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Introduction:DNAmethylation, specifically the formation of 5-methylcytosine at
the C5 position of cytosine, undergoes reproducible changes as organisms age,
establishing it as a significant biomarker in aging studies. Epigenetic clocks, which
integrate methylation patterns to predict age, often employ linear models based
on penalized regression, yet they encounter challenges in handling missing data,
count-based bisulfite sequence data, and interpretation.

Methods: To address these limitations, we introduce BayesAge, an extension of
the scAge methodology originally designed for single-cell DNA methylation
analysis. BayesAge employs maximum likelihood estimation (MLE) for age
inference, models count data using binomial distributions, and incorporates
LOWESS smoothing to capture non-linear methylation-age dynamics. This
approach is tailored for bulk bisulfite sequencing datasets.

Results: BayesAge demonstrates superior performance compared to scAge.
Notably, its age residuals exhibit no age association, offering a less biased
representation of epigenetic age variation across populations. Furthermore,
BayesAge facilitates the estimation of error bounds on age inference. When
applied to down-sampled data, BayesAge achieves a higher coefficient of
determination between predicted and actual ages compared to both scAge
and penalized regression.

Discussion: BayesAge presents a promising advancement in epigenetic age
prediction, addressing key challenges encountered by existing models. By
integrating robust statistical techniques and tailored methodologies for count-
based data, BayesAge offers improved accuracy and interpretability in predicting
age from bulk bisulfite sequencing datasets. Its ability to estimate error bounds
enhances the reliability of age inference, thereby contributing to a more
comprehensive understanding of epigenetic aging processes.
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1 Introduction

While the sequence of a cell’s DNA largely remains invariant during its lifespan, its
epigenome changes significantly with age. One of the components of the epigenome that
shows the most reproducible changes with age is DNA methylation. DNA methylation
involves the covalent modification of DNA and is catalyzed by a family of DNA
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methyltransferases (DNMTs) that transfer a methyl group from
S-adenosyl methionine (SAM) to the fifth carbon of a cytosine
residue to form 5-methylCytosine (5 mC). Moore et al. (2012) In
mammals, most of the methylated cytosines occur in the CpG
context, and there are approximately 30M
5′—C—phosphate—G—3′ (CpG) dinucleotides in the
human genome.

Several methods have been developed to predict age based on
methylation levels. Johnson et al. (2012) These approaches are often
referred to as epigenetic clocks. Kabacik et al. (2022)The first
epigenetic clocks were constructed using penalized
regressionGreenwood et al. (2020), with age as the response and
methylation levels as the features. The use of penalties for model
coefficients led to sparse models out of the thousands of sites that
were measured (typically using DNA methylation microarrays),
only a few hundred had non-zero weights in the models.
Hannum et al. (2013); Horvath (2013) More recently these
approaches have been extended using neural networks, which can
generate slightly more accurate predictions than penalized
regression models. Galkin et al. (2021)However, these approaches
model DNAmethylation changes linearly with age and therefore fail
to consider non-linear methylation trends with age. This is
significant, as it is widely understood that methylation changes
are rapid early in life and slow down with age Snir et al. (2019).

To address this limitation, Farrell and colleagues introduced a
model named the Epigenetic Pacemaker (EPM) Farrell and
Pellegrini (2020). In this model, methylation across a subset of
CpGs is described as a non-linear function of an epigenetic state,
rather than actual age. Importantly, this epigenetic state can assume
non-linear relationships between the epigenetic state and time. For a
given set of i methylation sites and j individuals, the methylation
level at a single site can be expressed as m̂ij � m0

i + risj + ϵij, where
m̂ij represents the observed methylation value,m0

i denotes the initial
methylation level, ri is the rate of change, sj signifies the epigenetic
state, and ϵij is a normally distributed error term.

Given an input matrix M̂ � [m̂ij], the objective of the Epigenetic
Pacemaker (EPM) is to ascertain the optimal values form0

i , ri, and sj
that minimize discrepancies between predicted and actual
methylation values across specific methylation sites. As we’ve
previously demonstrated, in certain datasets, the epigenetic state
evolves in correlation with the logarithm of time Snir et al. (2019)
This implies rapid methylome alterations early in development,
which then decelerate with the organism’s aging. Although the EPM
adeptly models some nonlinear correlations between methylation
and age, it calibrates the epigenetic age in relation to chronological
age to optimize alignment across all sites. However, it overlooks the
potential nonlinear associations that different sites may
exhibit with age.

