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Background: Microarray technology has brought significant advancements to
high-throughput analysis, particularly in the comprehensive study of
biomolecular interactions involving proteins, peptides, and antibodies, as well
as in the fields of gene expression and genotyping. With the ever-increasing
volume and intricacy of microarray data, an accurate, reliable and reproducible
analysis is essential. Furthermore, there is a high level of variation in the format of
microarrays. This not only holds true between different sample types but is also
due to differences in the hardware used during the production of the arrays, as
well as the personal preferences of the individual users. Therefore, there is a need
for transparent, broadly applicable and user-friendly image quantification
techniques to extract meaningful information from these complex datasets,
while also addressing the challenges posed by specific microarray and imager
formats, which can flaw analysis and interpretation.

Results:Herewe introduceMicroArray Rastering Tool (MARTin), as a versatile tool
developed primarily for the analysis of protein and peptide microarrays. Our
software provides state-of-the-art methodologies, offering researchers a
comprehensive tool for microarray image quantification. MARTin is
independent of the microarray platform used and supports various
configurations including high-density formats and printed arrays with
significant x and y offsets. This is made possible by granting the user the
ability to freely customize parts of the application to their specific microarray
format. Thanks to built-in features like adaptive filtering and autofit,
measurements can be done very efficiently and are highly reproducible.
Furthermore, our tool integrates metadata management and integrity check
features, providing a straightforward quality control method, along with a
ready-to-use interface for in-depth data analysis. This not only promotes
good scientific practice in the field of microarray analysis but also enhances
the ability to explore and examine the generated data.

Conclusion: MARTin has been developed to empower its users with a reliable,
efficient, and intuitive tool for peptidomic and proteomic array analysis, thereby
facilitating data-driven discovery across disciplines. Our software is an open-
source project freely available via the GNU Affero General Public License licence
on GitHub.
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1 Background

Microarrays in the form of miniaturized protein, DNA or
peptide libraries have become an essential biotechnology, as they
allow for rapid and efficient analysis of biomolecular interactions
across disciplines. When produced under standardized conditions
microarrays enable the screening and analysis in the context of
genomic (Plomin and Schalkwyk, 2007; Akira et al., 2018),
proteomic (Robinson et al., 2002; Schulte et al., 2023) and
clinical (Talucci and Maric, 2023) research with the highest
throughput and reproducibility. Numerous software tools have
been developed to interpret array images and generate data from
array experiments. Commercial options for the quantification of
peptide-microarrays include PepSlide (SICASYS), ImaGene
(Arrayit) and MAPIX (INNOPSYS). Free alternatives are plugins
for open-source software like ImageJ or Bioconductor as well as
standalone software alternatives like Array Analyze (Active Motif).
Currently available solutions, which were highly specific to
particular microarray formats, not only lacked adaptability
beyond those formats but also suffered from inefficiencies in the
measurement process, compromising their overall effectiveness and
limiting their applicability. The reliable and reproducible data
extraction after imaging analysis remains, however, often a
challenge since available solutions commonly do not allow for
adjustment for print-offsets, distortions and background
variation, common and often unavoidable interferences from
array production and processing. In addition, a versatile solution
for custom printing formats or data acquisition array types is
entirely missing. Beyond the quantification of microarray data, a
multitude of analysis algorithms has been devised to automatically
derive results through data aggregation (Renard et al., 2011; Parker
Cates et al., 2021; Cathryn et al., 2022). To make algorithms such as
these viable for mass data processing a certain degree of output-data
standardization has to be met. Furthermore, the recording of
relevant metadata would allow for additional data-analyses as
well as quality control measures. As such there are many needs
and wants potential microarray quantification software has to
live up to.

Here we present MARTin (Figure 1), an open-source software
freely accessible on GitHub under the AGPL (Free Software
Foundation, Inc, 2007). MARTin is a versatile and user-friendly
array-analysis software, developed for the analysis of protein as well
as peptide microarrays. Its features include background correction, a
signal fitting algorithm, metadata management and compatibility
across different microarray formats.

