of protein-protein
interaction (PPI) network from DEGs and the
gene subcellular map

After identifying the DEGs in the selected cluster and
comparing them to the reference clusters within the trajectory
(detailed in the Supplemental), we proceeded to retrieve protein-
protein interactions from the STRING database (Szklarczyk et al.,
2023), employing a confidence score cutoff of 0.40, which
represents a moderate confidence level. Subsequently, we
obtained information on gene cellular components from the
Gene Ontology database. By considering the Gene Ontology
annotations of the selected genes and their neighboring genes
within the constructed PPI network, we inferred the subcellular
locations of these genes. This classification encompassed
extracellular space, membrane, cytosol, and nucleus, as
documented in Supplementary Table S1. Furthermore, based on
the gene functions as reported in GeneCard (Stelzer et al., 2016)
and WikiGene (Hoffmann, 2008), we categorized genes with
similar functions into distinct gene functional
compartments (GFCs).

Pseudotime inference and the signal curve
plot of GFCs in trajectory

The differentiation trajectory of all mNK cells was inferred using
the diffusion map algorithm following the Scanpy workflow
(Haghverdi et al., 2016). We chose the c2 NK cells as the root
due to their higher proportion among bone marrow mNK cells. The
diffusion pseudotime was calculated using the scanpy. tl.dpt

function. To generate the signal curve along pseudotime in each
trajectory, we computed the average gene expression for each GFC.
Subsequently, we applied a Savitzky–Golay filter (Dombi and
Dineva, 2020) in the Scipy library to smooth the signal curve.
The window size was set to 601, which roughly corresponds to
25 intervals along the trajectory, and a polynomial order of three was
employed to capture convolution coefficients in the fitted
polynomials.

Result

The mouse natural killer (mNK) cell
differentiation and maturation revealed by
cell trajectories with tissue proportion

We utilized PAGER-scFGA to explore the cell clusters and the
trajectories underlying mNK’s maturation and differentiation
(Figure 2). Following Leiden clustering and PAGA analysis, we
unveiled a total of 15 distinctive clusters. Most notably, a
multifurcation pattern became evident, revealing three major
trajectories extending from cluster c2 to c7, c4, and c8. These
trajectories were elucidated through their interconnected
weighted neighborhood relationships.

Notably, we observed the presence of 2 cell subsets based on
gene expression correlations within the Leiden cell clusters, mNK
precursor cell subset (c2, c3, c1, c11, c5, and c6) and mNK cell
mature subset (c9, c0, c4, c7, 12, c8, c10, c14 and c13). Sorting the
Leiden clusters based on cell tissue composition revealed these 2 cell
subsets, as primarily evident in the correlation matrix. These 2 cell
subsets help delineate the underlying cellular relationships and
distinctions.

The three major trajectories are visually represented in the
Leiden cluster map, with Trajectory one encompassing clusters
c2, c3, c9, and c7; Trajectory two involving clusters c2, c1, c0,
and c4; and Trajectory three consisting of clusters c2, c1, c0,
c12, and c8.

Cluster c2 stands out with the highest proportion of bone
marrow tissue (59.5%) and the lowest spleen tissue (12.2%). It is
worth noting that natural killer (NK) cells originate from
hematopoietic stem cells in the bone marrow. As these NK cells
mature in the bone marrow, they subsequently enter the
bloodstream as fully functional cells and disseminate throughout
various tissues, including the spleen and blood vesicle.
Consequently, the prevalence of cluster c2 in precursor mNKs is
linked to a high representation of bone marrow. Furthermore,
c2 transitions into clusters c7, c4, and c8, marked by a gradual
decrease in bone marrow composition and a concurrent increase in
spleen and blood tissues.

After the comparison of clusters c7, c4, and c8, we made several
key observations regarding the gene expressions in these clusters (as
shown in Supplementary Figure S1). Cluster c7 exhibits high
expression levels of five genes: Fcer1g, Nkg7, Gzma, Zfp36l2, and
Prf1. These genes collectively suggest that c7 represents mature NK
cells with the highest cytotoxic activity among the three clusters c7,
c4 and c8. Cluster c4 displays moderate expression levels of Ccr2 and
Tyrobp in comparison to clusters c8 and c7. Cluster c8 has the lowest
expression of the seven genes examined. However, it is distinguished
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by its high expression of surface glycoproteins (Cd3d, Cd3g, and
Cd3e). Additionally, c8 is characterized by high levels of the cell
differentiation antigen (Ly6c2) and the receptor for various
cytokines (Il7r).