Here we propose a new approach to overcome the limitations of
existing methods. Our method considers count information rather
than methylation fractions, estimates non-linear trends of
methylation sites with age, and uses maximum likelihood
estimation which is robust to missing data. Existing methods for
methylome aging modeling often struggle with low coverage or
incomplete data. For instance, linear models for epigenetic age, built
on weighted sums of methylation values, inadequately handle
missing data—typically by assigning it a value of zero—thereby
skewing age predictions. Addressing this deficit, maximum

likelihood methods have emerged to generate age estimates from
sparse data sets. One existing method, “scAge” (single cell age),
Trapp and Gladyshev (2021) is designed to analyze methylation in
single cells. scAge harnesses a maximum likelihood strategy to
ascertain the most likely age of a subject based on low count
data. However, this method presumes a linear relationship in
methylation changes over time and employs a heuristic for
determining methylation value probabilities from the observed
data. We therefore expand upon scAge’s foundational principles
to develop a read count based framework for modeling non-linear
methylation changes with age that is resilient against missing data.

2 Materials and methods

2.1 Data acquisition and analysis

To test our approach for estimating age from methylation data
we collected targeted bisulfite sequencing data from either buccal
swabs or blood of 458 subjects. DNA was extracted from the buccal
swabs and blood using standard protocols. Buccal swabs were
incubated overnight at 50°C before DNA extraction. We applied
targeted bisulphite sequencing (TBS-seq) to characterize the
methylomes of the samples. The protocol is described in detail in
a methods paper by Morselli et al.Morselli (2021)Briefly, 500 ng of
extracted DNA were used for TBS-seq library preparation.
Fragmented DNA was subject to end repair, dA-tailing and
adapter ligation using the NEBNext Ultra II Library prep kit
using custom pre-methylated adapters (IDT). Pools of 16 purified
libraries were hybridized to the biotinylated probes according to the
manufacturer’s protocol. Captured DNA was treated with bisulphite
prior to PCR amplification using KAPA HiFi Uracil+(Roche) with
the following conditions: 2 min at 98°C; 14 cycles of (98°C for 20 s;
60°C for 30 s; 72°C for 30 s); 72°C for 5 min; hold at 4°C. Library QC
was performed using the High-Sensitivity D1000 Assay on a
2,200 Agilent TapeStation. Pools of 96 libraries were sequenced
on a NovaSeq6000 (S1 lane) as paired-end 150 bases. The probes
used in the capture were designed to capture approximately
3,000 regions that contained CpG sites used in previously
published epigenetic clocks. Greenwood et al. (2020); Levine
(2018); Lu (2019).

Demultiplexed Fastq files were subject to adapter removal using
cutadapt (v2.10) Martin (2011) and aligned to the GRCh38 genome
using BSBolt Align (v1.3.0) Colin (2021). PCR duplicates were
removed using samtools markdup function (samtools version 1.9)
Li (2009). The BSBolt methylation calling function was employed to
produce the CGmap files for each subject, utilizing the sorted and
indexed bam files. The reference genome used during the
methylation calling phase was Genome assembly GRCh38. The
BSBolt matrix aggregation function was used to create the
methylation matrix dataset, which subsequently informed the
training of BayesAge, scAge, LASSO and the EPM model.
Methylation values were measured across 46,518 CpG sites.