2 Implementation

2.1 Implementation and architecture

MARTin is built as a standalone application based on the
image processing software ImageJ (Rueden et al., 2017), written
in Java 11. While ImageJ itself is a powerful scientific image
analysis software, out of the box it is not capable of analysing
peptide microarray images efficiently. Thus, MARTin uses
ImageJ as a software library to provide basic functionalities,
such as the image viewer, quantification via regions of interest
(ROI) and image filtering. MARTin is built on top of the ImageJ
API and expands it greatly, allowing for a grid-like quantification
of multiple signals at once, effective data management, enhanced
ROI-positioning and post hoc measurement validation. The basic
application is structured using the model–view–controller
(MVC) architecture with a custom designed user interface
(UI) using AWT/Swing. The look and feel (LaF) is provided
through the excellent open-source FlatLaf (FormDev Software
GmbH, 2023) project. During implementation, we made use of
many functional paradigms to cut risks of introducing critical
code bugs: for example, many classes are coded inherently
immutable to additionally ensure correctness, in particular for
the consistency of measurements. Additionally, we used unit
testing to provide assurance over the post-measurement
preliminary data analysis and algorithm validity. Finally,
integration tests ensured consistent results over the version
evolution and test overall vital business logic. Standard
industry practices such as version control using Git, code

FIGURE 1
Use and features of MARTin. Microarrays are produced and processed and subsequently imaged. MARTin enables the digitalization of array signals
across platforms including the adjustment for experimental errors such as spot/field offsets and background variability.
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review, and CI/CD were followed. We provide application
installers for Windows and Linux distributions (RPM)
using jpackage.

2.2 Mask positioning

The main tool for the quantification of Microarrays in MARTin
is called a “Slide Mask.” All measuring of a Slide Mask takes place
within the “Measure Fields,” they, amongst the other elements of our
Slide Masks, are explained in more detail in Section 3.3. Positioning
of this mask is possible both analogously via mouse click-and-drag
and digitally via the corresponding graphical user interface (GUI)
elements, which are depicted in Figure 2.

2.3 Adaptive filter

To improve the manual positioning of a Slide Mask, adaptive
filtering was added as a feature of MARTin. This filter utilizes local
contrast normalization (LCN) which accounts for local peculiarities
in the image and is independent of the overall brightness and
differences between spots as well as varieties between assay
manufacturers. The LCN uses a basic statistic block filter
whereby the value of an output pixel is determined by the
surrounding pixel block akin to a convolutional filter. Specifically,
the kernel centres the pixel values around the mean as well as
stretches the contrast within the block area specified. This is
achieved by the following kernel formula:

ω � Irange · v − μ + σ( )
2σ

+ Imin

Here, Irange corresponds to the maximum spread of pixel values over
the whole image, e.g., Imax − Imin. v is the current pixel value in the
iteration. μ and σ are, respectively, the arithmetic mean and
corrected sample standard deviation of the considered
surrounding pixel block. The implementation of the LCN
algorithm is provided through the “Integral Image Filters” plugin
written by Saalfeld (Saalfeld, 2020). Our internal testing showed the
best results with a block size of 40 pixels over the tested assays. The
use of the adaptive filter for positioning has no influence on the
measurement at all and is only displayed to the user.

2.4 Autofit algorithm

To effectively position each Measure Field at its local maximum,
we devised a method that drew inspiration from the “Gradient
Descent” algorithm. To securely find the absolute maximum for
each cell, the step size of the algorithm was set to one pixel,
ensuring the highest possible degree of accuracy. For each step of
the algorithm, instead of single pixels, areas called “Search Fields”
equivalent to a Measure Field (see Section 3.3) in size are checked. The
main issue underlying this approach lies in the fact that the normal
method for determining step sizes is not viable because, instead of a
gradient, there is a sharp edge between signal and background on
microarrays. However, this approach can still be used because the
initial positions of the starting points for the “Gradient Descent” are

chosen in such a way and number that a signal will always at least
be partially covered. Because of a step size of one pixel and the
tight population of our Search Fields, we can ensure that the local
maximum will always be found, no matter the resolution of the
microarray. To improve the running time of this algorithm
adjustments were made to reduce redundant checks. This is
done on the level of individual Search Fields and across all
Search Fields of a Spot Field cell.