It is worth noting the functions of these genes reported in
existing literature. T-cell receptor (TCR)-positive and Fcer1g-
expressing innate-like T-cells are known to exhibit high cytotoxic
activity (Morrish and Ruland, 2022). Additionally, FCER1G
downregulation has been correlated with a loss of
immunoregulatory cytotoxic activity in Cd56-CD16+ (adaptive)
NK cells (Forconi et al., 2020). Nkg7 functions as a regulator of
lymphocyte granule exocytosis and downstream inflammation,
playing a role in various diseases (Ng et al., 2020). Both Gzma
and Prf1 involve cytotoxic lymphocyte-mediated immunity (Zhou
et al., 2020) and play critical roles in the NK cells differentiation into
efficient killers (Voskoboinik et al., 2015). Zfp36l2 provides a
mechanism for attenuating protein synthesis (Adachi et al., 2014;
Zheng et al., 2022). Hence, we found that the c7 should be mature
NK cells with the highest cytotoxic activity. The c4 shows the
mediate expression levels of Ccr2 and Tyrobp compared to the
c8 and c7. The c8 has the lowest levels of the seven genes, but shows a
high level of surface glycoprotein (Cd3d, Cd3g and Cd3e). The
Bcl11b-mediated gain of CD3e, physically associated with
CD16 signaling molecules Lck and CD247 in NK cells, is
correlated with increased Ab-dependent effector function (Wu
et al., 2021). This suggests that cluster c8 may functionally
exhibit characteristics reminiscent of a natural killer
T-like (NKT) cell.

IL2 gene expression and IL2 receptor in cell
subsets show functional differences
between precursor cells and mature cells

We conducted an examination of Interleukin-2 (IL2 gene) and
IL2RB expression to corroborate the functional activation of NK
cells (Figure 3). IL2 is well-known for its capacity to stimulate and
activate NK cells, a type of white blood cell responsible for
identifying and eliminating infected or cancerous cells. IL2 plays
a pivotal role in augmenting the cytotoxic activity of NK cells,
thereby enhancing their effectiveness in targeting and eradicating
abnormal cells.

Our observations indicated that IL2 gene expression was notably
prominent in clusters c4, c7, c8, and c12, which belong to the mature
mNK subset. Similarly, IL2RB expression exhibited high levels in
clusters c4, c7, c10, and c12, also corresponding to the mature mNK
subset. Remarkably, three clusters demonstrated concurrent high
expression of both IL2 and IL2 receptor (IL2RB). Notably, these
clusters exhibited a relatively low proportion of bone marrow, which
did not exceed 32%.

Functional inference of the cell types among
mNK cell clusters show tissue-
specific pattern

We applied PAGER enrichment analysis using gene signatures
sourced from the cellMarkers database (Figure 4). Notably, some of

FIGURE 2
The t-SNE plot of mNK cells from the 3 cell tissues and 15 mNK cell clusters with trajectories inferred from the PAGAmap. (A) The t-SNE plot of the
single cell. (B) The 15 cell clusters and trajectories inferred from the PAGA map. (C) The correlation matrix of the two super-clusters based on the Leiden
cluster’s expression correlation. (D) The changes in cell tissue proportion in each of the clusters align with the three trajectories.
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FIGURE 3
The violin plot of IL2 gene expression and IL2 receptor (IL2RB protein) expression in cell clusters and cell location in t-SNE plot. The violin plot of (A)
IL2 gene expression and (B) IL2RB expression among the 15 cell clusters. The clusters in the red frame are the top four IL2/IL2 receptor expressed clusters,
(C) The concurrent expression of IL2 gene expression and IL2RB expression in cell clusters.