This study was completed on System76’s Lemur Pro laptop. The
laptop’s specifications include 40 GB RAM and 12-core Intel i7 CPU.
CGmap files were converted to Bismark format for scAge testing.
Additionally, BayesAge incorporates a function to convert CGmap files
into a format compatible with its prediction function.
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For BayesAge, scAge, LASSO, and the EPM model we
implemented 10-Fold Cross Validation. The dataset of
458 subjects was divided into 10 equal parts and the models were
trained on 9 of these folds and tested on the remaining one. So for
every 46 subjects left out for testing, we trained the models on the
remaining 412 subjects. This process was repeated 10 times to make
sure all the subjects used for the age prediction step were not used
during the training step. The LASSO model was implemented using
the sklearn package. The function linear_model.Lasso

was used to define the lasso model with parameters for the alpha
value equal to 0.02 and max iterations of 10,000 for the training. The
cross validation function cross_val_predict from the
sklearn.model_selection had a CV parameter equal to
10. The EPM model was implemented using the tutorial from
the official website https://epigeneticpacemaker.readthedocs.io.
Due to extreme downsampling to 100,000 CpG sites, the
methylation calling using BSBolt would return empty matrices.
To circumvent this issue, a methylation matrix with very low
values of coverage and percent of samples was used. Since the
Lasso and EPM model requires finite input values, any NaN
entries were imputed as zero methylation. While not ideal, this
allowed the model to be trained and make age predictions on the
available data.

2.2 The BayesAge framework

The BayesAge framework consists of two phases: training and
prediction as seen in Figure 1. In the training step, we use LOWESS
(locally weighted scatterplot smoothing) to fit the trend between
individual methylation levels and age. We use LOWESS smoothing
so that we do not need to make any a priori assumptions about the
functional form of the association between methylation and age. The
τ parameter determines the smoothness of the LOWESS fit. The
LOWESS function used was from the statsmodels.api. After
computing the fit for each site we also calculate the correlation
between methylation levels and age using the Spearman rank
correlation, which is robust to non-linear trends. We select the
top sites to include in the prediction phase using the absolute value
of the correlation. At the end of this process, the trained model
consists of N sites and their methylation levels across ages, from 1 to
100 in increments of 1 year, based on a predetermined τ parameter
of the LOWESS fit.

In the Prediction step, this reference matrix is intersected with
the CpG sites measured in a specific sample. A count matrix of these
CpG sites is constructed that reports the number of cytosines and
thymines. For the chosen age-associated CpG sites, it is posited that
the chance of detecting the observed cytosine and thymine counts
given the intended methylation level for a specific age based on the
trained model, follows a binomial distribution. To compute the
probability of observing the counts measured across all sites that are
found following the intersection with the training matrix, we
compute the product of these probabilities. To prevent underflow
errors during computation, a logarithmic sum replaces the product
of individual CpG probabilities, which results in a singular
probability value for each age.

Utilizing these pre-identified, ranked age-associated CpG sites,
the framework calculates the likelihood of observing each age in a

single subject, spanning an age spectrum of 0–100 years, at an
interval of 1 year. Consequently, for each subject we compute an
age-likelihood distribution, with the maximum likelihood age
interpreted as the epigenetic age for subject X. Here, PrCpG
represents the methylation probability for a distinct CpG at a
specific age, aggregated from 1 CpG to N total CpGs. The
associated probability for a unique CpG site state is
mathematically detailed as follows:

PrCpG x; n( ) � n

x
( )pxqn−x (1)

where:
n: Reads of all cytosines.
x: Reads of methylated cytosines.
p: The predicted average methylation probability.
q = 1 − p: The probability of thymine counts.

2.2.1 Data simulation and average
The data simulation was executed by creating 100 synthetic

samples for each real sample for a total 45,800 samples. For each
synthetic sample, the counts at each site were simulated using the
scipy.stats.binom probability distribution function.
Futhermore, BayesAge prediction function was used to estimate
the age of each of the 100 synthetic samples. The 100 synthetic
samples of each real sample was used to calculate the lower
interquartile range (IQR) and upper IQR limit bounds. Finally,
the average age of the error limit bounds reported were
calculated using:

μ � ∑
458

i�1

Xi − Yi

458
, (2)

where X and Y represent the upper IQR limit and lower IQR limit of
sample i respectively.