2.5 Microarray data quantification

Quantification includes the mean pixel value within a Measure
Field, the maximum and minimum pixel value, as well as the sample
standard deviation. Additionally, to create a dynamic range
representation, the mean_minus_min value is calculated by
subtracting the absolute minimum mean from each mean Measure
Field value (Eq. 1). The normalization process involves dividing by the
maximum mean_minus_min value, this is referred to as
normalized_mean (Eq. 2). Furthermore, there is the option of
aggregating between all grids used in a measurement. This means
averaging between all duplicates and normalizing these values by the
maximum. As a measurement of sameness between grid-copies, we
also added the population standard deviation, in absolute and relative
terms, for the mean and normalized values for each grid. This should
only be used in cases where the grids are placed upon duplicates. This is
a common quality control practice for Microarrays. The adjusted_
average value field refers to the mean value between all mean_
minus_min values of the same grid position (i.e., all values where
row = 2 and col = 1). The meaning of the remaining values should be
self-explanatory. If the Background Rectangles are enabled, their mean
signal strength will be subtracted as noise for all pixels of an image
before the actual measurement occurs. This will have no effect on the
image itself; repeated measuring will not change it in any way. This is
because all measuring takes place on a copied instance of the image,
which is not visible to the user.

2.6 Workflow

The following is a comprehensive summary of the microarray-
quantification workflow using MARTin, which will be explained in
more detail in the following sections.

1) Download the correct installer on the MARTin GitHub page
(Kreissner and Faller, 2023a).

2) Double-click the installer and follow the install-guide.
3) Open up the MARTin software.
4) Open an image using the “Open Image”-button on the main

GUI (Figure 2d).
5) Adjust the Slide-Mask to your assay by opening the settings

menu (Figure 2c) and initiating the Slide Mask
Designer (Figure 3).

6) Position your Slide-Mask on your microarray via click-and-
drag or by using the “Mask Position”-sliders (Figure 2i).

7) Optional Steps:
• Use the adaptive filter (Figure 2e) to simplify positioning
(as depicted in Section 3.4).
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• Click the “Autofit”-button (Figure 2f) to automatically
adjust the ROIs to the signals on your microarray.

• Manually adjust specific elements of your slide mask via
click and drag to fine-tune their positioning.

8) Click the “Measure”-button (Figure 2g).
9) Input the correct metadata in the export dialog (Figure 6B).
10) Click the green “Export”-button.
11) Select the path where you want to store your measurement

and click “open”.

Of course the usual work routine starts at point three. Once a
fitting slide mask has been created it can also be reused making point
five unnecessary. Furthermore, point eight can bemassively simplified
by using projects, this is explained in further detail in Section 3.6.
MARTin also provides the user with useful tips and information on its
usage via the info text window on the main GUI (Figure 2a). Section
3.10 can also be seen as an example of this workflow in action.

3 Results and discussion

MARTin is geared towards compatibility with standard
microarray formats as well as customs designs ranging from low-
density to high density formats and including printed arrays with x-
and y-offsets as well as laser-guided synthesized arrays. Once an
image is imported intoMARTin, the signals, which we call spots, can
be quantified in a semi-automatic manner. They can then be
exported as tab-separated values (TSV) and JavaScript Object
Notation (JSON) files, which can be used for downstream data
visualization in widely used software such as R Studio, Origin Pro,
and GraphPad Prism. First, we describe and explain the use of
MARTin and its features. Subsequently, the versatility and
robustness of MARTin is highlighted through its application on
six different arrays formats.

3.1 Main graphical user interface

ThisGUI allows the user to access all functions ofMARTin. Function
specific info-texts appear upon hovering over key elements of
the interface. Specific features of the interface are explained in Figure 2.