FIGURE 4
The functional inference of cell typewithin cell clusters in t-SNE plot. The inferred cell type functions are annotated above the respective cell tissue’s
pie chart. The font colors used for annotation vary to signify the tissue of gene signatures enriched by cluster-specific DEGs frommNKs, sourced from the
cellmarkers database.
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FIGURE 5
The gene expression alteration aligningwith themNK cell maturation in the three trajectories. (A) The heatmap of the expression profiles fromDEGs.
The * represents the significance of the genes with Wilcoxon p-values≤0.05. The distance represents the pseudotime along the PAGA trajectory. (B) The
Protein-Protein Interaction (PPI) network of DEGs and the gene subcellular map. According to the gene-to-gene connectivity and trajectories, the
network has been further split into different functional components, extracellular space components (E1 and E2), membrane components (M1 to
M7), cytosol components (C1), and nucleus components (N1 to N3). (C) The functional components with an overall number of up/downregulated genes
in theNKmaturation and differentiation. (D) The changes in GFC signal across pseudotime. The blue curve corresponds to trajectory #1, the orange curve
to trajectory #2, and the green curve to trajectory #3.
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the missed hits, represented in grey, were primarily associated with
bone marrow and spleen-related tissues. In contrast, cell clusters
linked to blood tissue displayed robust hits through the utilization of
differentially expressed genes (DEGs).

Clusters c1, c3, c12, c0, and c9 are intricately connected to blood
tissue, particularly in the transition from mNK precursor cells to
fully mature mNK cells. For instance, when we examined the
topological neighbors of c12 and c1, we found an enrichment of
gene signatures associated with CXCR6+ T cells in blood. These cells
are characterized by their transition from stem-like states into
effector-like cytotoxic T cells (CTLs), involving significant
chemotactic reprogramming, including the upregulation of the
chemokine receptor CXCR6 as discussed in (Di Pilato et al.,
2021). Our discovery of mNK cells suggests that they undergo
analogous functional changes to T cells during mNK maturation,
thus exhibiting cytotoxic activity akin to NK cells.

Furthermore, our observations revealed that the topological
neighbors of c3 and c0 shared functional similarities with
monocyte cells in blood. Despite NK cells being a type of
lymphocyte derived from a common lymphoid progenitor
associated with B and T cells, our findings support the idea that
NK cells also exhibit several functional and phenotypic similarities
to myeloid progenitor cells, which constitute a significant part of the
innate immune response, including monocyte cells (Murin, 2020).

Additionally, our findings revealed that the endpoint clusters
(c8, c4, and c7) within the natural killer cell trajectories did not
exhibit a distinct tissue-specific enrichment. However, their
functionality was primarily associated with the characteristics of
mature NK cells commonly found in the kidney (c4 and c7).

The interplay of identified DEGs in the
network underlying themNK cell maturation
and differentiation in the three trajectories

We identified 14 DEGs in trajectory #1, 16 DEGs in trajectory
#2, and 30 DEGs in trajectory #3. Notably, there are 5 DEGs (Eef1a1,
Tpt1, Ccr2, Emb, and Ctla2a) common to trajectories #1 and #2,
7 DEGs (Eef1a1, Tpt1, Ltb, Ccr2, Ly6e, Emb, and Ctla2a) shared
between trajectories #1 and #3, and 5 DEGs (Eef1a1, Tpt1, Ccr2,
Emb, and Ctla2a) in common between trajectories #2 and #3 (see
Figure 5; Supplementary Figures S2–S4). In the pathway enrichment
analysis across the three trajectories, the ribosome pathways stand
out as consistently enriched in all of them. Additionally, trajectory
#1 exhibits enrichment in cytoskeleton-related and chromatin-
related pathways. Trajectory #2, on the other hand, is enriched in
G protein-coupled receptor-related pathways, Sphingosine 1-
phosphate (S1P) pathways, as well as VEGF, RAS, and PDGFR
signaling pathways. Meanwhile, trajectory #3 demonstrates
enrichment in T-cell activation pathways, NK cell cytotoxicity
pathways, IL signaling, and cytokine pathways (Supplementary
Figures S2–S4). This observation is intriguing, suggesting a
growing diversity of genes during mNK differentiation, signifying
their involvement in activating different molecular mechanisms as
cells differentiate.

Further examination included gene grouping based on function
and cellular components analysis, which led to the identification of
two extracellular components, seven membrane components, one

cytosol component, and three nucleus components. In the analysis
of DEGs during transitions between different clusters, genes with log
fold changes were extracted, and the number of up- and
downregulated genes in each gene functional compartment
(GFC) was mapped. We found conserved upregulation in the
C1 GFC throughout transitions, denoting high activity in cell
motility, metastasis, and cell growth, led by genes such as Tpt1,
Eef1a1, Actb, and Tmsb4x.