3 Results

3.1 BayesAge framework

We set out to develop a framework to estimate the age of an
individual from bisulfite sequence data. Bisulfite conversion
converts unmethylated cystosines to thymines, while leaving
methylated cytosines unconverted. After bisulfite converted DNA
is sequenced, the reads are aligned to genome and the methylation
state of any cytosine in the genome is measured by counting the
number of cytosines and thymines that align to that position.
Typically the methylation level is estimated by computing the
ratio of cytosines to cytosines plus thymines. However, since
sequencing data is inherently count based, it is important to
consider not only the methylation level, but also the total
coverage, as the confidence of the methylation estimate increases
with increased coverage.

To track changes in DNA methylation with age we collected
DNA methylation data from over 400 individuals. To identify CpG
sites whose methylation changed with age in a tissue independent
manner, we collected our sample from both blood, saliva and buccal
swabs. These tissues have heterogeneous mixtures of both
hematopoietic as well as epithelial cells, and represent typical

Frontiers in Bioinformatics frontiersin.org03

Mboning et al. 10.3389/fbinf.2024.1329144

https://epigeneticpacemaker.readthedocs.io
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1329144


cells that are found in many tissues. As whole genome sequencing is
resource intensive, we used a targeted approach to only sequence a
few thousand loci across the genome. This allowed us to obtain
about 100x coverage of 46,517 targeted regions. We made sure to
include among these loci regions that had been previously shown to
have age associated DNA methylation changes. We include samples
that covered a broad range of ages, from neonates to 92 years old as
seen by the histogram in Figure 2. The data used to plot the
histogram is added as supplementary information.

Our BayesAge framework has two steps: in the first we train a
model and in the second we predict the age of a sample. In the
training phase we first select CpG sites in the genome that have age

associated methylation values. Previous work has shown that many
CpG sites in the genome have DNA methylation levels that increase
with age, but that the association between methylation and age is not
necessarily linear. In fact many sites show non-linear changes of
methylation with age that are well approximated by exponential
functions, with the rate of change decreasing with age. To identify
the most significantly age-associated sites, we used the Spearman
rank correlation, which is a non-parametric method that does not
assume linearity. The 16 sites in the genome with the highest
Spearman correlation values are shown in Figure 3.

We find that for many of these sites the association of
methylation with age is non-linear, with rates of change that

FIGURE 1
The BayesAge framework.
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decrease with age. BayesAge, recognizing these non-linear trends,
uses LOWESS (locally weighted scatterplot smoothing) regression to
model the trend lines. This method utilizes locally weighted linear
regression to estimate a smoothed line to the data. The extent of this
smoothing is governed by the tau parameter, which determines the
size of the local neighborhood window for each local linear
regression fit. For our dataset, a tau value of 0.7 was chosen,
allowing the fit to adaptively capture the nonlinear methylation
variations across the age spectrum without succumbing to
overfitting, as illustrated in Figure 3. The trend lines of these fits
represent our aging model, or the expected methylation with age at
each of these sites.

Our prediction step allows us to estimate the age of a sample
using the training model. Our approach to estimating age from the
methylation data of a single sample builds on the count based
nature of bisulfite sequencing data. We propose a Bayesian
framework for estimating the most likely age of an individual
by computing the probability of the observed counts of cytosines
and thymines for any given age, and selecting the age that
maximizes this probability. This maximum likelihood approach
was first proposed in the scAge method, which was developed to
estimate the age of a samples from single cell methylation data. In
contrast to scAge, our method is designed for bulk DNA
methylation data where the coverage of cytosines in the genome
is generally high, and the methylation levels can assume values
between zero and one.

To estimate the probability of the observed counts based on the
expected methylation levels of a single site at a specific age we use a
binomial distribution. The rationale for utilizing a binomial
distribution to characterize the sites is anchored in the nature
of bisulfite sequencing data. Rather than probabilities, bisulfite
sequencing yields count data. Each sequenced read at a CpG site
represents a Bernoulli trial with two potential outcomes: the
observation of a methylated cytosine, the probability of which
equals the intrinsic methylation level at that site, or the observation
of an unmethylated cytosine, with the probability being the
complement of the methylation level. Consequently, the

cumulative counts of methylated and unmethylated reads across
all sequenced reads at a particular site adhere to a binomial
distribution dictated by the methylation level. This modeling
approach for CpG sites echoes the discrete, count-centric nature
of sequencing data, diverging from the notion of methylation as
continuous probabilities.