3.2 Import of imaging data

Microarray images are loaded into MARTin using the “Open
Image” (Figure 2d) button. In its current state MARTin is able to
accurately measure single channel greyscale-, as well as RGB-images
in a multitude of image formats, i.e., TIFF, PNG or JPEG.
Multichannel images have to be split by their channels
before measuring.

FIGURE 2
Main GUI of MARTin. a. Info text window. Displays useful tips and
information for using MARTin. b. Cycles through different info
messages. c. Settings menu. Opening the settings menu temporarily
disables buttons c-g. d. Open Image. Opens a new image and
closes all previously opened images. e. Toggle Filter. Toggles the
adaptive filter for slide positioning. f. Autofit. Initiates the automatic
fitting algorithm. g. Measure. Measures the content of the current slide
mask and opens the export dialogue. h. Check Integrity. Validates the

(Continued )

FIGURE 2 (Continued)

integrity of previously conducted measurements. i. Mask
Position. Enables digital mask positioning. This allows for the manual
input of the slide mask angle as well its horizontal (“X-Position”) and
vertical (“Y-Position”) coordinates.
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FIGURE 3
Slide Mask Designer and its application. (A) Shown is the Mask Designer. The parameters are marked with the letters a–m, they correspond to the
same letters on (B). e and f [not shown in (B)] allow to alter the size of theMeasure Fields. g. The rows and columns of the super grid respectively represent
the number of spot fields vertically and horizontally. h. Spacings between Spot Fields (see i and j) can be set the same for all spot fields (via “Edit all
intersections”), or specifically for each spot field. Specific spacings can be selected via the corresponding intersection. This is depicted in (B), the blue
lines between Spot Fields are the first intersection; the red lines depict the second one. The colour of these lines were changed for demonstrative
purposes. m. The number of rows/columns of all Spot Fields. (B) An example Slide Mask which is based on the inputs in (A). The lines in blue depict the
general outline of a slide. The red boxes above and below the slide are called “Background Rectangles.” The green grid is called a “Spot field.” The grey
rectangles are the “Measure fields.”
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3.3 Application of the slide mask

After loading a microarray image into MARTin a Slide Mask
needs to be defined and applied. The Mask Designer and a
representative slide mask is shown in Figure 3. All
measurements are done within the bounds of a “Measure
Field.” These fields are polygons of circles, rectangles, or
diamonds which are placed in the cells of a grid called a
“Spot Field.” The user can set all dimensions of this grid,
i.e., width, height, and the number of rows/columns.
Multiple grids with the same dimensions can be freely
generated next to one another. The spacing between these
grids can also be altered by the user. The Spot Field serves as
a help for general positioning and serves also a graphical
depiction of the search boundary of our fitting algorithm.
Additionally, there are toggleable “Background Rectangles.”
These rectangular polygons are used to quantify and later
subtract background noise. All of these elements are
summarized as a Slide Mask, mirroring the physical
composition of a Microarray. The Slide Mask is moved and
rotated to roughly match the array format analogously via
mouse-drag or digitally via the corresponding elements
(Figure 2i). The manual pre-matching is facilitated through
zooming in and out, by scrolling with the mouse wheel while the
control-key is pressed. Additionally, if the space key is held
down the user is able to move the whole image. The individual
Measure Fields and Background Rectangles are also moveable
via mouse-drag. This allows for manual adjustments in the case
of an imperfectly produced sample, as can be seen in Figure 4. If
the fitting algorithm is triggered all manual positioning will
reset. The Mask Designer generates, stores, loads, imports,
exports, and alters Slide Masks (Figure 3B). The combination
of all features into one tool enables quick switching between
multiple presets and sharing between users. Slide Masks can still
be moved and rotated while the Slide Mask Designer is active.
This enables the user to dynamically adjust the relevant
parameters to easily produce a fitting mask. The number of
active Measure Fields can also be selected separately via the
settings menu. As such a Slide Mask only has to be adjusted for

the general printing pattern of the slides and not for each
separate project.