In the bifurcation between trajectory #1 (C2 to C3) and
trajectories #2/#3 (C2 to C1), 2 GFCs emerged: E1 (NK activities,
cytotoxicity, and cytotoxic T-lymphocytes) and M7 (related to cell
differentiation). Similarly, during the transition from C3 to C9, there
was an overexpression among all the GFCs. Some compartments,
such as M1 (related to melanoma metastasis and cytolytic function),
remained blocked in specific transitions, such as C1 to C0, C9 to C7,
and C0 to C4. Additionally, during the transition from C0 to C12,
two membrane-related compartments, M2 (chemokine receptor)
and M4 (proteasome-mediated degradation), were downregulated,
along with M6 (NK activation).

Trajectory #1 consistently maintains the highest overall GFC
signal levels in psuedotime. In contrast, trajectory #3 exhibits
consistently low levels of E1 (related to NK activities,
cytotoxicity, and cytotoxic T-lymphocytes), M2 (chemokine
receptor), M4 (proteasome-mediated degradation), M6 (NK
activation), N1 (myeloid progenitor differentiation), and N2 (cell
growth and development). However, it shows a notably elevated
level of M3 (surface glycoprotein).

In summary, in the early stages of mNK differentiation, E1 (NK
activities, cytotoxicity, and cytotoxic T-lymphocytes) dominated by Prf1,
Gzma, and Gzmb, and M7 (related to cell differentiation) dominated by
Kcnj8 and Ly6c2 were prominent indicators. In the late stages of mNK
differentiation, M2 (chemokine receptor) was dominated by Ccr2, Ccr5,
and Cx3cr1, M4 (proteasome-mediated degradation) was dominated by
Sell and Fcer1g, and M6 (NK activation) was dominated by Tyrobp,
Klrg1, and Klrb1b played significant roles. Cell maturation is
characterized by three distinct GFCs, including E1 (related to NK
activities, cytotoxicity, and cytotoxic T-lymphocytes) dominated by
Prf1, Ctla2a, Gzma, and Gzmb, M1 (related to melanoma metastasis
and cytolytic function) dominated by Itgam, S1pr5, and S1pr1, and M7
(related to cell differentiation) dominated by Kcnj8 and Ly6c2. In the
comparison of the endpoints of the three trajectories (c7, c4, and c8), it is
noteworthy that the number of upregulated GCFs exhibits a positive
correlation with the levels of IL2 receptor (Figure 3).

Discussion and conclusion

The PAGER-scFGA is one of the online interactive single-cell
tools tailored to decipher molecular insights into cell heterogeneity
using single-cell data. PAGER-scFGA plays a pivotal role in
integrating functional genomics analysis into single-cell analysis.
The platform offers PAGER enrichment analysis, revealing
functional interpretation of DEGs by PAGs. Compared to other
tools like ShinyCell (Ouyang et al., 2021), scViewer (Patil et al.,
2023) and ICARUS (Jiang et al., 2022), PAGER-scFGA stands out
with its advanced analyses, especially in integrating heterogeneous
gene sets within PAGER. It enables the extraction of PAG-to-PAG
relationships to construct PAG networks and identifies Protein-
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Protein Interactions (PPIs) among RP-score (Yue et al., 2019; Yue
et al., 2021) ranked gene members within retrieved PAGs.
Additionally, it facilitates iterative DEG analysis within selected
cell clusters, thus enhancing the identification of functional
differences along cell trajectories, paving the way for hypothesis-
driven research, such as investigating cell differentiation or
maturation processes.

We particularly addressed the real-world application in the
mouse natural killer (mNK) cell analysis. Within its analytical
framework, researchers delve deep into cellular heterogeneity and
unearth the underlying DEGs, all while benefiting from cell type
inference through enrichment analysis. Furthermore, we showcase
the platform’s potential in constructing cell-state-specific networks
spanning multiple trajectories, thus enabling the comparative
assessment of GFCs (Gene Functional Compartments) and the
interpretation of driving molecular mechanisms behind cell
maturation and differentiation. As a potential avenue for
enhancement, the PAGER-scFGA enrichment analysis could be
further empowered by the integration of additional spatial
information when the data is available coupled with cell-type
inference tools like cellDART (Bae et al., 2022). For the single-
cell multimodal study, a promising future direction involves
integrating regulatory networks with the availability of ATAC-seq
data, and exploration of the cell-state-specific networks.