Figure 1 and Eq. 1 exemplify the probability calculation phase,
which evaluates the likelihood of detecting specific cytosine and
thymine counts, given the anticipated methylation level for each
CpG across varying ages, as derived from the LOWESS regression.
In contrast, scAge’s training phase employs a linear regression
model, as evident in Eq. 3, to forecast the methylation level for
every CpG site across different ages.

MethCpG � aCpG*age + bCpG (3)

In the final step, in order to estimate the probability of a
specific age of a sample we compute the likelihood of our
observed counts across multiple sites for any given age by
taking the product of the probabilities of each site. In practice
this product is computed by summing the logarithms of the
probabilities. In the final stage we compute the age that
maximizes this probability.

We applied BayesAge to our samples using a model that
contains the top 8 sites and used 10-fold cross validation to
train and test the model. We find that the R2 between the
predicted age and the actual age is 0.78, and that the mean
absolute error of the age estimate is 7 years, indicating a
relatively strong correlation and accuracy in age prediction. The
cross validation method is implemented such that the model is
trained on 412 random samples and then tested on the remaining
46 samples. This process is repeated until all the samples are used
for prediction.

Along with estimating the most likely age of a sample, BayesAge
enables the calculation of error bounds on the estimate. To generate
the prediction error bounds for bdAge, we employed data
simulation. By running 100 simulations for each sample, we
derived the interquartile range (IQR) of age predictions as a
measure of uncertainty. Across all the simulations, the average
IQR was approximately 12 years, providing an estimate of the
typical error margins for Bayesian age predictions in our dataset
as seen in Figure 4.

3.2 Comparison of BayesAge with scAge and
penalized regression models

To evaluate the performance of BayesAge we compared it to
scAge and penalized regression models using the same dataset of
458 individuals. As illustrated in Figure 5, 10-Fold Cross
Validation coupled with mean absolute error (MAE) was
employed to validate the outcomes of all models. The results
show that BayesAge age estimations have a slightly higher
coefficient of determination (r2) compared to scAge. Notably,
when limited to the top 8 CpG sites for age prediction, BayesAge
outperforms scAge by approximately 1%. However, as we
increase the number of CpG sites employed in the prediction,
this performance disparity becomes more evident. Specifically,
utilizing the top 256 CpG sites, BayesAge achieves an R2 value of

FIGURE 2
Distribution of the ages used in the training and prediction in
this study.
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73%, while scAge lags slightly behind with 70%. It is worth
noting that, across the varying numbers of CpG sites assessed,
scAge consistently generated age predictions with slightly lower
mean absolute errors relative to BayesAge.

While accurately predicting the age of an individual is an
important component of these models, another important
metric is whether the errors in the prediction show an age
bias. In human studies epigenetic clocks are often used to
measure the difference between epigenetic and actual age, and
many studies have shown that these differences are associated
with disease and longevity. However, in order for these age

differences to be interpretable, it is important that they do not
demonstrate an age dependence. In other words, it is useful for
models to generate residuals that are uncorrelated with age.

For this reason we evaluated the residuals of both scAge and
BayesAge to identify any age-related biases. Figure 6 shows that
the LOWESS fit of scAge, with a tau setting of 0.9, has a
nonlinear residual pattern as age varies. By contrast, the
BayesAge model was devoid of such age-associated biases in
its residuals. The absence of discernible age associated residual
patterns is another advantage of the non-linear BayesAge
approach over scAge.

FIGURE 3
Top 16 CpG sites fitted using lowess regression (pink line) with a tau parameter value of 0.7 vs linear regression (purple line)..

Frontiers in Bioinformatics frontiersin.org06

Mboning et al. 10.3389/fbinf.2024.1329144

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1329144


FIGURE 4
Data simulation was used to generate the IQR limits seen in BayesAge’s plot with a tau value of 0.5.

FIGURE 5
Comparison of the r-squared and MAE of scAge vs. BayesAge on a selected number of CpG sites.