3.4 Adaptive filtering for rough positioning

Measuring low-signal microarrays can pose a challenge, due to
the associated difficulty of visually identifying spots to accurately
position the mask. As such performing reliable quantification can
prove to be difficult. Common solutions, such as increasing the
contrast or adjusting the tonal range of the whole image, provide
only an insufficient solution since they can easily shift outliers with
a strong signal out of range without effectively enhancing the
contrast between signal and background. Furthermore, those
solutions require manual intervention due to their dependency
on the overall brightness and image features. Instead, we provide a
one button click solution (see Figure 2e) with our adaptive filter. Its
main purpose is to make the whole grid of spots visible; this is
depicted in Figure 5. Further technical details are described
in Section 2.3.

3.5 Automated spot
Correction—autofit algorithm

Slight deviations of spots occur naturally in the process of
microarray printing. Larger x and y offsets are also created by the
necessities to maintain solutions on the array which create torsion
by introducing interfaces with different optical densities. As such a
quantification software for microarrays has to be able to effectively
handle these deviations. This is especially true for high density
arrays with a very large number of spots, where manual corrections
are not a viable alternative. In MARTin positioning of the Measure
Fields over the actual signals is achieved by an automated fitting
algorithm. By pressing “Autofit” in the main GUI (Figure 2f), each
Measure Field will be placed at the position where the highest
mean signal density, within the confines of its corresponding Spot
Field cell, can be measured, i.e., its local maximum. Importantly,
the applied algorithm ensures that the local maximum will always

FIGURE 4
Adjusting a Slide Mask to fit deviating spots. (A) Amicroarray with vertical deviation in the first row of spots. (B) A slide mask was positioned over the
microarray; the Measure Fields are set invisible for illustrative purposes. One can see that the deviation of the first couple of spots is so strong that they go
beyond the bounds of the Measure Field. (C) Manually adjusted Slide Mask. Some spots were manually adjusted to capture the whole signal. The upper
Background Rectangles were also moved away from the deviating spots.
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be found, independent of the resolution of the microarray. This is
described in more detail in Section 2.4. In some cases, the deviation
that occurs in printing may exceed the spot fields of a given Slide
Mask. In these situations, we recommend manually positioning the
Slide Mask to cover as many spots as possible, followed by using
the autofit-algorithm, and making final adjustments manually by
clicking and dragging the affected Measure Fields (as depicted
in Figure 4).

3.6 Project Manager and metadata input

Before initiating a series of measurements, it is recommended to
define its presets as a project via the Project Manager (Figure 6A) to
ensure standardization. Metadata input is done via the export
dialogue (Figure 6B), which is triggered for each individual
measurement. The project structure allows for a quick and simple
autofill for most of the metadata of an export. This is possible because
the basic conditions of experiments within a set project are usually
very similar to each other. For microarrays, this mainly applies to the
number and content of the incubations performed. This also allows
for an export of all files generated during a measurement, into an
organized and easily readable folder structure. An automatic
readout across a structure such as the one described can easily be
accomplished. Furthermore, one of the biggest advantages of using
projects is the tagging-function. Presetting a set of tags is mainly done
to prevent semantic duplicates and ensure standardization. Tagging is
a simple but powerful way to define different subsets of data, like, for
example, positive-samples and negative-controls. If done correctly,
this can be used to easily analyse across multiple datasets. Tomeet the
current data management standards (Wilkinson et al., 2016), we
strongly encourage the usage of projects in MARTin; this not only
promotes a good scientific practice and improved reproducibility of
microarray experiments but also ensures compliance with essential
data management requirements.