In the mouse nature killer (mNK) cell analysis, we explored the
key GFCs underlying the mNK cell maturation and differentiation.
NK cells are innate cytotoxic lymphoid cells (ILCs) involved in the
killing of infected and tumor cells. We revealed the two major mNK
stages by the cell expression correlation. In the early stage of mNK
differentiation, 2 GFCs play a vital role in the divergence of
trajectory #1 and trajectories (#2 and #3), including an
extracellular GFC dominated by Prf1, Gzma, and Gzmb for NK
activities and cytotoxicity, and the GFC dominated by Kcnj8 and
Ly6c2 for cell differentiation. In the late stages of mNK
differentiation, three membrane GFcs play a vital role in the
divergence of trajectory #2 and trajectories #3, including
chemokine receptor-related genes (Ccr2, Ccr5, and Cx3cr1),
proteasome-mediated degradation-related genes (Sell and Fcer1g),
and NK activation related genes (Tyrobp, Klrg1, and Klrb1b).

There are certain limitations present in both PAGER-scFGA and
real-world studies. The causal relationships between the GFCs and
mNK cell subsets need to be further validated through in/ex vivo
experiments. Additionally, the PPI networks extracted from either
STRING or HAPPI databases are not cell-type-specific. A further
implementation comes with gene co-expression pattern mining,
gene regulatory relationship inference and cell-type-specific
modularity construction. In single-cell analysis of complex
diseases, integrating the evaluation of genes annotated as “hot”
by GWAS studies could have profound implications. This
integration enhances our understanding of the intricate
relationship between cells and diseases, as gleaned from
databases, such as DisGeNET database (Pinero et al., 2020),
GWASdb (Li et al., 2016). We believe that PAGER-scFGA will
emerge as a potent tool, shedding light on the signaling events
aligned with network analysis. This, in turn, lays a promising
foundation for expediting the translational study of complex
diseases with the potential to discover reliable cell-state-specific
biomarkers and formulate novel hypotheses, such as identifying

potential drugs or treatment plans to restore dysregulated cellular
states by reverting abnormal expressions to normal levels.
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SUPPLEMENTARY FIGURE S1
Differential expression analysis of the endpoint clusters determines cluster-
specific DEGs across c7, c4 and c8. Values represent gene expression. Violin
plots of selected DEGs are displayed to the right of the dotplot. The DEGs
expressed in each cluster after Wilcoxon’s test and z-score filtering.

SUPPLEMENTARY FIGURE S2
The mNK cell maturation in trajectory #1. (A) the cell tissue proportion
transition in mNK cell maturation and the underlying DEGs based on a
comparison between the selected cluster (e.g., C2) and the combined
background clusters (e.g., C2, C3, C9, and C7). (B) DEG’s expression
overlayed on the cell map and the cell function inferred from WikiGene
(https://www.wikigenes.org/). (C) Pathway enrichment results and the

interconnected pathway cross-talk network are presented, derived from the
m-type PAG-PAG relationships facilitated by PAGER. The figure was
generated using the Cytoscape software.

SUPPLEMENTARY FIGURE S3
The mNK cell maturation in trajectory #2. (A) the cell tissue proportion
transition in mNK cell maturation and the underlying DEGs based on a
comparison between the selected cluster and the combined background
clusters. (B) DEG’s expression overlayed on the cell map and the cell
function inferred from WikiGene (https://www.wikigenes.org/). (C)
Pathway enrichment results and the interconnected pathway cross-talk
network are presented, derived from the m-type PAG-PAG relationships
facilitated by PAGER. The figure was generated using the
Cytoscape software.

SUPPLEMENTARY FIGURE S4
The mNK cell maturation in trajectory #3. (A) the cell tissue proportion
transition in mNK cell maturation and the underlying DEGs based on a
comparison between the selected cluster and the combined background
clusters. (B) DEG’s expression overlayed on the cell map and the cell
function inferred from WikiGene (https://www.wikigenes.org/). (C)
Pathway enrichment results and the interconnected pathway cross-talk
network are presented, derived from the m-type PAG-PAG relationships
facilitated by PAGER. The figure was generated using the
Cytoscape software.

SUPPLEMENTARY TABLE S1
The GO cellular component annotation of the genes in the PPI network.
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