FIGURE 6
Residual plot analysis of scAge compared to BayesAge.
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Most of the previously published epigenetic clocks have been
constructed using regularized regression which constrains the
coefficient estimates to zero. Therefore, for comparative
purposes, we implemented a LASSO (Least Absolute Shrinkage
and Selection Operator) regression and the EPM model and
trained on our data. Utilizing repeated 10-fold cross-
validation, LASSO attained an r2 value of 90% and a MAE of

4.51 when including all the 46,519 CpG sites in our dataset. In
constract, the EPM model reached an r2 value of 84% and a MAE
of 8.57 when using the top 107 CpG sites. Thus the age estimation
of the LASSO and EPM model outperforms both BayesAge and
scAge. However, this comes at a cost of creating a significant bias
in the age predictions. This bias is evident as the observed
residuals display an age-associated trend that was more

FIGURE 7
The scatter plot and residual plot of the LASSO and EPM model. The tau value of the lowess fit for the residual is 0.9.

FIGURE 8
1 million downsampling comparison of scAge, BayesAge, LASSO regression and the Epigenetic Pacemaker respectively. The lowess fit has a tau
value of 0.9.
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pronounced than in scAge. Thus while the age predictions of the
LASSO and EPM model may be accurate, the residuals, or
differences between actual and predicted age, show very strong
biases that makes them difficult to interpret as seen in Figure 7.

We used one final metric to evaluate the performance of these
four methods, and that involves the measurements of the
robustness of the predictions as data is down-sampled. This is
important, as bisulfite sequencing data-sets often have varying
degrees of coverage. To evaluate model performance at reduced
coverage levels, the original bisulfite sequencing data was
subjected to random downsampling. At 1 million CpG sites,
BayesAge’s R2 was marginally better at 74%, compared to scAge’s
73%. Despite this, scAge recorded a slightly superior MAE of
8.01, while BayesAge returned 8.14 as seen in Figure 8. Notably,
the LASSO model outperformed both the MLE models and the
EPM model in terms of r2 and MAE. The EPM model had a
noticeably higher MAE of 30.37 compared to the other models.
Additionally, the age-associated biases in residuals were
distinctly evident for LASSO and the EPM model, more so
than the other MLE techniques. Among the four methods,
BayesAge demonstrated the least age-related biases.

Upon further reduction to 100,000 reads, BayesAge
outperformed the other three methods with an R2 value of
36% and MAE of 16.01, in comparison to scAge’s respective
metrics of 33% and 16.32. The LASSO and EPM models were the
least resilient to this extreme downsampling, recording a
considerably diminished R2 value of 3% and 7% and an
elevated MAE of 12.98 and 31.91 respectively as seen by
Figure 9. Analyzing the residuals revealed significant age-
related biases in the LASSO and EPM model, in stark contrast
to the more consistent patterns observed in scAge and BayesAge
models. This comparative analysis, even with signficantly
reduced methylation data coverage, underscores BayesAge’s
capability to maintain accuracy and limit systemic biases. This
positions BayesAge as a useful tool for epigenetic age prediction,
particularly in cases with limited data coverage.

3.3 Computational efficiency

On the computational front, the time it takes to process
46 cgmap files using load_cgmap_file to a format compatible
with the prediction function of BayesAge is on average 1 minute.
The time to construct a reference using BayesAge’s construct_
reference function using 412 subjects takes on average 200 s.
The time to predict the age of 46 subjects using BayesAge’s bdAge
function is on average 4.5 s.

scAge, just like BayesAge, is fully functional on a single core.
Since BayesAge is a direct extension of scAge, both models
experience linear speedup with multiprocessing.

The 10-Fold Cross Validation using the LASSO model takes
around 6 min. The EPM package is implemented along with a
conditional expectation maximization algorithm to efficiently
estimate the parameters of the model. As such, it takes 10 s to
implement the 10-Fold Cross Validation to our dataset.

4 Discussion

We introduced BayesAge, a maximum likelihood estimation
framework for predicting epigenetic age from DNA methylation
data. BayesAge addresses several limitations found in previous
epigenetic age estimation methods such as penalized regression and
the Epigenetic Pacemaker. It uses a LOWESS smoothing method to
model nonlinear trends in methylation patterns with age, avoiding
potential biases that can arise from linear assumptions. The BayesAge
model is designed for count-based bisulfite sequencing data. By using a
binomial distribution, it effectively models methylation probabilities at
each CpG site, accounting for variable coverage depths across different
sites and individuals. Notably, BayesAge maintains its performance
even in the presence of significant data downsampling.