3.7 Microarray data quantification and
data export

Clicking on “Measure” (Figure 2g) will quantify the content within
each of the Measure Fields and open the export dialogue. If a project is
selected some parts of the Export GUI will be automatically filled with
fitting metadata; this is depicted in Figure 6. All automatically filled
values can still be changed manually if necessary. Tags can and should
be selected for each individual measurement. Assay Timestamp will
automatically be set to date and time the measured image was created.
If this information ismissing, the current time and datewill be selected.
An export consists of the data for the individual Spot Fields as well as
aggregations between all spot fields. The specific values are explained in
Section 2.5. Export formats and additional export content like an
annotated image can be toggled in the settings menu.

3.8 Integrity check

Previous measurements can be validated with the built-in
integrity check function of MARTin (Figure 2h). To use this
function the user simply has to select a previously created export
directory of a single measurement. MARTin then checks if the
stored metadata, so the position and size of each element of a Slide
Mask, can be used to recreate the measurement. The measurement
integrity is considered valid if the replicated values fall within a
margin of error of 10–6 of the original values. Manually altered values
beyond this threshold are considered invalid. The integrity check
does not prevent data manipulation but contributes to identify
accidental alterations of microarray data sets. Additionally, if the
export of an “Annotated Image” was enabled in the settings menu,
each export will also have an image depicting the exact position of
the Slide Mask and all its elements at the moment of measuring. This
can be used to quickly check if the Slide Mask was positioned
properly. The basic requirement for this function is that a copy of the
initially measured image and the positional metadata of the
measurement are both present in the selected folder.

3.9 Usability in different formats

The extensive versatility of MARTin is evident in its adaptability
across diverse microarray formats, this is showcased in Figure 7.
Notably Figure 7F shows the use of MARTin on a non-peptide
microarray, in this specific case a protein microarray.

3.10 Variation in repeated measurements

Finally, we conducted repeated measurements of the same
microarray with MARTin. This was mainly done to showcase the
accuracy of our fitting algorithm, but it can also be viewed as a
marker of measurement consistency and process speed (Table 1).
The measurements were conducted by eight individuals over five
distinct days, on each day the same microarray was measured ten
times in succession. All participants were provided with an
instructional video detailing the procedure. The measurements
were carried out using the personal computers of the participants,

FIGURE 5
The effect of adaptive filtering. (A) A low signal image before the
adaptive filter is activated. (B) The same image after the adaptive filter
has been activated.
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FIGURE 6
Layout and functions of the Project Manager and export dialogue. (A) Shown is the Project Manager with representative data. (B) Shown is an export
dialogue which utilizes the “Example Project” created in (A). a. The selectable project name. b. Tags that are defined in (A) can easily be selected in (B). c
and d. Predefined information is carried over from (A) to (B). e. Assay Timestamp. If available, the timestamp reflects the image’s creation time; otherwise,
the current time and date are used. f. The Buttons “Show Result Table,” “Show Analysis Table” and “Show Gridded Image” allow for a preview of the
measuring results, in contrast the export button will store all data in a specified directory.
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in their respective home settings. Each positioning was done
using the same mask, starting at the zero position, i.e., the top left
corner of the image, with the Slide Mask set to zero degrees of
rotation. The fitting algorithm was used for all measurements, no
manual repositioning of individual spots was conducted,
background subtraction was disabled and the adaptive filter
was not used. In total 400 measurements were taken, we
excluded eight of those measurements in our analysis because
of significant mistakes made in the manual positioning of the
Slide Mask. The individual measurements took on average 55.2 s
(SD ± 16.4 s), while a whole measuring session of ten

measurements took around 9 minutes. The average coefficient
of variation across all spots was 4.6% for the minimum-, 1% for
the maximum- and 0.9% for the mean pixel value on average over
all participants. Eq. 3 shows the formula we used for the average
coefficient of variation. The positional data, namely, the x- and
y-coordinates, displayed on average a standard deviation of
0.6 pixels for x and 0.8 pixels for y. Eq. 4 shows the formula
for the average standard deviation. Notably, six of our eight
participants were first time users, some of which only showed a
small gap in speed and measurement quality to our more
experienced users (participants one and three). In contrast to

FIGURE 7
MARTin is adjustable to different microarray formats. Shown are in-house produced microarrays using the µSPOT principle (Schulte et al., 2023;
Frank et al., 1992), using a contact printer (CEM GmbH) (A) or an Echo525 (Beckman Coulter) (B), as well as high-density formats commercially available
from JPT Peptide Technologies GmbH (C), PepPerPrint GmbH (D), Schafer-N (E) as well as Engine GmbH (F). Background Rectangles were disabled for all
masks. The Measure Fields were made invisible in (E) to ensure better visibility of the actual signals. (A–E) are peptide microarrays, (F) is a
protein subarray.