Our application of age prediction methods to a dataset of
458 individuals indicates that BayesAge generates comparably accurate
prediction to the scAge MLE method. However, the residuals of

FIGURE 9
100,000 downsampling comparison of scAge, BayesAge, LASSO and the Epigenetic Pacemaker. LASSO shows a higher bias compared to the
MLE models.
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BayesAge show limited age-associated biases, suggesting that our model
reflects biological differences in aging that are not correlated with age.
This is an important property, asmost human epigenetic clock studies are
focused on age acceleration rather than age prediction. The fact thatmany
models produce age acceleration estimates that are age associated with
age, which confounds their interpretation, and makes it difficult to
identify factors that impact the rate of epigenetic aging. By contrast,
BayesAge residuals are not age associated and therefore may be more
useful for identifying moderators of epigenetic aging.

Another important consideration of epigenetic clocks is that
they produce a point estimate of an individual’s age, and it is not
possible to obtain a confidence interval on that estimate that
accounts for the uncertainty of predictions. To overcome this
limitation, we have implemented a simulation framework that
allows us to model the range of age estimates that can be
generated from a single sample. This simulated data suggests that
BayesAge’s predictions have an uncertainty using interquartile range
of around 12 years.

In our evaluation of four methods for epigenetic age
prediction, we focused on measuring the robustness of
predictions as data was down-sampled, a critical consideration
given the varying coverage levels often seen in bisulfite
sequencing data. When reducing data to 1 million CpG sites,
BayesAge displayed a slightly higher R2 at 74% compared to
scAge’s 73%, while scAge had a marginally better MAE at 8.01,
versus BayesAge’s 8.14. The LASSO model outperformed the
MLE methods and the EPM model in R2 and MAE but
exhibited noticeable age-associated biases in residuals. In
extreme down-sampling to 100,000 sites, BayesAge surpassed
scAge with a higher R2 (36% vs 33%) and lower MAE (16.01 vs
16.32), while the LASSO and EPM models’ performance
deteriorated significantly (3% R2, MAE 12.98% and 7%, MAE
31.91) with prominent age-related biases. Even with reduced
data, BayesAge consistently maintained high accuracy and
minimized biases, positioning BayesAge as a robust tool for
epigenetic age prediction, especially in low-coverage scenarios.

The limitations of our binomial distribution age model provide
potential avenues for further research in epigenetic aging frameworks.
Future studies might consider using beta-binomial distributions to
accommodate overdispersion in methylation probabilities. The
model can also be expanded to include biological covariates known
to impact methylation, such as gender or smoking habits. On the
computational front, implementing optimization methods like
expectation-maximization algorithms could enhance efficiency for
larger epigenome-wide datasets.

In conclusion, BayesAge offers a comprehensive tool for exploring
epigenetic aging dynamics. By addressing the challenges of previous
models, BayesAge holds promise for enhancing understanding of aging

trajectories across populations. This can lead to insights into factors
influencing epigenetic aging, with potential applications in various
research areas, from forensics to disease studies.

Data availability statement

The data presented in this study are deposited in the Gene
Expression Omnibus (GEO) database, accession
number GSE261769.

Author contributions

LM: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. LR: Data
curation, Methodology, Writing–review and editing. MT: Data
curation, Methodology, Writing–review and editing. LB:
Supervision, Writing–review and editing. MP: Conceptualization,
Methodology, Supervision, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbinf.2024.1329144/
full#supplementary-material

References

Colin, F., Tosevska, A., Oyetunde, A., and Pellegrini, M. (2021). Bisulfite bolt: a bisulfite
sequencing analysis platform. Gigascience 10, giab033. doi:10.1093/gigascience/giab033

Farrell, C., Snir, S., and Pellegrini, M. (2020). The Epigenetic Pacemaker: modeling
epigenetic states under an evolutionary framework. Bioinformatics 36, 4662–4663.
doi:10.1093/bioinformatics/btaa585

Galkin, F., Mamoshina, P., Kochetov, K., Sidorenko, D., and Zhavoronkov, A. (2021).
Deepmage: a methylation aging clock developed with deep learning. Aging Dis. 23, 1252.
doi:10.14336/ad.2020.1202

Greenwood, C., Youssef, G., Letcher, P., Macdonald, J., Hagg, L., Sanson, A.,
et al. (2020). A comparison of penalised regression methods for informing the

Frontiers in Bioinformatics frontiersin.org10

Mboning et al. 10.3389/fbinf.2024.1329144

https://www.frontiersin.org/articles/10.3389/fbinf.2024.1329144/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1329144/full#supplementary-material
https://doi.org/10.1093/gigascience/giab033
https://doi.org/10.1093/bioinformatics/btaa585
https://doi.org/10.14336/ad.2020.1202
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1329144


selection of predictive markers. PLOS ONE 15, e0242730. doi:10.1371/journal.
pone.0242730

Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., et al. (2013).
Genome-wide methylation profiles reveal quantitative views of human aging rates.Mol.
Cell 49, 359–367. doi:10.1016/j.molcel.2012.10.016

Horvath, S. (2013). Dna methylation age of human tissues and cell types. Genome
Biol. 14, R115. doi:10.1186/gb-2013-14-10-r115

Johnson, A., Akman, K., Calimport, S., Wuttke, D., Stolzing, A., and de Magalhães, J.
(2012). The role of dna methylation in aging, rejuvenation, and age-related disease.
Rejuvenation Res. 15, 483–494. doi:10.1089/rej.2012.1324

Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S.-L., Whiteman, C., et al. (2022).
The relationship between epigenetic age and the hallmarks of aging in human cells. Nat.
Aging 2, 484–493. doi:10.1038/s43587-022-00220-0

Levine, e. a., Morgan, E., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., et al.
(2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany
NY) 10, 573–591. doi:10.18632/aging.101414

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The
sequence alignment/map format and samtools. Bioinformatics 25, 2078–2079. doi:10.
1093/bioinformatics/btp352

Lu, e. a., Ake, T., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., et al. (2019). Dna methylation
grimage strongly predicts lifespan and healthspan.Aging 11, 303–327. doi:10.18632/aging.101684

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.J. 17, 10. doi:10.14806/ej.17.1.200

Moore, L., Le, T., and Fan, G. (2012). Dna methylation and its basic function. Nat.
Neurpsychopharmacology 38, 23–38. doi:10.1038/npp.2012.112

Morselli, M., Farrell, C., Rubbi, L., Fehling, H. L., Henkhaus, R., and Pellegrini, M.
(2021). Targeted bisulfite sequencing for biomarker discovery. Methods 187, 13–27.
doi:10.1016/j.ymeth.2020.07.006

Snir, S., Farrell, C., and Pellegrini, M. (2019). Human epigenetic ageing is logarithmic with
time across the entire lifespan. Epigenetics 14, 912–926. doi:10.1080/15592294.2019.1623634

Trapp, K. C., and Gladyshev, V. (2021). Profiling epigenetic age in single cells. Nat.
Aging 1, 1189–1201. doi:10.1038/s43587-021-00134-3

Frontiers in Bioinformatics frontiersin.org11

Mboning et al. 10.3389/fbinf.2024.1329144

https://doi.org/10.1371/journal.pone.0242730
https://doi.org/10.1371/journal.pone.0242730
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1089/rej.2012.1324
https://doi.org/10.1038/s43587-022-00220-0
https://doi.org/10.18632/aging.101414
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.18632/aging.101684
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/npp.2012.112
https://doi.org/10.1016/j.ymeth.2020.07.006
https://doi.org/10.1080/15592294.2019.1623634
https://doi.org/10.1038/s43587-021-00134-3
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1329144

	BayesAge: A maximum likelihood algorithm to predict epigenetic age
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and analysis
	2.2 The BayesAge framework
	2.2.1 Data simulation and average


	3 Results
	3.1 BayesAge framework
	3.2 Comparison of BayesAge with scAge and penalized regression models
	3.3 Computational efficiency

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