Frontiers in Bioinformatics frontiersin.org09

Kreissner et al. 10.3389/fbinf.2024.1329062

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1329062


the general average, our most experienced user (participant 1)
took an average of 45.8 s (SD ± 9.3 s) for each measurement,
displayed an average coefficient of variation of 2.7% for the
minimum-, 0.4% for the maximum- and 0.4% for the mean
pixel value and had an average a standard deviation of 0.4 and
0.5 pixels for the x- and y-coordinates respectively. The general
variation between measurements of our participants can be
depicted by calculating across all measurements instead of
averaging between our participants. In this case the average
coefficient of variation is 6.2% for the minimum-, 2.1% for the
maximum- and 1.5% for the mean pixel value and the average
standard deviation is 0.8 and 1.0 for the x and y-coordinates
respectively. Table 1 gives an overview of our participants. The
measurements were performed on an image consisting of 3326 ×
2504 pixels, utilizing circular measure fields with a diameter of
14 pixels. Each measurement encompassed 480 individual
Measure Fields. We rounded all values that were calculated for
this section to the first decimal. All data used for this section, as

well as the code we wrote for the statistical analysis is freely
available on GitHub (Kreissner and Faller, 2023b). Any of the
measurements done can easily be validated via our integrity
check function (Section 3.8). We consider these findings to
demonstrate only minimal degree of variation amongst
measurements, thereby affirming the robust consistency
of MARTin.

4 Conclusion

Here we introduce MARTin as a fast and robust solution for
microarray quantification. In contrast to tailored commercial
solutions MARTin is compatible to a variety of different
microarray formats and allows for accurate quantifications
independent of the imager or sample-printer used. Crucially, this
allows the comparison of results not only across various experiments
but also between different platforms and even array types. It can be

TABLE 1 Evaluation of MARTin analysis time and accuracy. Repeated measurement of the same microarray done by eight different people. Shown are the
average and composite values for all eight participants as well as the overall average and the overall composite values. Participants are named P followed by
their respective number (for example, P3 being participant three). The averages are generated by averaging the standard deviations of each measuring
session. Composite values are generated by combining multiple sessions into one and calculating the standard deviation from this combined dataset. All
values have been rounded to the first decimal.

Min pixel
value rel.
StDev [%]

Max pixel
value rel.
StDev [%]

Mean pixel
value rel.
StDev [%]

X-coords
stDev [px]

Y-coords
stDev [px]

Duration
average [sec]

Duration
StDev [sec]

Session average

P1 2.7 0.4 0.4 0.4 0.5 45.8 9.3

P2 3.6 0.5 0.7 0.6 0.6 46.0 12.0

P3 2.8 0.4 0.5 0.5 0.6 49.2 10.7

P4 7.6 2.1 1.8 0.9 1.3 38.2 9.6

P5 7 1.8 1.6 1.0 1.1 34.5 10.3

P6 2.5 0.3 0.3 0.4 0.5 106.3 46.3

P7 4.6 0.6 0.8 0.6 0.6 71.0 24.5

P8 6.3 1.4 1.3 0.8 0.9 50.8 8.6

Composite sessions

P1 3.4 0.5 0.5 0.5 0.5 45.8 5.8

P2 4.4 0.7 0.8 0.6 0.7 46.0 7.7

P3 3.5 0.6 0.6 0.5 0.6 49.2 3.3

P4 8.3 2.9 2.1 1.0 1.4 38.2 6.5

P5 8.2 2.8 2.0 1.2 1.3 34.5 9.2

P6 3.1 0.5 0.5 0.4 0.5 106.3 33.0

P7 5.3 0.8 1.0 0.6 0.7 71.0 28.0

P8 7.5 2.2 1.7 0.8 1.0 50.8 12.8

Overall

Average 4.6 1.0 0.9 0.6 0.8 55.2 16.4

Composite 6.3 2.1 1.5 0.8 1.0 55.2 26.9
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expected that thiswill improve reproducibility andmeta studies including
overlapping array data sets. Furthermore, the project-oriented structure
of MARTin serves as an easily accessible way to document assays with
emphasis on metadata management and good scientific practice. To this
end, the structured data-export also provides an interface ready for
additional subsequent data processing such as tagging, export, statistical
analysis, and direct visualization.

It is important to note thatMARTin is a relatively new software and
therefore not extensively tried and tested for all of its possible
applications. However, over the course of its development process, it
underwent multiple rounds of testing and fine-tuning, directly
accommodating to the input of our users. In fact, it has already
been routinely deployed in real-life applications by its community of
beta-testers.

It is also noteworthy that the majority of the microarrays
showcased in this publication are peptide microarrays. This is
because MARTin was primarily developed for and tested on this
specific type of array. However, the primary challenge in
quantifying microarrays lies not in the sample type, but in
variations of the printing format. In abstract terms, MARTin
quantifies the signal strength of spots within a grid. As long as a
grid-based format is employed, it is feasible to quantify it using
our software thanks to its high adaptability (see Section 3.9).

One of the primary motivations behind the development of
MARTin was the absence of a universally recognized gold standard
inmicroarray quantification. The fact that many of themost prominent
alternatives in this field come with commercial price tags posed an
additional obstacle. In contrast, MARTin’s open accessibility allows for
independent testing, enabling potential users to make an informed
choice if they want to useMARTin formicroarray quantification. These
factors collectively informed our decision to refrain from direct
comparisons with other software in this publication.

Furthermore, there is still potential for enhancing the MARTin
framework. For instance, implementing a fully automated detection
and precise fitting of Slide Masks to microarrays would be feasible
with the aid of positional markers on the arrays themselves. This
advancement would significantly amplify the efficiency of MARTin
and unlock its potential for deployment in high-throughput
scenarios. Additionally, incorporating further features into
MARTin would expand its applicability across various use-cases,
offering ample opportunities for future improvements and the
expansion of our software. In summary, we have shown that
MARTin is a powerful and user-friendly software that can be
widely used for the accurate quantification of microarrays for a
large variety of assays. As such MARTin could serve as a first step
towards building a reference database which is currently missing for
proteomic microarray data.

5 Availability and requirements

Project name: MicroArray Rastering Tool—MARTin
Project home page: https://github.com/scitequest/martin
Archived version: Version v0.11.0 with Git commit ID:
b5b00bffcf6d864b2b9d6c6077010554c9934b98
Operating system(s): Platform independent (Binaries as
RPM and EXE)

Programming language: Java
Other requirements: Java 11 (and Java 17+ to build installers)
Licence: AGPL

6 Formulae

μadjusted � μi − μmin (1)

μadjusted is the adjusted mean.
μi represents the i-th value in a set of averages.
μmin represents the minimum average in the set.

μnormalized �
μi − μmin

μmax − μmin

(2)

μnormalized normalized adjusted average value.
μi represents the i-th average in the set.
μmin represents the minimum average in the set.
μmax represents the maximum average in the set.

cv � 1
m

∑
m

i�1

σ i
μi

(3)

cv average of a set of relative standard deviations.
m denotes the number of measurements.
σi represents the population standard deviation for the i-th index
across all measurements.
μi represents the population mean for the i-th index across all
measurements.

�σ � 1
m

∑
m

i�1
σ i (4)

�σ average of a set of standard deviations.
m denotes the number of measurements.
σi represents the standard deviation for the i-th index across all
measurements.
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